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A higher-order multiscale method for second order elliptic

equations

Aboubacar Konaté∗

The aim of this work is to study a new discontinuous Galerkin (dG) discretization to the
multiscale method introduced in [AB06] for solving a elliptic equation with parameters varying
at a very small space scale. This is motivated by the fact that in some applications (for example
in transport flow), particulary when the parameters are discontinuous or when the geometry is
complex (non-conformities, faults, ...), dG discretizations are more suitable than those based
on finite volume or continuous finite elements. Using standard methods when the parameters
are varying at a very small space scale is demanding in term of computing times and in term of
computer memory. Roughly speaking, multiscale methods consist in building basis functions
which take into account the variation of parameters which leads to better balance between
accuracy and computing times. We introduce a new Dirichlet-Neumann boundary condition
to the so-called cell problems in order to reduce the resonance error (sometimes to remove
it completely). An error estimate is established where the parameters are assumed to be
periodic. Numerical illustrations are made both in periodic and non-periodic case.

1 Introduction

We consider, in this work, the following elliptic equation in a domain Ω

− div
(
K
(x
ε

)
∇pε

)
= f in Ω (1)

with homogeneous Dirichlet boundary condition. This equation is used to model for example the pres-
sure pε in the porous media Ω ⊂ Rd(d = 2, 3) where K ∈ Rd×d is the permeability and f is the term source.

Using classical methods (finite elements method, finite volume method, ...) to solve numerically the
equation (1) is not satisfactory. Indeed, an accurate and efficient approximation is obtained with stan-
dard methods only if the mesh-size h is smaller than ε. This leads to tremendous amount of computer
memory and CPU time. In order to overcome this difficulty, many methods are proposed and others are
under investigation. Among these methods, there are the so-called multiscale methods.

The first multiscale finite element method was introduced by T. Hou and X. Wu in [HW97] in 1997
for solving elliptic problems with diffusion coefficients varying at a very small space scale. In these meth-
ods, we consider two meshes : a fine mesh on which the diffusion coefficients are defined and a coarse
mesh. The main idea behind these methods consists in computing numerically basis functions which take
into account the variations of the diffusion coefficients at the fine scale. These basis functions are used
onto for assembling and solving a linear system on the coarse mesh. Then, in a second step, they are
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used for projecting the coarse solution onto the fine mesh. The reader can refer to [EH09, FW17] for
comprehensive review of existing multiscale methods for elliptic problems.

In the same spirit, multiscale methods were introduced for convection-diffusion problems. We have the
Heterogeneous Multiscale Method (HMM) proposed in [HO10, AE14]. A multiscale method for solving
steady convection-diffusion problems was proposed in [Elf15]. This method is not based on homogeniza-
tion and error estimates was established without periodic assumption on the coefficient. More recently,
a new method based on the same idea that in [HW97] is proposed in [BLM15, Mad16]. A multiscale
method based on the same idea that is studied in this work was introduced in [OADE15, Kon17]).

In this work, we study the multiscale method introduced for the first time in [AB06]. The main
distinction of our approach from its original formulation in [AB06] is the use of a discontinuous Galerkin
discretization.

The paper is organized as follows. In the next Section, we recall some results from the homogenization
theory which allows us to justify the method. In Section 3, we present the idea behind the studied method.
The Section 4 is devoted to our new multiscale discretization. Numerical examples are presented in Section
5. Finally, Section 6 is devoted to establish an error estimate before we conclude in Section 7.

2 Homogenization results

In this section, we recall some results from the homogenization theory which will be used to establish
an error estimate. We assume that the permeability K is periodic with the unit cell Y = [0, 1]d as its
period. The homogenized problem is defined as follows

− div (K∗∇p) = f in Ω, (2)

with homogeneous Dirichlet boundary condition. The homogenized tensor K∗ is defined as follows :

K∗i,j
..=

∫
Y

K(y) (∇ywi(y) + ei) · (∇ywj(y) + ej) dy. (3)

where wi is Y -periodic and solution of the following problem : divy (K(y) (∇ywi(y) + ei)) = 0, ∀y ∈ Y,∫
Y
wi(y) dy = 0.

(4)

We define the fonction p1 as follows :

p1

(
x,
x

ε

)
..=

d∑
i=1

wi

(x
ε

) ∂p

∂xi
(x) . (5)

The following inequality holds ∥∥∥pε(x)− p (x)− εp1

(
x,
x

ε

)∥∥∥
H1(Ω)

6 C1

√
ε (6)

with C1 a constant independant of ε. The rigorous justification of the above results can be found in
[AB06].
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3 The multiscale method

3.1 Setting

Here, we make assumptions under which a priori error estimate can be established. In the sequel, it will
be assumed that the domain Ω is as regular as necessary. We denote by nΩ the unit outward vector
normal to ∂Ω.

When W (Ω) is a functional space, we say that v ∈ W#(Ω) if v and all of its derivatives, when they

exist, belong to W (Ω) and are all Ω-periodic. We say that v ∈ Ẇ ∈ (Ω) if v ∈W and
∫

Ω
v dx = 0.

We shall have the following assumptions in the input data :

Assumptions 1. 1. The tensor K ∈ C2(Y )d×d. There exist constants 0 < λmin < λmax such that

λmax |ξ|2 > K(x)ξ · ξ > λmin |ξ|2 , ∀ξ ∈ Rd, ∀x ∈ Ω,

where |·| denotes the euclidian norm Rd,

2. There exists a constant Ksta > 0 such that

K(x) 6 Kstat, ∀x ∈ Ω,

3. f ∈ H3(Ω).

Under the assumptions 1, we can prove by using classical results (see [Eva10]) that there exists a
unique solution pε ∈ H2(Ω), a unique solution p ∈ H5(Ω) and a unique solution of the cell problem
wi ∈ Ẇ 1,∞

# (Ω). By Sobolev embedding theorem, we can prove that p ∈W 3,∞(Ω).

Since we will use a dG discretization, regularity more than H1(Ω) is needed, namely we need error
estimation in Hs(Ω) with s > 3/2. For this end, the following useful inequality has been established in
[FW17] : ∥∥∥pε(x)− p (x)− εp1

(
x,
x

ε

)∥∥∥
H2(Ω)

6 C3

(
1 +

1√
ε

+ ε

)
(7)

where C3 is a constant independent of ε.

