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A higher-order multiscale method for second order elliptic
equations

Aboubacar Konaté*

The aim of this work is to study a new discontinuous Galerkin (dG) discretization to the
multiscale method introduced in [ABO6] for solving a elliptic equation with parameters varying
at a very small space scale. This is motivated by the fact that in some applications (for example
in transport flow), particulary when the parameters are discontinuous or when the geometry is
complex (non-conformities, faults, ...), dG discretizations are more suitable than those based
on finite volume or continuous finite elements. Using standard methods when the parameters
are varying at a very small space scale is demanding in term of computing times and in term of
computer memory. Roughly speaking, multiscale methods consist in building basis functions
which take into account the variation of parameters which leads to better balance between
accuracy and computing times. We introduce a new Dirichlet-Neumann boundary condition
to the so-called cell problems in order to reduce the resonance error (sometimes to remove
it completely). An error estimate is established where the parameters are assumed to be
periodic. Numerical illustrations are made both in periodic and non-periodic case.

1 Introduction

We consider, in this work, the following elliptic equation in a domain 2
~div (K (5) Vpe) —f inQ (1)
€

with homogeneous Dirichlet boundary condition. This equation is used to model for example the pres-
sure p, in the porous media Q C R?(d = 2, 3) where K € R?*9 is the permeability and f is the term source.

Using classical methods (finite elements method, finite volume method, ...) to solve numerically the
equation (1) is not satisfactory. Indeed, an accurate and efficient approximation is obtained with stan-
dard methods only if the mesh-size h is smaller than e. This leads to tremendous amount of computer
memory and CPU time. In order to overcome this difficulty, many methods are proposed and others are
under investigation. Among these methods, there are the so-called multiscale methods.

The first multiscale finite element method was introduced by T. Hou and X. Wu in [HW97] in 1997
for solving elliptic problems with diffusion coefficients varying at a very small space scale. In these meth-
ods, we consider two meshes : a fine mesh on which the diffusion coefficients are defined and a coarse
mesh. The main idea behind these methods consists in computing numerically basis functions which take
into account the variations of the diffusion coefficients at the fine scale. These basis functions are used
onto for assembling and solving a linear system on the coarse mesh. Then, in a second step, they are
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used for projecting the coarse solution onto the fine mesh. The reader can refer to [EH09, FW17] for
comprehensive review of existing multiscale methods for elliptic problems.

In the same spirit, multiscale methods were introduced for convection-diffusion problems. We have the
Heterogeneous Multiscale Method (HMM) proposed in [HO10, AE14]. A multiscale method for solving
steady convection-diffusion problems was proposed in [Elf15]. This method is not based on homogeniza-
tion and error estimates was established without periodic assumption on the coefficient. More recently,
a new method based on the same idea that in [HW97] is proposed in [BLM15, Mad16]. A multiscale
method based on the same idea that is studied in this work was introduced in [OADE15, Konl17]).

In this work, we study the multiscale method introduced for the first time in [AB06]. The main
distinction of our approach from its original formulation in [ABO6] is the use of a discontinuous Galerkin
discretization.

The paper is organized as follows. In the next Section, we recall some results from the homogenization
theory which allows us to justify the method. In Section 3, we present the idea behind the studied method.
The Section 4 is devoted to our new multiscale discretization. Numerical examples are presented in Section
5. Finally, Section 6 is devoted to establish an error estimate before we conclude in Section 7.

2 Homogenization results

In this section, we recall some results from the homogenization theory which will be used to establish
an error estimate. We assume that the permeability K is periodic with the unit cell Y = [0, 1]¢ as its
period. The homogenized problem is defined as follows

—div(K*Vp)=f inQ, (2)
with homogeneous Dirichlet boundary condition. The homogenized tensor K* is defined as follows :
Kis= /y K(y) (Vywi(y) +ei) - (Vyw;(y) +e;) dy. (3)
where w; is Y-periodic and solution of the following problem :
divy, (K(y) (Vyw;(y) +€;)) =0, Yy ey,

We define the fonction p; as follows :

Ty X, (T Op
2) =S (2) 210 0

i=1

The following inequality holds

< Cive (6)

with C7 a constant independant of e. The rigorous justification of the above results can be found in
[ABO6].

p(e) =p (@) —epr (2.%)

[



3 The multiscale method

3.1 Setting

Here, we make assumptions under which a priori error estimate can be established. In the sequel, it will
be assumed that the domain €2 is as regular as necessary. We denote by ng the unit outward vector
normal to 09).

When W () is a functional space, we say that v € W4 (Q) if v and all of its derivatives, when they
exist, belong to W (£2) and are all Q-periodic. We say that v € W € () if v € W and Jovdx =0.
We shall have the following assumptions in the input data :

Assumptions 1. 1. The tensor K € C? (Y)dXd. There exist constants 0 < A\pnin < A\maz Such that
Amaz [€1° 2 K(@)6 - € > Amin [, VEER?, Vo eQ,
where |-| denotes the euclidian norm R,
2. There exists a constant Kgq > 0 such that
K(x) < Kgtar, V€,
3. f € H3(Q).

Under the assumptions 1, we can prove by using classical results (see [Eval(]) that there exists a
unique solution p. € H 2(Q), a unique solution p € H®()) and a unique solution of the cell problem
w; € W;OO(Q) By Sobolev embedding theorem, we can prove that p € W3 (Q).

Since we will use a dG discretization, regularity more than H'(Q) is needed, namely we need error
estimation in H*(2) with s > 3/2. For this end, the following useful inequality has been established in

[FW17] :
[pet@) = p @) = ep (. )

where C3 is a constant independent of e.

<C3<1+\}E+6) (7)

.

3.2 The idea of the multiscale method

The idea of our method was introduced for the first time in [AB0G]. Here, we describe its principe. Let
us define the harmonic coordinates w§ as follows :

@%(x) = i + ew; (5) . (8)

€

Let define y := z/e. We have V@{(z) = e; + V,w; (£). Replacing V@§(z) by e; 4+ Vyw; (£) in (4) gives :

— div (K (%) vm;(x)) =0 Vreey (9)

Remark that .,
e Op
p@)+ 3 (@) — ) 22 (@)
i=1 ¢

is the two first terms of Taylor expansion with integral rest of p (w®(z)). Therefore, p.(z) can be approx-
imated as follows :

pe(x) & pe(w(x)). (10)



The approximation formula (10) is the starting point of the definition of new multiscale method
adapted to the problem (1). This formula suggests to approximate the solution of problem (1) with basis
functions which are polynomials composed with the function @w¢. The main interest of this method rests
on the fact that @w*® can be approximated numerically and very quickly.

4 Multiscale discretization

4.1 Partition of the domain

The finite element spaces that are used in the proposed method are defined below. They involve two
differents meshes. Let &, be a quasi-uniform conforming partition of 2 called the fine mesh on which are
defined parameters of the equation (1) where h is the mesh-size of &,. It is chosen such that h < e. We
denote by Eg = {Eh, Es, ... E,_} the coarse mesh. We denote by I'}; and Fl}{ the collection of all interior
edges and the collection of all boundary edges, respectively.

Eine mesh &,

Coarse mesh £y

Figure 1: An illustration of a coarse mesh ( in red) form a fine mesh (in blue).

Notation Here, we make a summary of some useful notation. We denote by

e &), the fine mesh,

Ey the coarse mesh,

F% the collection of all interior edges of Eg,

I'%, the collection of boundary edges of g,

H. the length of the edge e,
e y = x/e the fast variable.

In the sequel, we use the notation A < B when there exists a positive constant C' with C' independant of
¢, h and H, such that A < CB. We denotes by K¢(z) = K <£>
€

4.2 Cell problems approximation

We assume that each coarse element E of the mesh is convex. As mentioned above, the functions @§ have
to be approximated numerically and very quickly. For each coarse element E € Ep, w§ is approximated



by the function @E’E solution of the following problem :

—div (Ke(x)V@;E) = 0 in B,
(11)
a¢F (x) = m on OF,

K2

~c. F . .
6’E)i = w;". Since the coarse element E is

We construct the vector wF as follows : VE € &g, (15
convex, then w®” € H2(E).

Remark 1. 1. Cell problems (11) are independent from each other, they can be solved in parallel.

2. The boundary condition choice plays a crucial role in the quality of multiscale basis functions. The
fact that the boundary conditions are defined independently of the variations of the permeability
tensor K¢, can result in large errors. Typically, if we consider the choice made in (11), then :

L2(9E) < VElOE| ||wiHL°°(E) )

HV (@f - @:’E)‘ ) S VIOE|[Vywill oo () -

where we use the fact that w; € W5 (Y). Our boundary choice is justified by the fact when € goes

~.E
to 0, w;’ ‘

ANE ~E,E
w; — w;

L2(OE

w§ — goes to 0. However, it is not clear that ‘ \% (@f - @fE)‘
L2(8E

goes to 0
L2(3E)
when € goes to 0 and that is the main drawback of this approzimation. Methods were introduced to

overcome this difficulty :
e oversampling method ([HW97, EHW00, CCSY08]),

e methods which consist in solving boundary problems ([HW97, JLT03, JLT05]),
o new other methods ([Glo11]).