3.2 The idea of the multiscale method

The idea of our method was introduced for the first time in [AB06]. Here, we describe its principe. Let
us define the harmonic coordinates ŵεi as follows :

ŵεi (x) ..= xi + εwi

(x
ε

)
. (8)

Let define y := x/ε. We have ∇ŵεi (x) = ei+∇ywi
(
x
ε

)
. Replacing ∇ŵεi (x) by ei+∇ywi

(
x
ε

)
in (4) gives :

− div
(
K
(x
ε

)
∇ŵεi (x)

)
= 0 ∀x ∈ εY. (9)

Remark that

p (x) +

d∑
i=1

(ŵεi (x)− xi)
∂p

∂xi
(x)

is the two first terms of Taylor expansion with integral rest of p (ŵε(x)). Therefore, pε(x) can be approx-
imated as follows :

pε(x) ≈ pε(ŵε(x)). (10)
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The approximation formula (10) is the starting point of the definition of new multiscale method
adapted to the problem (1). This formula suggests to approximate the solution of problem (1) with basis
functions which are polynomials composed with the function ŵε. The main interest of this method rests
on the fact that ŵε can be approximated numerically and very quickly.

4 Multiscale discretization

4.1 Partition of the domain

The finite element spaces that are used in the proposed method are defined below. They involve two
differents meshes. Let Eh be a quasi-uniform conforming partition of Ω called the fine mesh on which are
defined parameters of the equation (1) where h is the mesh-size of Eh. It is chosen such that h < ε. We
denote by EH = {E1, E2, ... Enc

} the coarse mesh. We denote by ΓiH and ΓbH the collection of all interior
edges and the collection of all boundary edges, respectively.

Fine mesh Eh

Coarse mesh EH

Figure 1: An illustration of a coarse mesh ( in red) form a fine mesh (in blue).

Notation Here, we make a summary of some useful notation. We denote by

• Eh the fine mesh,

• EH the coarse mesh,

• ΓiH the collection of all interior edges of EH ,

• ΓbH the collection of boundary edges of EH ,

• He the length of the edge e,

• y = x/ε the fast variable.

In the sequel, we use the notation A . B when there exists a positive constant C with C independant of

ε, h and H, such that A 6 CB. We denotes by Kε(x) = K
(x
ε

)
.

4.2 Cell problems approximation

We assume that each coarse element E of the mesh is convex. As mentioned above, the functions ŵεi have
to be approximated numerically and very quickly. For each coarse element E ∈ EH , ŵεi is approximated
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by the function w̃ε,Ei solution of the following problem :
−div

(
Kε(x)∇w̃ε,Ei

)
= 0 in E,

w̃ε,Ei (x) = xi on ∂E,

(11)

We construct the vector w̃ε,E as follows : ∀E ∈ EH ,
(
w̃ε,E

)
i

= w̃ε,Ei . Since the coarse element E is

convex, then wε,Ei ∈ H2(Ē).

Remark 1. 1. Cell problems (11) are independent from each other, they can be solved in parallel.

2. The boundary condition choice plays a crucial role in the quality of multiscale basis functions. The
fact that the boundary conditions are defined independently of the variations of the permeability
tensor Kε, can result in large errors. Typically, if we consider the choice made in (11), then :∥∥∥ŵεi − w̃ε,Ei ∥∥∥

L2(∂E)
6
√
ε|∂E| ‖wi‖L∞(E) ,∥∥∥∇(ŵεi − w̃ε,Ei )∥∥∥

L2(∂E)
6
√
|∂E| ‖∇ywi‖L∞(E) .

where we use the fact that wi ∈W 1,∞(Y ). Our boundary choice is justified by the fact when ε goes

to 0,
∥∥∥ŵεi − w̃ε,Ei ∥∥∥

L2(∂E)
goes to 0. However, it is not clear that

∥∥∥∇(ŵεi − w̃ε,Ei )∥∥∥
L2(∂E)

goes to 0

when ε goes to 0 and that is the main drawback of this approximation. Methods were introduced to
overcome this difficulty :

• oversampling method ([HW97, EHW00, CCSY08]),

• methods which consist in solving boundary problems ([HW97, JLT03, JLT05]),

• new other methods ([Glo11]).

Dirichlet-Neumann boundary condition To reduce the resonance errors, we introduce a new strat-
egy which consists in using a Dirichlet-Neumann condition. We will make the description of the strategy
only for d = 2. The generalization of the strategy to higher dimension is straightformard. For each coarse
element E, we make the following decompsition ∂E = ΓEup ∪ ΓEdown ∪ ΓEleft ∪ ΓEright. We approximate ŵε1
by w̃ε,E1 solution of the following equation :

−div
(
Kε(x)∇w̃ε,E1

)
= 0 in E,

w̃ε,E1 (x) = x1 on ΓEup ∪ ΓEdown(
Kε(x)∇w̃ε,E1 (x)

)
· n = λ1 on ΓEleft ∪ ΓEright

(12)

Similarly, we approximate ŵε1 by w̃ε,E2 solution of the following equation :

−div
(
Kε(x)∇w̃ε,E2

)
= 0 in E,

w̃ε,E2 (x) = x2 on ΓEleft ∪ ΓEright(
Kε(x)∇w̃ε,E2 (x)

)
· n = λ2 on ΓEup ∪ ΓEdown

(13)
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where λi are hand-user parameters.
Let us see how the hand-user variables λi may be choosen in practice. By recalling that

ŵεi (x) = xi + εwi

(x
ε

)
,

we have (Kε(x)∇ŵεi (x)) ·n =
(
Kε(x)ei +∇wi

(
x
ε

))
·ni. Since wi are unknown, a first candidate for λi is

(Kε(x)ei) · ni.
Let us comment a little bit the intuition behind this new strategy for reducing the so-called resonance

error. The function w1 is designed to capture the variation of the permeability Kε in the direction e1.
So, the idea consists in assuming that w1 does not change on the portion of ∂E where the variation of
the coordinate x1 is very small. And, we try to capture the variation of the permeability Kε on the
remainding portion by imposing a Neumann condition. The same can be said to w2.

4.3 Discretization scheme on the coarse mesh

The methods we are interested in seek an approximation to pε by the discontinuous Galerkin finite
element method. For this purpose, we need finite element spaces for these quantities consisting of piece-
wise polynomial functions. Namely, we introduce

XH :=
{
vh ∈ L2(Ω);∀E ∈ EH , vH ∈ Pkd(E)

}
,

where Pkd is the space of polynomials of degree at most k. Let e ∈ ΓiH such that e = Ek ∩ El, we denote
by ne a unit normal vector oriented from Ek to El. We define the average and the jump for v ∈ H1(EH)
as follows

[ψ]e := ψEk
− ψEl

, {ψ}e :=
1

2
(ψEk

+ ψEl
).

When e ∈ E ∩ ΓbH , we define the average and the jump for v ∈ H1(EH) as follows

[ψ]e := ψE , {ψ}e := ψE .