Dirichlet-Neumann boundary condition To reduce the resonance errors, we introduce a new strat-
egy which consists in using a Dirichlet-Neumann condition. We will make the description of the strategy
only for d = 2. The generalization of the strategy to higher dimension is straightformard. For each coarse

element F, we make the following decompsition OF = Ffp U FdEown U Flb; st Y Ffi ght- We approximate w§
by @$" solution of the following equation :
~div (K*(@)vay®) = 0 in E,
ﬁiE(x) = x; on F{fp urg (12)
(K@VitF @) n = A on TE,UTE,,
Similarly, we approximate @w§ by ﬁg’E solution of the following equation :
~div (K*(@)vag”) = 0 in B,
iy () = @ on TE,UTE,, (13)
(Kf(x)V{E;E(x)) ‘mn = X on I} UTE .




where \; are hand-user parameters.
Let us see how the hand-user variables \; may be choosen in practice. By recalling that

w5 (x) = x; + ew; (f) ,
€

we have (K*(2)V@g(z)) -n = (K(z)e; + Vw; (£)) - n;. Since w; are unknown, a first candidate for \; is
(K¢(x)e;) - n;.

Let us comment a little bit the intuition behind this new strategy for reducing the so-called resonance
error. The function w; is designed to capture the variation of the permeability K¢ in the direction e;.
So, the idea consists in assuming that w; does not change on the portion of E where the variation of
the coordinate xq is very small. And, we try to capture the variation of the permeability K¢ on the
remainding portion by imposing a Neumann condition. The same can be said to ws.

4.3 Discretization scheme on the coarse mesh

The methods we are interested in seek an approximation to p. by the discontinuous Galerkin finite
element method. For this purpose, we need finite element spaces for these quantities consisting of piece-
wise polynomial functions. Namely, we introduce

Xy = {vp € L*(Q);VE € £y, vy € PE(E)},

where P is the space of polynomials of degree at most k. Let e € T'%; such that e = Ej, N Ej, we denote
by n,. a unit normal vector oriented from Ej to E;. We define the average and the jump for v € H(Ep)
as follows

W]]e = ’lpEk - wEla {¢}6 = %(wEk + 1/JEL)

When e € ENTY, we define the average and the jump for v € H'(Ey) as follows
["/}]e =Yg, {w}e =Yp.

The jump function is defined by Jy(u,v) := Z % [u]e[v]e do where o, is a constant on each

ecl', Ul'y, p
face e. The multiscale space X, g is defined as follows :

Xe i = {ven = vy oW where vy € Xg}.

For each E € &x, we denote {¢;},_, a basis of P%(E). We define the interpolation operator 7 on

CO(E) as follows :

s

ng

mrv(z) =Y v(a;)e;i(x), Vo e COE),

=1

where a; are such that ¢;(a;) = &;;. We define the interpolation operator 7. g on C°(E) as follows :
ng
menv(z) =Y v(ag)p; 0 @ E(x) = (myv) o T E(x), Vo e CO(E). (14)
j=1

Since w¥ € H?(E), then for each v i in X, g, Ve,H| g € H?(E). We define the broken norm in H'(£x)
as follows :

1/2
lvellgie,) = ( > K2 Vou |7 g + JO,H(UH,UH)> ~
Ecény



We approximate the solution of the problem (1) by pc i € Xz and solution of the following problem :
find pe g € X g such that for all ve g € X, g

Z /E(KCVpE,H) -Voegdr — Z /{K Ve rte Delve mled

Ecéuy el Ul'y, p
(15)

- Z /{Kevve,H}e : ne[pe,H]e dU + JO,H(pe,H7 Ue,H) = / f’Ue,H dm
Q

GGFZUFH,D ¢

where v = —1,0,1. This scheme is obtained as follows. We replace p. by pe g in (1) and multiply it by
a test function ve i € X,z and proceed by integration by parts elementwise. The term

Y /{K Ve ke elpe e do

66F7 UFH D
is added to have a symmetry or a non-symmetry. The term Jo i (pe . ve i) is added to guarantee the

stability the scheme. Following the same arguments as in [DPE12][Lemma 4.12], the penalty parameters
o, can be chosen independently of € and H. such that :

A’]y{(veHave H)+JO H(veHave H) ||veH||H1(gH)7 fOI' au UE,H GX&,H

where

A (peHaveH Z / KvpeH VUEde_ Z /{K vpeH} ne[UeH] do

Ecty e€l', Ul'y, p
-7 Z /{K VUEH} ne[peH}
eGF‘ Ul'y, p
Jot1(petr ve.sr) = 2 [ pelelve e do
H, /.

ey, UT'y, p
Finally, as in [DPE12][p. 135] we can prove that the scheme is consistent, in other words
A}y{(pe — Pe,H, ’U€7H) + JO,H(pe — Pe,H > Ue,H) =0.

The main result Here is the main result of this paper.

Theorem 1. Let p. be the solution of the problem (1). We assume that € < H. Let p. g be the solution
of the scheme (15). Under the assumptions 1, the following inequality holds :

Hpe,H _pe”Hl(é‘H) S \/E+ H + E +—= \/» Rmou(e) (16)

where Ryaq(€) = maxeep: [|R(€)|| () with

s <€ if linear boundary condition is used and if we assume that||Vw6||Loo(e) <€
| (€)||L°°(e) ~ HVwHLQC(Y) if no assumption is made

7



Remark 2. o The error estimate (16) is the same one get where continuous finite elements are used
except here we have the following additional term

H
76 + vV Rmaz (6) .

7

This is due to fact that where dG discretization is used, we need to estimate error of gradient at the
interior edges.

e Note that the convergence of the multiscale method deteriorates when € and H are close because of

the resonance term % This is due to the choice of boundary conditions of the cell problems (11).

5 Numerical results

To illustrate our method, we consider some examples in this section. The fine mesh is a uniform rectan-
gular grids. Here, we denote by reference solution the numerical solution we get by classical dG scheme
on the fine mesh &,. To measure the perfomance of our multiscale method, we compute the error be-
tween the multiscale solutions and the fine solutions in L?-norm and in Broken norm. We implement our
method on the software Deal.Il (see [BHK]).

5.1 Example 1 : Periodic case :

In this first example, we consider The domain Q = (0, 0.1)? and the periodic permeability K¢ introduced
in [ABO6] defined as follows :

K<(z1,22) = a (%ﬂ) i (17)

where

T1 T2
al—,—

€ ) B (1 + 1.851n(27?1)> (1 + 1.8sin(27?2)>

where I is the d x d identity matrix. The source term f is taken to be equal to —1 and € is taken to
be equal 0.005. The fine &, is composed by 100 elements along each direction. Numerical solutions
are represented on Figure 2. Errors are computed and represented in Figure 3. We observe that the
multiscale method with the Dirichlet-Neumann boundary condition for the cell problems is more efficient
than that when we use linear boundary condition. Observe that our new strategy removes completely
the resonance error.

5.2 Example 2 : Non-periodic case :

In this example, we consider the domain € = (0,128)2. We consider two permeabilities with different
sizes of heterogeneities represented in Figure 4. We consider the following boundary conditions

p(z) = 1000 x 6894.76 on {z; =0}
p(z) — 500 x 6894.76  on {z; = 128}
(KVp(z)) ng =0 otherwise.

For the first permeability, numerical solutions are plotted in Figure 5 and errors are computed and
reprsented in Figure 6.

Similarly, for the second permeability, numerical solutions are plotted in Figure 7 and errors are
computed and reprsented in Figure 8.
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(a) Reference solution (b) Linear boundary (c) Dirichlet-Neumann.

Figure 2: Numerical solutions on 4 x 4 coarse grid.
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Figure 3: A graphical comparison between our new strategy for cell problems and that when linear
boundary condition is used.
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Figure 4: Examples of permeability fields
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(a) Reference solution (b) Linear boundary (c) Dirichlet-Neumann

Figure 5: Numerical solutions on 4 x 4 coarse grid.
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Figure 6: A graphical comparison between our new strategy for cell problems and that when linear
boundary condition is used.
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Figure 7: Numerical solutions on 4 x 4 coarse grid.
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Figure 8: A graphical comparison between our new strategy for cell problems and that when linear
boundary condition is used.

6 Error analysis

The remainder of this paper will be devoted to prove the main result. Our strategy is similar in spirit to
that used in [AB06]. We start with the following useful lemma.

Proposition 1. The following inequality holds :

lPe — pe,rllmr(g0) S ZTi (18)
i=1
where )
2= Y | &)V —pan)|
Ecéy L2
T2 _ & KV(p. — 2 T2 _ Oe . 2
2 = Z . I1{ (pe pe,H)}e”L?(e): 3 = Z H [pe pe,H”L?(e)v
ecri, © e€Tup  ©

Proof. The strategy is classical and follows from the consistency of the scheme. We first recall that

A’[Y{(pe,HaU@H) = Z /E‘(stp@H) . V’U@H dx — Z /{KEVPE,H}e . nE[UE7H]€ do

Ec&y e€l', Ul'y, p

-y /{KCVUE,H}e ‘Ne[pe,ule do

eel', UT'y b

g
JO,H(pe,Ha'Ue,H) - § — [pe,H]e['Ue,H]e do.
eEF%UFH,D

The consistency of the scheme reads:

A’]Y{ (pe — Pe,H, Ue,H) + JO,H(pe — Pe,H, Ue,H) =0.