The jump function is defined by J0(u, v) :=
∑

e∈Γi
H∪ΓH,D

σe
He

∫
e

[u]e[v]e dσ where σe is a constant on each

face e. The multiscale space Xε,H is defined as follows :

Xε,H := {vε,H := vH ◦ w̃ε where vH ∈ XH} .

For each E ∈ EH , we denote {ϕj}j=1,...,nd
a basis of Pkd(E). We define the interpolation operator πH on

C0(Ē) as follows :

πHv(x) :=

nd∑
j=1

v(aj)ϕj(x), ∀v ∈ C0(Ē),

where aj are such that ϕi(aj) = δij . We define the interpolation operator πε,H on C0(Ē) as follows :

πε,Hv(x) :=

nd∑
j=1

v(aj)ϕj ◦ w̃ε,E(x) = (πHv) ◦ w̃ε,E(x), ∀v ∈ C0(Ē). (14)

Since w̃ε,E ∈ H2(E), then for each vε,H in Xε,H , vε,H |E ∈ H
2(Ē). We define the broken norm in H1(EH)

as follows :

‖vH‖H1(EH) =

( ∑
E∈EH

‖(Kε)1/2∇vH‖2L2(E) + J0,H(vH , vH)

)1/2

.
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We approximate the solution of the problem (1) by pε,H ∈ Xε,H and solution of the following problem :
find pε,H ∈ Xε,H such that for all vε,H ∈ Xε,H :

∑
E∈EH

∫
E

(Kε∇pε,H) · ∇vε,H dx −
∑

e∈Γi
H∪ΓH,D

∫
e

{Kε∇pε,H}e · ne[vε,H ]e dσ

−γ
∑

e∈Γi
H∪ΓH,D

∫
e

{Kε∇vε,H}e · ne[pε,H ]e dσ + J0,H(pε,H , vε,H) =

∫
Ω

fvε,H dx

(15)

where γ = −1, 0, 1. This scheme is obtained as follows. We replace pε by pε,H in (1) and multiply it by
a test function vε,H ∈ Xε,H and proceed by integration by parts elementwise. The term

γ
∑

e∈Γi
H∪ΓH,D

∫
e

{Kε∇vε,H}e · ne[pε,H ]e dσ

is added to have a symmetry or a non-symmetry. The term J0,H(pε,H , vε,H) is added to guarantee the
stability the scheme. Following the same arguments as in [DPE12][Lemma 4.12], the penalty parameters
σe can be chosen independently of ε and He such that :

AγH(vε,H , vε,H) + J0,H(vε,H , vε,H) >
1

2
‖vε,H‖2H1(EH), for all vε,H ∈ Xε,H

where

AγH(pε,H , vε,H) =
∑
E∈EH

∫
E

(Kε∇pε,H) · ∇vε,H dx−
∑

e∈Γi
H∪ΓH,D

∫
e

{Kε∇pε,H}e · ne[vε,H ]e dσ

− γ
∑

e∈Γi
H∪ΓH,D

∫
e

{Kε∇vε,H}e · ne[pε,H ]e dσ

J0,H(pε,H , vε,H) =
∑

e∈Γi
H∪ΓH,D

σe
He

∫
e

[pε,H ]e[vε,H ]e dσ.

Finally, as in [DPE12][p. 135] we can prove that the scheme is consistent, in other words

AγH(pε − pε,H , vε,H) + J0,H(pε − pε,H , vε,H) = 0.

The main result Here is the main result of this paper.

Theorem 1. Let pε be the solution of the problem (1). We assume that ε < H. Let pε,H be the solution
of the scheme (15). Under the assumptions 1, the following inequality holds :

‖pε,H − pε‖H1(EH) .
√
ε+H +

ε

H
+
H√
ε

+ +
√
Rmax(ε). (16)

where Rmax(ε) = maxe∈Γi
H
‖R(ε)‖L∞(e) with

‖R(ε)‖L∞(e) .

{
ε if linear boundary condition is used and if we assume that ‖∇wε‖L∞(e) 6 ε

‖∇w‖L∞(Y ) if no assumption is made
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Remark 2. • The error estimate (16) is the same one get where continuous finite elements are used
except here we have the following additional term

H√
ε

+
√
Rmax(ε).

This is due to fact that where dG discretization is used, we need to estimate error of gradient at the
interior edges.

• Note that the convergence of the multiscale method deteriorates when ε and H are close because of

the resonance term
ε

H
. This is due to the choice of boundary conditions of the cell problems (11).

5 Numerical results

To illustrate our method, we consider some examples in this section. The fine mesh is a uniform rectan-
gular grids. Here, we denote by reference solution the numerical solution we get by classical dG scheme
on the fine mesh Eh. To measure the perfomance of our multiscale method, we compute the error be-
tween the multiscale solutions and the fine solutions in L2-norm and in Broken norm. We implement our
method on the software Deal.II (see [BHK]).

5.1 Example 1 : Periodic case :

In this first example, we consider The domain Ω = (0, 0.1)2 and the periodic permeability Kε introduced
in [AB06] defined as follows :

Kε(x1, x2) = a
(x1

ε
,
x2

ε

)
I (17)

where

a
(x1

ε
,
x2

ε

)
=

1(
1 + 1.8 sin(

2πx1

ε
)

)(
1 + 1.8 sin(

2πx2

ε
)

)
where I is the d × d identity matrix. The source term f is taken to be equal to −1 and ε is taken to
be equal 0.005. The fine Eh is composed by 100 elements along each direction. Numerical solutions
are represented on Figure 2. Errors are computed and represented in Figure 3. We observe that the
multiscale method with the Dirichlet-Neumann boundary condition for the cell problems is more efficient
than that when we use linear boundary condition. Observe that our new strategy removes completely
the resonance error.

5.2 Example 2 : Non-periodic case :

In this example, we consider the domain Ω = (0, 128)2. We consider two permeabilities with different
sizes of heterogeneities represented in Figure 4. We consider the following boundary conditions p(x) = 1000× 6894.76 on {x1 = 0}

p(x) = 500× 6894.76 on {x1 = 128}
(K∇p(x)) · nΩ = 0 otherwise.

For the first permeability, numerical solutions are plotted in Figure 5 and errors are computed and
reprsented in Figure 6.

Similarly, for the second permeability, numerical solutions are plotted in Figure 7 and errors are
computed and reprsented in Figure 8.
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(a) Reference solution (b) Linear boundary (c) Dirichlet-Neumann.

Figure 2: Numerical solutions on 4× 4 coarse grid.

(a) L2-norm (b) Broken norm

Figure 3: A graphical comparison between our new strategy for cell problems and that when linear
boundary condition is used.

(a) Permeability (b) Permeability

Figure 4: Examples of permeability fields
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(a) Reference solution (b) Linear boundary (c) Dirichlet-Neumann

Figure 5: Numerical solutions on 4× 4 coarse grid.