11



Let us consider A, (pe — pe i, Ve, ). Since pe —pe.g € H' (), then we have [pe — pe mle = 0,Ve € T';.
Using successively Schwartz and Young inequalities, yields :

1/2
> /E (KV(pe — pe.pr)) - Voo i da < (Z |<K€)1/QV<peps,H>|i2(E>> el ey, (19)

Eeéy Ecéy
1/2

€ H‘ €
> /{K V(pe = pem)te nelvenledo < | D0 —EH{K V(e —pem)telliae | lvenlmen

eeri, € eery, ¢
Let consider Jo 7 (pe — e 11 (p), ve.rr ). By using the fact that [¢!]. = 0,Ve € I'%;, then we have :
Jo,iH(Pe = Pe,H Ve, ) = Z % /[Pe — De,Hle[vVe, H]e do.
ecTyp ©7e
By using the Cauchy-Schwarz’s inequality, we have :
1/2

g
Jo.u(Pe = perrven) < [ D FEH[PE — perlel 20 [ve bl 1 (e
(&

ecly, p

Using the fact that the penalty parameters o, can be chosen such that :

1
A}Yj(pe — Pe,HsPe — pé,H) + JO,H(pE — DPe,H,Pe — pe,H) > 5”])5 - pe,H”%rl(gH)

and by replacing ve g by pe — pe, i, we have

1/2 1/2
1 . H, .
gllpe — Pe,rllH(EH) < < Z [[(K9)Y2V (p. pe,H)I%z(E)> + Z 7II{K V(pe = pe.it) Yell 2 ()
EEgH eeFiH €
1/2
X e — penlell?
He 3 De,Hle L2(e)
e€ly,p
O

It remains to bound each term of the above inequality (18).

6.1 Majoration of T}

Let us start by giving the strategy to bound 77. The main difficulty for bounding this term is due to the
fact that p. — m¢ gp is not a interpolation error. Therefore, by remarking that there are three errors in
the design of our multiscale method : homogenization error, error due to fact that @¥ is approximated
by w? and discretization error, we make the following decomposition :

2
Z Hv (pe - WE,Hp)HL?(E) < 3 (G%wm + Gzlisc + G}:ell) ) (2())
FEely

12



where

Ghom = > IV (e =po @ ()72

Ecéuy
Glise = > IV (p—7up) o 0°()| 72
Ecéy
and Gl = Y IV ((rap) o @ () = e up)l| 72 () -
Ecéy

Lemma 1. The following inequality holds :

Ghom = > IV (e =po@ ()72 S e (21)
Ecfy

Proof. The term G}, term measures the homogenization error. It will be bounded by making use of

the homogenization error inequality (6). We first split the term in two as follows :

d d
[Vpe = V(po @)p2m < | Vpe — > Vi0s,p + > V0. p - V(po ) (22)
i=1 L2(E) =1 L2(E)
Let consider the first term of the right hand of (22). Simple manipulations give :
x d ¢ x
Y (pe(@) = p(a) = ep1 (2.2) ) = Vpe(a) - D Vi ()depla) =3 (%) Vou,p).
Using the inequality (6), the fact p € W3°°(Q) and w € WH*°(£2), we have :
4 2
> | Vpe=d_ Viso.p Se1+(a) e (23)
Ecé&y, i=1 L2(E)
Let consider the second term of the right hand of (22). Remark
d
> V() (0r,p — (a,p) © T°) S 1d + Vgl poe 3y VD= (VD) 0 @ 2y - (24)
i=1 L2(E)
A Taylor expansion with integral rest yields :
1 x x
V(pow(x)) = Vp(x) + e/ sz <7) VO, p (x + esw <7)) ds.
0 i1 € €
Therefore
d 2
~¢ ~¢ 2
> VDS (Or,p — (Oa,p) 0 @) S D Ellpllyzc oy Il 1) <é (25)
EcEu lli=1 L2(E) Ee€y
From the inequalities (23) and (25), we deduce the inequality (21).
O

13



Lemma 2. The following inequalities hold :

Glise = Y IV ((p—7up) o @) |72 S H® + H*E, (26)
Ecfy

Proof. Note that
IV (p = 710) © ) | 20y S 1A+ Tyl yoy IV (0 — w22) 0 0| 2 1, -

A Taylor expansion with integral rest yields :

V ((p— map) oW (x)) =V (p — TED) +€Z/ w; (=) 0, (V(p—7HD)) (t,x—l—esw(%))ds.

Using the regularity of p and interpolation errors, we get

YAV (0~ 7up) 0 @72 S H + H?

E€éy
O
Lemma 3. The following inequality holds :
. €
Grw =Y IV (mupo @ —meup)|7op S o TeH+ €2, (27)
Ecéy
Proof. Note that
d
||V(7THPO’LU — Te,HP ||L2(E) Z ( V’IEEE) 89“ (7THpOﬁ)\€)
=1 LQ(E)
@ (0n, (mp o @°) = On, (wap o ) (28)
L*(E)
Let consider the first term of the right hand of (28). We obtain :
d d
> (Vi - Vi?) o, (rup o @) Z R sup &y, (map o ) .
i=1 L2(E) =1 L2(E) i L= (E)
Using the lemma 7 on each coarse element F/, we obtain :
~¢, B d—1 €
SV @ ) [y £ Y el S et S
Ecéy Ecéy
Therefore
d 2 2
> | (var-vart) o, rape )| <7 sw | swp O (mapo @) (29)
Ecéy lli=1 L2(E) Ee€n ||ie{l,....d} Lo (E)

Using the fact that the term |0, T p|| . ) is bounded as follows : there exists a constant C' independent
of H such that

102Dl oo () < 1P Lo 0, mswr0e (1)) + CH? [Pl oo (0,135,050 S (1 + H?).

14



we obtain :

d 2

SOV (@5 - @) 0, (mip o ©)

i=1

<y
H

>

Ecéy

< eH. (30)

L*(E)

Let consider the second term of the right hand of (28). Note that

d
Z V{D?E (aﬂﬂi (WHP o @E) — Oy, (ﬂ'Hp o EE’E))
=1

L*(B)
d

> vag®

=1

< sup ||z, (mEp o @) — Oy, (TEp O ") (31)

ie{1,...,d} ||L2(E) '

Le=(E)

E

To bound Hawl (mp) o (W — w* we will use a Taylor inequality between @¢(x) and w*¥(z)

M ez
(B)
which requires that 7zp € C%(E). Since p € C%(2) we deduce that myp € C?(E). It remains to find
a subset of E in which @w¢(x) € E and w*¥(z) € E. By maximum principle, w¢(z) € E for all x € E.
Remark that

||@67E<$) - m||L<><>(E) < 2 HwHLOO(E) .

We introduce the subset Cr on E as follows :
Op = {x € B | B(a, 2 ||y (y) C E} .
Clearly, for all z € Cg, W (x) € E. Using the lemma 7 and the fact that

IVOu, Tup| oo (i) S 15

we get

< EH (32)

[0n; (wrrp 0 @) = By, (mHp 0 W) H;(CE) ~

Using the fact that |E'\ Cg| < |OE| €, we have
—NE € 2 —
Hawz (ﬂ-Hp ow ) - aah (7THp cw ’E) HLQ(E'\CE) 5 EHd h (33)
Injecting the inequalities (33) and (32) in (31), we obtain

~c €
Z ||V(77Hpow _7T€,Hp)||L2(E) S - +€H+€2.

O
Proposition 2. The following inequalities hold :
€
T1§€+H+E, (34)
Proof. The proof follows directly from the lemmas 1, 2 and 3. O

15



6.2 Majoration of T, and T3

In order to bound T3, we make the following decomposition :

2 e e €
Z ”p - 7T€,HpHL2(e) < Ghom =+ Gdisc + Gcell?
eEl—w}_IUl—‘H,D

where
AN 2
;iw'm = Z Hp_powenL?(e)a
ecl', Ul'y, p
~ ~c 12

GZisc: Z Hpowef’]erowEHL%e)a
ecl, Ul'y p

and Giell = Z H7THP ow® — 7re,Hp||2LQ(e) .
GEF%UFH1D

In order to bound the term 75, we make the following decomposition :

2 2 2 2
Z ”v (pé - ”Te,Hpé)”LZ(O,T;L?(e)) < GZom + G(cilisc + Giell

ecly;
where
2 ~cy (12
wam = Z Hv (p —po wE)HLz(e) 5
ecl't,
)2 ~ ~e\ 112
GZisc = Z ”V (p oW — THPO we)HLz(e)
e€l't,
,2 ~ 2
and Giell = Z Hv(ﬂ-Hpows_We,Hp)HLz(e),
e€ls,

Lemma 4. The following inequalities hold :

e 2 1
hom = Z [p—pow|ia e (H+ H) : (35)

eel', Uy p

e €2 H €
Giitn= X IV tr=po @iy < G+ (M4 T4 HE+ ) (30)
eel's,

Proof. Let e € I'y; UT'y p. Let define v(z) = p(x) — p o @(z). Using the following inequality

- 2 2
1o S (H 1000y + H VOl ) -
and summing over all faces yields :
L
~¢12 ~e (12 —~e (12
Yo dp-po@ g S Y. gl po@ g + LH VP~ V(po @)L,
EGF%UFH,D eEquUFH,D

where L is the maximun number of faces that belong to a coarse element. By using the inequality (21),
we have

12 1
> lr-red g se(f+ ).