(a) L2-norm (b) Broken norm

Figure 6: A graphical comparison between our new strategy for cell problems and that when linear
boundary condition is used.

(a) Ref. solution (b) Linear boundary (c) Dirichlet-Neumann

Figure 7: Numerical solutions on 4× 4 coarse grid.
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(a) L2-norm (b) Broken norm

Figure 8: A graphical comparison between our new strategy for cell problems and that when linear
boundary condition is used.

6 Error analysis

The remainder of this paper will be devoted to prove the main result. Our strategy is similar in spirit to
that used in [AB06]. We start with the following useful lemma.

Proposition 1. The following inequality holds :

‖pε − pε,H‖H1(EH) .
3∑
i=1

Ti (18)

where

T 2
1 =

∑
E∈EH

∥∥∥(Kε)1/2∇(pε − pε,H)
∥∥∥2

L2(E)
,

T 2
2 =

∑
e∈Γi

H

He

σe
‖{Kε∇(pε − pε,H)}e‖2L2(e), T 2

3 =
∑

e∈ΓH,D

σe
He
‖pε − pε,H‖2L2(e),

Proof. The strategy is classical and follows from the consistency of the scheme. We first recall that

AγH(pε,H , vε,H) =
∑
E∈EH

∫
E

(Kε∇pε,H) · ∇vε,H dx−
∑

e∈Γi
H∪ΓH,D

∫
e

{Kε∇pε,H}e · ne[vε,H ]e dσ

− γ
∑

e∈Γi
H∪ΓH,D

∫
e

{Kε∇vε,H}e · ne[pε,H ]e dσ

J0,H(pε,H , vε,H) =
∑

e∈Γi
H∪ΓH,D

σe
He

∫
e

[pε,H ]e[vε,H ]e dσ.

The consistency of the scheme reads:

AγH(pε − pε,H , vε,H) + J0,H(pε − pε,H , vε,H) = 0.

11



Let us consider AγH(pε− pε,H , vε,H). Since pε− pε,H ∈ H1(Ω), then we have [pε − pε,H ]e = 0,∀e ∈ ΓiH .
Using successively Schwartz and Young inequalities, yields :

∑
E∈EH

∫
E

(Kε∇(pε − pε,H)) · ∇vε,H dx 6

( ∑
E∈EH

‖(Kε)1/2∇(pε − pε,H)‖2L2(E)

)1/2

‖vε,H‖H1(EH), (19)

∑
e∈Γi

H

∫
e

{Kε∇(pε − pε,H)}e · ne[vε,H ]e dσ 6

∑
e∈Γi

H

He

σe
‖{Kε∇(pε − pε,H)}e‖2L2(e)

1/2

‖vε,H‖H1(EH),

Let consider J0,H(pε − πε,H(p), vε,H). By using the fact that [ξIε ]e = 0,∀e ∈ ΓiH , then we have :

J0,H(pε − pε,H , vε,H) =
∑

e∈ΓH,D

σe
He

∫
e

[pε − pε,H ]e[vε,H ]e dσ.

By using the Cauchy-Schwarz’s inequality, we have :

J0,H(pε − pε,H , vε,H) 6

 ∑
e∈ΓH,D

σe
He
‖[pε − pε,H ]e‖2L2(e)

1/2

‖vε,H‖H1(EH).

Using the fact that the penalty parameters σe can be chosen such that :

AγH(pε − pε,H , pε − pε,H) + J0,H(pε − pε,H , pε − pε,H) >
1

2
‖pε − pε,H‖2H1(EH)

and by replacing vε,H by pε − pε,H , we have

1

2
‖pε − pε,H‖H1(EH) 6

( ∑
E∈EH

‖(Kε)1/2∇(pε − pε,H)‖2L2(E)

)1/2

+

∑
e∈Γi

H

He

σe
‖{Kε∇(pε − pε,H)}e‖2L2(e)

1/2

+

 ∑
e∈ΓH,D

σe
He
‖[pε − pε,H ]e‖2L2(e)

1/2

.

It remains to bound each term of the above inequality (18).

6.1 Majoration of T1

Let us start by giving the strategy to bound T1. The main difficulty for bounding this term is due to the
fact that pε − πε,Hp is not a interpolation error. Therefore, by remarking that there are three errors in
the design of our multiscale method : homogenization error, error due to fact that ŵE is approximated
by w̃E and discretization error, we make the following decomposition :∑

E∈EH

‖∇ (pε − πε,Hp)‖2L2(E) 6 3
(
G1
hom +G1

disc +G1
cell

)
, (20)
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where

G1
hom =

∑
E∈EH

‖∇ (pε − p ◦ ŵε(·))‖2L2(E) ,

G1
disc =

∑
E∈EH

‖∇ (p− πHp) ◦ ŵε(·)‖2L2(E) ,

and G1
cell =

∑
E∈EH

‖∇ ((πHp) ◦ ŵε(·)− πε,Hp)‖2L2(E) .

Lemma 1. The following inequality holds :

G1
hom =

∑
E∈EH

‖∇ (pε − p ◦ ŵε(·))‖2L2(E) . ε. (21)

Proof. The term G1
hom term measures the homogenization error. It will be bounded by making use of

the homogenization error inequality (6). We first split the term in two as follows :

‖∇pε −∇(p ◦ ŵε)‖L2(E) 6

∥∥∥∥∥∇pε −
d∑
i=1

∇ŵεi∂xip

∥∥∥∥∥
L2(E)

+

∥∥∥∥∥
d∑
i=1

∇ŵεi∂xip−∇(p ◦ ŵε)

∥∥∥∥∥
L2(E)

. (22)

Let consider the first term of the right hand of (22). Simple manipulations give :

∇
(
pε(x)− p(x)− εp1

(
x,
x

ε

))
= ∇pε(x)−

d∑
i=1

∇ŵεi (x)∂xip(x)− ε
d∑
i=1

wi

(x
ε

)
∇∂xip(x).

Using the inequality (6), the fact p ∈W 3,∞(Ω) and w ∈W 1,∞(Ω), we have :

∑
E∈Eh

∥∥∥∥∥∇pε −
d∑
i=1

∇ŵεi∂xi
p

∥∥∥∥∥
2

L2(E)

. ε2 (1 + |Ω|) . ε2. (23)

Let consider the second term of the right hand of (22). Remark∥∥∥∥∥
d∑
i=1

∇ŵεi (·) (∂xi
p− (∂xi

p) ◦ ŵε)

∥∥∥∥∥
L2(E)

. ‖Id+∇yw‖L∞(Y ) ‖∇p− (∇p) ◦ ŵε‖L2(E) . (24)

A Taylor expansion with integral rest yields :

∇(p ◦ ŵε(x)) = ∇p(x) + ε

∫ 1

0

d∑
i=1

wi

(x
ε

)
∇∂xi

p
(
x+ εsw

(x
ε

))
ds.

Therefore

∑
E∈EH

∥∥∥∥∥
d∑
i=1

∇ŵεi (∂xip− (∂xip) ◦ ŵε)

∥∥∥∥∥
2

L2(E)

.
∑
E∈EH

ε2 ‖p‖2W 2,∞(Ω) ‖w‖
2
L∞(E) |E| . ε2 (25)

From the inequalities (23) and (25), we deduce the inequality (21).
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Lemma 2. The following inequalities hold :

G1
disc =

∑
E∈EH

‖∇ ((p− πHp) ◦ ŵε)‖2L2(E) . H6 +H2ε2, (26)

Proof. Note that

‖∇ ((p− πHp) ◦ ŵε)‖L2(E) . ‖Id+∇yw‖L∞(Y ) ‖∇ (p− πHp) ◦ ŵε‖L2(E) .

A Taylor expansion with integral rest yields :

∇ ((p− πHp) ◦ ŵε(x)) = ∇ (p− πHp) (x) + ε

d∑
i=1

∫ 1

0

wi

(x
ε

)
∂xi (∇ (p− πHp))

(
t, x+ εsw

(x
ε

))
ds.

Using the regularity of p and interpolation errors, we get∑
E∈EH

‖∇ ((p− πHp) ◦ ŵε)‖2L2(E) . H6 +H2ε2

Lemma 3. The following inequality holds :

G1
cell =

∑
E∈EH

‖∇ (πHp ◦ ŵε − πε,Hp)‖2L2(E) .
ε

H
+ εH + ε2, (27)

Proof. Note that

‖∇ (πHp ◦ ŵε − πε,Hp)‖L2(E) 6

∥∥∥∥∥
d∑
i=1

(
∇ŵεi −∇w̃

ε,E
i

)
∂xi (πHp ◦ ŵε)

∥∥∥∥∥
L2(E)

+

∥∥∥∥∥
d∑
i=1

∇w̃ε,Ei
(
∂xi (πHp ◦ ŵε)− ∂xi

(
πHp ◦ w̃ε,E

))∥∥∥∥∥
L2(E)

(28)

Let consider the first term of the right hand of (28). We obtain :∥∥∥∥∥
d∑
i=1

(
∇ŵεi −∇w̃

ε,E
i

)
∂xi (πHp ◦ ŵε)

∥∥∥∥∥
L2(E)

.

∥∥∥∥∥
d∑
i=1

∇
(
ŵεi − w̃

ε,E
i

)∥∥∥∥∥
L2(E)

∥∥∥∥sup
i
∂xi (πHp ◦ ŵε)

∥∥∥∥
L∞(E)

.

Using the lemma 7 on each coarse element E, we obtain :∑
E∈EH

∥∥∇ (ŵε − w̃ε,E)∥∥2

L2(E)
.
∑
E∈EH

ε |∂E| . εHd−1H−d .
ε

H
.

Therefore

∑
E∈EH

∥∥∥∥∥
d∑
i=1

(
∇ŵεi −∇w̃

ε,E
i

)
∂xi (πHp ◦ ŵε)

∥∥∥∥∥
2

L2(E)

.
ε

H
sup
E∈EH

∥∥∥∥∥ sup
i∈{1,...,d}

∂xi (πHp ◦ ŵε)

∥∥∥∥∥
2

L∞(E)

. (29)

Using the fact that the term ‖∂xi
πHp‖L∞(E) is bounded as follows : there exists a constant C independent

of H such that

‖∂xi
πHp‖L∞(E) 6 |p|L∞(0,T ;W 1,∞(K)) + CH2|p|L∞(0,T ;W 3,∞(K)) . (1 +H2).
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we obtain : ∑
E∈EH

∥∥∥∥∥
d∑
i=1

∇
(
ŵεi − w̃

ε,E
i

)
∂xi (πHp ◦ ŵε)

∥∥∥∥∥
2

L2(E)

.
ε

H
+ εH. (30)

Let consider the second term of the right hand of (28). Note that∥∥∥∥∥
d∑
i=1

∇w̃ε,Ei
(
∂xi

(πHp ◦ ŵε)− ∂xi

(
πHp ◦ w̃ε,E

))∥∥∥∥∥
L2(E)

6

∥∥∥∥∥
d∑
i=1

∇w̃ε,Ei

∥∥∥∥∥
L∞(E)

sup
i∈{1,...,d}

∥∥∂xi
(πHp ◦ ŵε)− ∂xi

(
πHp ◦ w̃ε,E

)∥∥
L2(E)

. (31)

To bound
∥∥∂xi

(πHp) ◦ (ŵε − w̃ε,E)
∥∥
L2(E)

, we will use a Taylor inequality between ŵε(x) and w̃ε,E(x)

which requires that πHp ∈ C2(E). Since p ∈ C2(Ω) we deduce that πHp ∈ C2(E). It remains to find
a subset of E in which ŵε(x) ∈ E and w̃ε,E(x) ∈ E. By maximum principle, ŵε(x) ∈ E for all x ∈ E.
Remark that ∥∥w̃ε,E(x)− x

∥∥
L∞(E)

6 2 ‖w‖L∞(E) .

We introduce the subset CE on E as follows :

CE =
{
x ∈ E | B(x, 2ε ‖w‖L∞(Y )) ⊂ E

}
.

Clearly, for all x ∈ CE , w̃ε,E(x) ∈ E. Using the lemma 7 and the fact that

‖∇∂xiπHp‖L∞(K) . 1,

we get ∥∥∂xi (πHp ◦ ŵε)− ∂xi

(
πHp ◦ w̃ε,E

)∥∥2

L2(CE)
. ε2Hd. (32)

Using the fact that |E \ CE | . |∂E| ε, we have∥∥∂xi
(πHp ◦ ŵε)− ∂xi

(
πHp ◦ w̃ε,E

)∥∥2

L2(E\CE)
. εHd−1. (33)

Injecting the inequalities (33) and (32) in (31), we obtain∑
EEH

‖∇ (πHp ◦ ŵε − πε,Hp)‖L2(E) .
ε

H
+ εH + ε2.

Proposition 2. The following inequalities hold :

T1 . ε+H +
ε

H
, (34)

Proof. The proof follows directly from the lemmas 1, 2 and 3.
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6.2 Majoration of T2 and T3

In order to bound T3, we make the following decomposition :∑
e∈Γi

H∪ΓH,D

‖p− πε,Hp‖2L2(e) 6 Gehom +Gedisc +Gecell,

where

Gehom =
∑

e∈Γi
H∪ΓH,D

‖p− p ◦ ŵε‖2L2(e) ,

Gedisc =
∑

e∈Γi
H∪ΓH,D

‖p ◦ ŵε − πHp ◦ ŵε‖2L2(e) ,

and Gecell =
∑

e∈Γi
H∪ΓH,D

‖πHp ◦ ŵε − πε,Hp‖2L2(e) .