EGF%UFH7D
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Let consider the term ||V (p —po @E)HZLQ(e). We make the following decomposition :

d d
IVp=V(pow) e < |Vp—) VEidp > V§0,,p— V(po ) (37)
i=1 L2(e) i=1 L2(e)
Remark that
d
x x
\% (p(:c) +epy (w, ;)) Vpe(z Z Vw; O, p(2 eleZ (;) Vg, p(x).
We deduce that :
d
e x
(vr-Svmon) n] 57 (st () n,
i=1 L2(e) (e)
Vo,p) ||
+GZH( GALORT
Then, by using the fact that p € W3°°(Q) and w; € W1>°(Q), we get
Z [ (o (G) v0r) -] ., S 1e
Nz
We obtain :
d 2
e€ly =1 L2(e)
2
<2 2 [(v (@) =2 @ = emn (7)) ne
XY ld+z Y pa)=pla)=em (2.7))) ],
eel—WH eel—WHUFH’D
€ T 2
< & _ _ hd .
7 Z H(V (pE p() = epr (x’ e))) ne’ L2(e)
ecl'y
By using the inequality (51), we have
d ’ 2 H €
- <0, S—+(H+—=+HeE+— ).
Z Vp. Zleﬁxlp ~H+< +—+ e+H>
eel's, i=1 L2(e)
O
Lemma 5. The following inequalities hold
Gise= >, po® —mupodr|}s,, SH +EH?, (38)
CEFiHUl—‘HﬁD
Gdzsc_ Z ||v pow _71-1"1po’w)||L2 e)<H +€ (39)
eeF’
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Proof. A Taylor expansion with integral rest yields :

po ﬁﬁ(x) — proﬁe(x) = (p — 7THp) (t,x) + EA ZU/Z (%) Oz, (p - 7THp) (t,x + esw (%)) ds.

By using the fact that p € W3>°(Q) and w € W>(Q), we get :

ST po@ —mupodt|fiay, S H +EH
ey, UT'y, p

In a similar way as above, we obtain

ST IV (o @ —maupo@)|Fe, < H® + .

e€l's,
O
Lemma 6. The following inequalities hold

2

~c €
Glen = Z |mrp o w — We,HP||2Lz(e) S E(l +H)?, (40)

eel, UrY,
2
e,2 € Rmaz(e)

Gy = Y IV (wupo @ —weup)lliz S gt g (1+ H)*. (41)

eEFl
Proof. Remark that
. 2 2 2
Z [7rp o @ — 7767HPHL2(6) <é ||V7THP||L°°(Q) Hw||L°°(Y) Z le.

EEF%UFH,D EEF;IUFH,D
By using the following inequality ||V7THpHL°°(Q (1+ H) we deduce that :

2
—~ 2 €
2 ||7THPOU)€ —7T5,Hp||L2(e) ,S E(1+H)2
eel', Ul'y, p

Let consider Z IV (merp o w® — 7T5,HP)||2L?(€)- By intercaling Va©” (x)d,, (mgp o ©(x)), we
EEI‘;{UFH)D
have :

d
||v (WHPO we — Te,HP ||L2(e) S Z (V’l/ﬂ\f — V@?E) 811 (TerO ’L/L)E)

L2(e)

~5’

8 THP O WS — Oy, TP oW E)

L2(e)
Let consider Zgzl (Vﬂ?; - V@f’E) Ox, (TErp o WE) e We have :
e
d d
Z (Vzﬁf - Viuvf’E> Oz, (TEp o W°) < Z \Y (@f - wa) le|*/2 ||sup Oy, (Twp) .
i=1 L2(e) i=1 Lo (e) i L (Q)
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Let us denote by R(e) = HZ?Zl \Y (&}f — wa) HL © The function R(e) depends on choice of the

boundary used for solving the cell problems and bounded as follow

R <€ if linear boundary condition is used and if we assume that [[Vw®||j () <€
RUOLIZIEES IVw| o« (yy if no assumption is done
By using the following inequality |0, 7upll o) < (14 H) we obtain

2

> i (Vs = V™) o, (rup o @) < Hmesle) 4y (42)
ey, Ul'y p li=1 L2(e)
where
Rinac(€) = max IR(E)[| e (e
Let consider Zle AT (0, (mpp 0 W) — Oy, (THp o @CVE))‘ e We have

d
Z V@ (9y, (mup o @) — By, (map o w9F))
i=1 L2(e)
d

> vag®

i=1

< sup [|0z, (zrp 0 @) — O, (mup 0 W F)|| 1o

L=(e)

We introduce the following subset
e = {x € E | dist(z,2¢ |wl| g (yy) C E} Ne.
We have
|0, (mrrp 0 W) — By, (wEp 0 ﬁe’E)HLz(CE) SNV, (maD) | poe gy @ = [ 1,

S 1V, (wap) | e i) e (@) 2o

1/2
SV, (ap) | e (1 € el ]l oo (v -

Finally, we get

2
~¢ ~c, K 2 2 €
> Nowi(rupo @) = Ou(mup o 5 F)[paegy S D2 el Sy W)
ecly eel'y Uy, p
On e\ Cf, we use the fact that
e\C%| SeH ifd=2,
e\ C%| S |0ele ifd=3.
Then, we get
2
~€ ~¢, B 2 2 €
Z Haﬂii(ﬂ-Hpo w ) - 8$i(7THpo w )HLz(e\CE) 5 Z € maX<H7 |8€|) 5 E (44>
eely, ecl'y,
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By using the inequality (43) and (44), we get :

a ~¢,E e ~c.E ¢ Rumas (e) 2
Z V&;™ (0y, (mpp o @) — 0y, (mrp o w ")) SﬁJriH (14 H)2.
eel't; i=1 L2(e)
O
Proposition 3. The following inequalities hold :
o2 2 6, 2772 2 2
T2§6+T+H +H®+ € H”+eH" + Rpyau(14+ H)=, (45)
2
T3562+E+H6+62H, (46)
Proof. The proof follows directly from the lemmas 4, 5 and 6. O