In order to bound the term T2, we make the following decomposition :∑
e∈Γi

H

‖∇ (pε − πε,H p̃ε)‖2L2(0,T ;L2(e)) 6 Ge,2hom +Ge,2disc +Ge,2cell

where

Ge,2hom =
∑
e∈Γi

H

‖∇ (p− p ◦ ŵε)‖2L2(e) ,

Ge,2disc =
∑
e∈Γi

H

‖∇ (p ◦ ŵε − πHp ◦ ŵε)‖2L2(e)

and Ge,2cell =
∑
e∈Γi

H

‖∇ (πHp ◦ ŵε − πε,Hp)‖2L2(e) ,

Lemma 4. The following inequalities hold :

Gehom =
∑

e∈Γi
H∪ΓH,D

‖p− p ◦ ŵε‖2L2(e) . ε

(
H +

1

H

)
. (35)

Ge,2hom =
∑
e∈Γi

H

‖∇ (p− p ◦ ŵε)‖2L2(e) .
ε2

H
+

(
H +

H

ε
+Hε2 +

ε

H

)
(36)

Proof. Let e ∈ ΓiH ∪ ΓH,D. Let define v(x) = p(x)− p ◦ ŵε(x). Using the following inequality

‖v‖L2(e) .
(
H−1 ‖v‖2L2(E) +H ‖∇v‖2L2(E)

)
.

and summing over all faces yields :∑
e∈Γi

H∪ΓH,D

‖p− p ◦ ŵε‖2L2(e) .
∑

e∈Γi
H∪ΓH,D

L

H
‖p− p ◦ ŵε‖2L2(E) + LH ‖∇p−∇(p ◦ ŵε)‖2L2(E)

where L is the maximun number of faces that belong to a coarse element. By using the inequality (21),
we have ∑

e∈Γi
H∪ΓH,D

‖p− p ◦ ŵε‖2L2(e) . ε

(
H +

1

H

)
.
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Let consider the term ‖∇ (p− p ◦ ŵε)‖2L2(e). We make the following decomposition :

‖∇p−∇(p ◦ ŵε)‖L2(e) 6

∥∥∥∥∥∇p−
d∑
i=1

∇ŵεi∂xip

∥∥∥∥∥
L2(e)

+

∥∥∥∥∥
d∑
i=1

∇ŵεi∂xip−∇(p ◦ ŵε)

∥∥∥∥∥
L2(e)

. (37)

Remark that

∇
(
p(x) + εp1

(
x,
x

ε

))
= ∇pε(x)−

d∑
i=1

∇ŵεi∂xi
p(x)− ε

d∑
i=1

wi

(x
ε

)
∇∂xi

p(x).

We deduce that :∥∥∥∥∥
(
∇p−

d∑
i=1

∇ŵεi∂xi
p

)
· ne

∥∥∥∥∥
L2(e)

.
∥∥∥(∇(p− p (x)− εp1

(
x,
x

ε

)))
· ne
∥∥∥
L2(e)

+ ε

d∑
i=1

∥∥∥(wi ( ·
ε

)
∇∂xi

p
)
· ne
∥∥∥
L2(e)

.

Then, by using the fact that p ∈W 3,∞(Ω) and wi ∈W 1,∞(Ω), we get

d∑
i=1

∥∥∥(wi ( ·
ε

)
∇∂xip

)
· ne
∥∥∥
L2(e)

. |e|1/2.

We obtain :

∑
e∈Γi

H

∥∥∥∥∥∇pε −
d∑
i=1

∇ŵεi∂xip

∥∥∥∥∥
2

L2(e)

. 2ε2
∑
e∈Γi

H

|e|+ 2
∑

e∈Γi
H∪ΓH,D

∥∥∥(∇(pε(x)− p (x)− εp1

(
x,
x

ε

)))
· ne
∥∥∥2

L2(e)

.
ε2

H
+
∑
e∈Γi

H

∥∥∥(∇(pε − p (x)− εp1

(
x,
x

ε

)))
· ne
∥∥∥2

L2(e)
.

By using the inequality (51), we have

∑
e∈Γi

H

∥∥∥∥∥∇pε −
d∑
i=1

∇ŵεi∂xip

∥∥∥∥∥
2

L2(e)

.
ε2

H
+

(
H +

H

ε
+Hε2 +

ε

H

)
.

Lemma 5. The following inequalities hold

Gedisc =
∑

e∈Γi
H∪ΓH,D

‖p ◦ ŵε − πHp ◦ ŵε‖2L2(e) . H7 + ε2H2, (38)

Ge,2disc =
∑
e∈Γi

H

‖∇ (p ◦ ŵε − πHp ◦ ŵε)‖2L2(e) . H5 + ε2. (39)
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Proof. A Taylor expansion with integral rest yields :

p ◦ ŵε(x)− πHp ◦ ŵε(x) = (p− πHp) (t, x) + ε

∫ 1

0

d∑
i=1

wi

(x
ε

)
∂xi (p− πHp)

(
t, x+ εsw

(x
ε

))
ds.

By using the fact that p ∈W 3,∞(Ω) and w ∈W 1,∞(Ω), we get :∑
e∈Γi

H∪ΓH,D

‖p ◦ ŵε − πHp ◦ ŵε‖2L2(e) . H7 + ε2H2.

In a similar way as above, we obtain∑
e∈Γi

H

‖∇ (p ◦ ŵε − πHp ◦ ŵε)‖2L2(e) . H5 + ε2.

Lemma 6. The following inequalities hold

Gecell =
∑

e∈Γi
H∪Γb

H

‖πHp ◦ ŵε − πε,Hp‖2L2(e) .
ε2

H
(1 +H)2, (40)

Ge,2cell =
∑
e∈Γi

H

‖∇ (πHp ◦ ŵε − πε,Hp)‖2L2(e) .
ε2

H
+
Rmax(ε)

H
(1 +H)2. (41)

Proof. Remark that∑
e∈Γi

H∪ΓH,D

‖πHp ◦ ŵε − πε,Hp‖2L2(e) 6 ε2 ‖∇πHp‖2L∞(Ω) ‖w‖
2
L∞(Y )

∑
e∈Γi

H∪ΓH,D

|e|.

By using the following inequality ‖∇πHp‖L∞(Ω) . (1 +H) we deduce that :∑
e∈Γi

H∪ΓH,D

‖πHp ◦ ŵε − πε,Hp‖2L2(e) .
ε2

H
(1 +H)2.

Let consider
∑

e∈Γi
H∪ΓH,D

‖∇ (πHp ◦ ŵε − πε,Hp)‖2L2(e). By intercaling ∇w̃ε,Ei (x)∂xi
(πHp ◦ ŵε(x)), we

have :

‖∇ (πHp ◦ ŵε − πε,Hp)‖L2(e) 6

∥∥∥∥∥
d∑
i=1

(
∇ŵεi −∇w̃

ε,E
i

)
∂xi (πHp ◦ ŵε)

∥∥∥∥∥
L2(e)

+

∥∥∥∥∥
d∑
i=1

∇w̃ε,Ei
(
∂xiπHp ◦ ŵε − ∂xiπHp ◦ w̃ε,E

)∥∥∥∥∥
L2(e)

Let consider
∥∥∥∑d

i=1

(
∇ŵεi −∇w̃

ε,E
i

)
∂xi (πHp ◦ ŵε)

∥∥∥
L2(e)

. We have :∥∥∥∥∥
d∑
i=1

(
∇ŵεi −∇w̃

ε,E
i

)
∂xi

(πHp ◦ ŵε)

∥∥∥∥∥
L2(e)

6

∥∥∥∥∥
d∑
i=1

∇
(
ŵεi − w̃

ε,E
i

)∥∥∥∥∥
L∞(e)

|e|1/2
∥∥∥∥sup

i
∂xi

(πHp)

∥∥∥∥
L∞(Ω)

.
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Let us denote by R(ε) =
∥∥∥∑d

i=1∇
(
ŵεi − w̃

ε,E
i

)∥∥∥
L∞(e)

. The function R(ε) depends on choice of the

boundary used for solving the cell problems and bounded as follow

‖R(ε)‖L∞(e) .

{
ε if linear boundary condition is used and if we assume that ‖∇wε‖L∞(e) 6 ε

‖∇w‖L∞(Y ) if no assumption is done

By using the following inequality ‖∂xi
πHp‖L∞(Ω) . (1 +H) we obtain

∑
e∈Γi

H∪ΓH,D

∥∥∥∥∥
d∑
i=1

(
∇ŵεi −∇w̃

ε,E
i

)
∂xi

(πHp ◦ ŵε)

∥∥∥∥∥
2

L2(e)

.
Rmax(ε)

H
(1 +H)2 (42)

where
Rmax(ε) = max

e∈Γi
H

‖R(ε)‖L∞(e)

Let consider
∥∥∥∑d

i=1∇w̃
ε,E
i

(
∂xi(πHp ◦ ŵε)− ∂xi(πHp ◦ w̃ε,E)

)∥∥∥
L2(e)

. We have

∥∥∥∥∥
d∑
i=1

∇w̃ε,Ei
(
∂xi

(πHp ◦ ŵε)− ∂xi

(
πHp ◦ w̃ε,E

))∥∥∥∥∥
L2(e)

6

∥∥∥∥∥
d∑
i=1

∇w̃ε,Ei

∥∥∥∥∥
L∞(e)

sup
i

∥∥∂xi
(πHp ◦ ŵε)− ∂xi

(πHp ◦ w̃ε,E)
∥∥
L2(e)

We introduce the following subset

CeE =
{
x ∈ E | dist(x, 2ε ‖w‖L∞(Y )) ⊂ E

}
∩ e.

We have ∥∥∂xi(πHp ◦ ŵε)− ∂xi(πHp ◦ w̃ε,E)
∥∥
L2(Ce

E) . ‖∇∂xi (πHp)‖L∞(E)

∥∥ŵε − w̃ε,E∥∥
L2(e)

. ‖∇∂xi
(πHp)‖L∞(E) ‖εw

ε(x)‖L2(e)

. ‖∇∂xi
(πHp)‖L∞(E) ε |e|

1/2 ‖w‖L∞(Y ) .

Finally, we get∑
e∈Γi

H

∥∥∂xi
(πHp ◦ ŵε)− ∂xi

(πHp ◦ w̃ε,E)
∥∥2

L2(Ce
E) .

∑
e∈Γi

H∪ΓH,D

ε2 |e| .
ε2

H
. (43)

On e \ CeE , we use the fact that {
|e \ CeE | . εH if d = 2,
|e \ CeE | . |∂e| ε if d = 3.

Then, we get∑
e∈Γi

H

∥∥∂xi(πHp ◦ ŵε)− ∂xi(πHp ◦ w̃ε,E)
∥∥2

L2(e\Ce
E) .

∑
e∈Γi

H

ε2 max(H, |∂e|) .
ε2

H
. (44)
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By using the inequality (43) and (44), we get :

∑
e∈Γi

H

∥∥∥∥∥
d∑
i=1

∇w̃ε,Ei
(
∂xi

(πHp ◦ ŵε)− ∂xi

(
πHp ◦ w̃ε,E

))∥∥∥∥∥
2

L2(e)

.
ε2

H
+
Rmax(ε)

H
(1 +H)2.

Proposition 3. The following inequalities hold :

T2 . ε+
H2

ε
+H2 +H6 + ε2H2 + εH2 +Rmax(1 +H)2, (45)

T3 . ε2 +
ε2

H2
+H6 + ε2H, (46)

Proof. The proof follows directly from the lemmas 4, 5 and 6.

6.3 Putting all together

Proof. By putting together the inequalities (34), (45) and (46) and by using the fact that ε < H and the
fact that when H and ε goes to 0, Hk is bounded by H and ε2 is bounded by ε, we deduce that :

‖pε − pε,H‖H1(EH) .
√
ε+H +

ε

H
+
H√
ε

+ +
√
Rmax(ε)

which is the desired result.

7 Conclusion

In this work, we study and analyse a new multiscale method based discontinuous Galerkin discretization.
We also introduce a new strategy to reduce the resonance error to the so-called cell problems. Numerical
examples confirm the efficiency and the accuracy of the method.

In some applications, the quantity in interest is the velocity. In that case, method to recover the
velocity from the solution of the pressure equation is introduced in [EV07]. This method cannot be apply
here because of the unsatisfactory estimation (7). We have tested numerically the mentioned velocity
recovery method introduced and it leads to very large errors. One way to overcome this difficulty consists
in using our multiscale method as a preconditioner.

Appendices

Appendix A :

Lemma 7. Let ŵεi be the function defined in (8) and let w̃ε,Ei be the solution solution of the problem
(11). Then, there exists a non-negative constant C6 independent of ε and E such that∣∣ŵε − w̃ε,E∣∣

H1(E)
6 C6

√
ε |∂E|, (47)
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Proof. The proof is inspired from [Oua13](Annexe C).