6.3 Putting all together

Proof. By putting together the inequalities (34), (45) and (46) and by using the fact that e < H and the
fact that when H and € goes to 0, H” is bounded by H and €? is bounded by €, we deduce that :

€ H
Hpe_pe,HHHl(SH) §ﬁ+H+E+$++ Rmaw(e)

which is the desired result. O

7 Conclusion

In this work, we study and analyse a new multiscale method based discontinuous Galerkin discretization.
We also introduce a new strategy to reduce the resonance error to the so-called cell problems. Numerical
examples confirm the efficiency and the accuracy of the method.

In some applications, the quantity in interest is the velocity. In that case, method to recover the
velocity from the solution of the pressure equation is introduced in [EV07]. This method cannot be apply
here because of the unsatisfactory estimation (7). We have tested numerically the mentioned velocity

recovery method introduced and it leads to very large errors. One way to overcome this difficulty consists
in using our multiscale method as a preconditioner.

Appendices

Appendix A :

Lemma 7. Let @5 be the function defined in (8) and let @E’E be the solution solution of the problem
(11). Then, there exists a non-negative constant Cg independent of € and E such that

|7~/U\6 - ~67E|H1(E) < OG V 6|8E1|7 (47)
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Proof. The proof is inspired from [Oual3](Annexe C).
Let us define % (z) = @°(x) — (). We can easily verify that r&'" is solution to the following

equation

—div (K‘(a:)VrfE> =0 VzekE,
(48)
roF (z) = ewS(x) Yz € dE,
Let ¢ be a positive constant independent of € and F. We define a regular function m. as follows
me(x) = 1 on OF
IVl < cfe in E
me(x) = 0 if dist(z,0F) > ce
0<me(z) <1 in F.
We introduce the function t¢ such that
r¢(x) = —ew(z)me(x) + t(x). (49)
The function t¢ satisfies the following equation
—div (K¢ (z)Vt?) = —div(K(2)V (ew(x)m.)) Vx € E,
(50)
t¢(x) = 0 VzedE,

By remarking that the measure of the support of the function m. is bounded by ce |0E|, multiplying the
equation (50) by t¢ and integrating by parts, we can prove that

|t 411 (1) S VOE.

Finally, we get
< lew(@)me(@)| g ) + [t g1 (g) S VEOE

3

[vri]
H(B)

which is the desired result. O

Appendix B :

Lemma 8. Under the assumptions 1. There exists a constant Cy independent of € and H such that

x 2 H €
— — = < — 2y ).
Y v s - (1)), <o (H 2 ymey H) (51)
eeF%UFHVD
Proof. Let denote by P the L?-projector operator in P%(E) and
z
G =pu(a)~p@) —epr (2,7).

Let F € £ and e € OF, then

VGl <NV (G = Phr (G)l| ooy + IV (P ()] 2, -
Using the result proved in [DPE12][Lemma 1.59], yields

IV (G = PE (@) oo < CerH'?|Gli2 (), VeeTnNE (52)

21



where Cy, is a constant independent from E and H. Using the result proved in [Riv08][p.23], gives

IV (Pt (@) 2oy < CorsH T2 [VPR(G)] oy

where Cy, is a constant independent from E and H. It remains to evaluate HVP}}(G)H L2(B)" Since P}fl

is stable in norm H', then

k k

HVPH(G)HH(E) S HV (PH(G) a G) HL?(E) + ||VG||L2(E) ’
Passing by the reference element E, there exists a constant C such that
HVPE(G)HLZ(E) S CIVGl 2y + IVGllp2py < A+ O IVGl L2 -

Again :

IVPE(O)| 20y < Corn(1+ CYH 2 | VG| 12 (53)
Using (52) and (53), we get

2NN (12
> v (e —p@ = («.3))]

QGF}_IUFHﬁD

- _ 2
< X (QCETHHGHf{z(m +2C%,(1+C)*H ™! IIVG||L2<E))
6€F§1UFH,D

S2UCLH Y (Gl + 2051+ CPH D VG2
(E)
Ecéu Ecty

L2(e)

where L the maximum number of faces belonging to E. Finally, using (6), yields

2 H
Z HV (pﬁ(x)—p(x)—epl (1‘,{))’ . S0 <H++H€2+H1€>
eel', Ul'y, p ¢ L2 ¢
where Cy = max (QLCET ,2LCE (1 + 6)2) O
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