Let us define rε,Ei (x) = ŵε(x) − w̃ε,E(x). We can easily verify that rε,Ei is solution to the following
equation 

−div
(
Kε(x)∇rε,Ei

)
= 0 ∀x ∈ E,

rε,Ei (x) = εwεi (x) ∀x ∈ ∂E,
(48)

Let c be a positive constant independent of ε and E. We define a regular function mε as follows
mε(x) = 1 on ∂E
‖∇mε‖L∞(E) 6 c/ε in E

mε(x) = 0 if dist(x, ∂E) > cε
0 6 mε(x) 6 1 in E.

We introduce the function tε such that

rε(x) = −εwε(x)mε(x) + tε(x). (49)

The function tε satisfies the following equation −div (Kε(x)∇tε) = −div (Kε(x)∇ (εwε(x)mε)) ∀x ∈ E,

tε(x) = 0 ∀x ∈ ∂E,
(50)

By remarking that the measure of the support of the function mε is bounded by cε |∂E|, multiplying the
equation (50) by tε and integrating by parts, we can prove that

|tε|H1(E) .
√
ε ∂E.

Finally, we get ∣∣∣∇rε,Ei ∣∣∣
H1(E)

6 |εwε(x)mε(x)|H1(E) + |tε|H1(E) .
√
ε ∂E

which is the desired result.

Appendix B :

Lemma 8. Under the assumptions 1. There exists a constant C9 independent of ε and H such that∑
e∈Γi

H∪ΓH,D

∥∥∥∇(pε(x)− p (x)− εp1

(
x,
x

ε

))∥∥∥2

L2(e)
6 C9

(
H +

H

ε
+Hε2 +

ε

H

)
. (51)

Proof. Let denote by P kH the L2-projector operator in Pkd(EH) and

G = pε(x)− p (x)− εp1

(
x,
x

ε

)
.

Let E ∈ EH and e ∈ ∂E, then

‖∇G‖L2(e) 6
∥∥∇ (G− P kH (G)

)∥∥
L2(e)

+
∥∥∇ (P kH (G)

)∥∥
L2(e)

.

Using the result proved in [DPE12][Lemma 1.59], yields∥∥∇ (G− P kH (G)
)∥∥
L2(e)

6 CtrH
1/2|G|H2(E), ∀e ∈ ΓH ∩ E (52)
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where Ctr is a constant independent from E and H. Using the result proved in [Riv08][p.23], gives∥∥∇ (P kH (G)
)∥∥
L2(e)

6 CtrbH
−1/2

∥∥∇P kH(G)
∥∥
L2(E)

where Ctrb is a constant independent from E and H. It remains to evaluate
∥∥∇P kH(G)

∥∥
L2(E)

. Since P kH
is stable in norm H1, then∥∥∇P kH(G)

∥∥
L2(E)

6
∥∥∇ (P kH(G)−G

)∥∥
L2(E)

+ ‖∇G‖L2(E) .

Passing by the reference element Ê, there exists a constant Ĉ such that∥∥∇P kH(G)
∥∥
L2(E)

6 Ĉ ‖∇G‖L2(E) + ‖∇G‖L2(E) 6 (1 + Ĉ) ‖∇G‖L2(E) .

Again : ∥∥∇P kH(G)
∥∥
L2(e)

6 Ctrb(1 + Ĉ)H−1/2 ‖∇G‖L2(E) (53)

Using (52) and (53), we get ∑
e∈Γi

H∪ΓH,D

∥∥∥∇(pε(x)− p (x)− εp1

(
x,
x

ε

))∥∥∥2

L2(e)

6
∑

e∈Γi
H∪ΓH,D

(
2C2

trH ‖G‖
2
H2(E) + 2C2

trb(1 + Ĉ)2H−1 ‖∇G‖2L2(E)

)
6 2LC2

trH
∑
E∈EH

‖G‖2H2(E) + 2C2
trb(1 + Ĉ)2H−1

∑
E∈EH

‖∇G‖2L2(E)

where L the maximum number of faces belonging to E. Finally, using (6), yields∑
e∈Γi

H∪ΓH,D

∥∥∥∇(pε(x)− p (x)− εp1

(
x,
x

ε

))∥∥∥2

L2(e)
6 C9

(
H +

H

ε
+Hε2 +H−1ε

)

where C9 = max
(

2LC2
tr , 2LC2

trb(1 + Ĉ)2
)

.
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ume 69 of Mathématiques et Applications. Springer-Verlag, 2012.

[EH09] Y. Efendiev and Th.Y. Hou. Multiscale finite element methods: theory and applications.
Springer Verlag, 2009.

[EHW00] Y. R. Efendiev, T. Y Hou, and X.-H. Wu. Convergence of a nonconforming multiscale finite
element method. SIAM J. Numer. Anal., 37(3):888–910, 2000.

[Elf15] D. Elfverson. A discontinuous galerkin multiscale method for convection-diffusion problems.
2015.

[EV07] S. Ern, A.and Nicaise and M. Vohlarik. An accurate h(div) flux reconstruction for discontin-
uous galerkin approximations of elliptic problems. Elsevier Science, 4, 2007.

[Eva10] Lawrence C. Evans. Partial differential equations. American Mathematical Society, Provi-
dence, R.I., 2010.

[FW17] Song Fei and Deng Weibing. Multiscale discontinuous petrov–galerkin method for the multi-
scale elliptic problems. arXiv preprint arXiv:1702.02317, 2017.

[Glo11] Antoine Gloria. Reduction of the resonance errorpart 1: Approximation of homogenized
coefficients. Mathematical Models and Methods in Applied Sciences, 21(08):1601–1630, 2011.

[HO10] P. Henning and M. Ohlberger. The heterogeneous multiscale finite element method for
advection-diffusion problems with rapidly oscillating coefficients and large expected drift.
Netw. Heterog. Media, 5(4):711–744, 2010.

[HW97] Th.Y. Hou and X.H. Wu. A multiscale finite element method for elliptic problems in composite
materials and porous media. J. Comput. Phys., 134:169–189, 1997.

[JLT03] P Jenny, SH Lee, and HA Tchelepi. Multi-scale finite-volume method for elliptic problems in
subsurface flow simulation. J. Comput. Phys., 187(1):47–67, 2003.

[JLT05] P Jenny, SH Lee, and HA Tchelepi. Adaptive multiscale finite-volume method for multiphase
flow and transport in porous media. Multiscale Model. Simul., 3(1):50–64, 2005.

[Kon17] Aboubacar Konaté. Méthode multi-échelle pour la simulation d’écoulements miscibles en
milieux poreux. PhD thesis, Paris 6, 2017.

[Mad16] F. Madiot. Multiscale finite element methods for advection diffusion problems. PhD thesis,
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