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Abstract

In the last past years the liberalization of the electricity supply, the increase variability of electric appliances
and their use, and the need to respond to the electricity demand in the real time had made electricity
demand forecasting a challenge. To this challenge, many solutions are being proposed. The electricity
demand involves many sources such as economic activities, household need and weather sources. All this
sources make hard electricity demand forecasting. To forecast the electricity demand, some proposed
parametric methods that integrate main variables that are sources of electricity demand. Others proposed
non parametric method such as pattern recognition methods. In this paper we propose to take only the
past electricity consumption information embedded in a functional vector autoregressive state space model
to forecast the future electricity demand. To estimate the parameters of this model we use likelihood
maximization, spline smoothing, functional principal components analysis and Kalman filtering. The
principal advantage of this model is to forecast electricity demand without taking into account exogenous
variables in case of stationary We have seen that in that case the results of the model are competitive
and not competitive for non stationary case. But in case of non stationary, this model allows to integrate
exogenous variables.

Keywords: Electricity demand forecasting; Functional state space model; Kalman filtering; Functional
data; Spline smoothing; Functional principal components analysis.

1. Introduction

Important recent changes in electricity markets make the electricity demand and production forecast
a current challenge for the industries. Market liberalization, increasing use of electronic appliances and
the penetration of renewable electricity sources are just a few of the numerous causes that explains the
current challenges [6]. On the other side, new sources of data are becoming available notably with the
deployment of smart meters. However, access to these individual consumers data is not always possible
(when available) and so aggregated data is used to anticipate the load of the system.

While only recorded at some time points (e.g. each hour, half-hour or quarter-hour), the electricity load
of the system is a continuum. From this, one may consider mathematically the load curve as a function of
time with some regularity properties. In fact, electrical engineers and forecaster usually represent the load
curve as a function instead of a sequence of discrete measures. Then, one may study the electrical load as
a sequence of functions. Recently, attention has been paid to this kind of setting which is naturally called
functional time series (FTS). A nice theoretical framework to cope with FTS is within the autoregressive
Hilbertian processes, defined through families of random variables taking values on a Hilbert space [4, 15].
These processes are strictly stationary and linear which are two constrictive assumptions to model the
electrical load. An alternative to linearity was proposed in [2] where the prediction of a function is obtained
as a linear combination of past observed segments, using the weights induced by a notion of similarity
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between curves. Although the stationary assumption of the full time series is still too strong for the
electrical load data [1], corrections can be made in order to render the hypothesis more reasonable. First,
one may consider that the mean level of the curves presents some kind of evolution. Second, the calendar
structure creates on the data at least two different regimes: workable and non workable days. Of course
the specific form of the corrections needed should depend on the nature of the model used to obtain the
predictions.

State-space models (SSM) are an interesting alternative connected to non linearity and non stationary
patterns of the electrical data. Let us mention some references where SSM have been used to forecast load
demand. In [7], the authors propose to describe the hourly load curve as a set of 24 individual regression
models that share trends, seasons at different levels, short-term dynamics and weather effects including
non linear functions for heating effects. The equations represent 24 univariate stochastically time-varying
processes which should be estimated simultaneously within a multivariate linear Gaussian state space
framework using the celebrated Kalman filter [9]. However, the cumbersome of the computational burden
is a drawback. A second work circumvents the problem by using a dimension reduction approach which
reasonably resizes the problem into a handy number of dimension which render the use of the Kalman filter
practicable [8]. Some successful uses of SSM to cope with functional data (not necessarily time series) are
reported in literature. For instance by using common dynamical factor as in [14] to model electricity price
and load, or as in [11] to predict yield curves of some financial assets. Also [19] where railway supervision
is performed thanks to a new online clustering approach over functional time series using SSM.

Inspired by these ideas, we push forward the model in [8] to describe now a completely functional
autoregressive process whose parameter may eventually vary on time. Indeed, at each time point (days
in our practical case) the whole functional structure (load curve) is described through the projection
coefficients on a spline basis. Then, using a functional version of principal components analysis, the
dimension of the representation is reduced. The vector of spline coefficients is then used as a multivariate
autoregressive process, as in [13]. Thus, our approach is completely endogenous but with the ability of
incorporating exogenous information (available at the time of the forecast) as covariates.

This paper will be structured as follow. In Section 2 we describe the model we propose for forecasting
electricity demand. We present the functional data, functional data representation in splines basis, the
state space model that we propose and model estimation methods. Section 3 is proposed to show model
inference on a simulated dataset. We will talk about Kalman filtering and smoothing, functional principal
component analysis. Section 4 will describe the experiments we make on real data with simple application
of our procedure. We then explore, in Section 5, some corrections and extension to the simple approach in
order to take into account some of the non stationary patters present in the data. The article concludes
in Section 6 where some future work lines are discussed.

2. Materials and methods

The starting point of our modeling is a univariate continuous-time stochastic process Z = {Z(t), t ∈ R}.
To study this process, an useful device [4] is to consider a second stochastic process X = {Xi(t), i ∈ N, t ∈
[0, δ]} which is now a discrete-time process and at each time step it takes values on some functional space.
The process X is derived from Z as follows. For a trajectory of Z observed over the interval [0, T ], T > 0,
we consider the n subintervals of form Ii = [(i − 1)δ, iδ], i = 1, . . . , n such that δ = T/n. Then, we can
write

Xi(t) = Z((i− 1)δ + t), t ∈ [0, δ] i = 1, . . . , n.

With this, anticipate the behavior of Z on say [T, T +δ] is equivalent to predict the next function Xn+1(t)
of X. The construction is usually called a functional time series (FTS). The setting is particularly
fruitful when Z presents a seasonal component of size δ. In our practical application, Z will represent the
underlying electrical demand, δ will be the size of a day and so X is the sequence of daily electrical loads.
Notice that X represents a continuum which is not necessarily completely observed. As mention on the
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introduction the records of load demand are only sampled at some discrete grid. We will discuss on this
issue below.

2.1. Prediction of functional time series

The prediction task involves making assertions on the future value of the series Xn+1(t) having observed
the first n elements X1(t), . . . , Xn(t). From the statistical point of view one may be interested on the
predictor

X̃n+1 = E[Xn+1|X1, . . . , Xn], (1)

which minimizes the L2 prediction error given the available observations at moment n. A useful model is
the (order 1) Autoregressive Hilbertian (ARH(1)) process defined by

Xi+1(t)− µ(t) = ρ(Xi(t)− µ(t)) + εi(t), (2)

where µ is the mean function of X, ρ is a linear operator and {εi(t)} is a strong white noise sequence
of random functions. Under mild conditions, Equation (2) defines a (strictly) stationary random process
(see [4]). The predictor (1) for the ARH(1) process is X̃n+1(t) = µ(t) + ρ(Xn(t) − µ(t)) which depends
generally on two unknown quantities: the function µ and the operator ρ. The former can be predicted by
the empirical mean µ̂(t) = X̄n(t). The alternative for the latter is to predict ρ by say ρ̂n and obtain the
prediction X̂n+1 = µ̂n + ρ̂n(Xn − µ̂n), or to estimate directly the application ρ(Xn − µ̂n) of ρ over the
last observed centered function. Both variants needs an efficient way to approximate the possibly infinite
size of either the operator ρ or the function ρ(Xn − µ̂n) which are then estimated (see discussion below
on this point).

The inherent linearity of (2) makes this model not flexible enough to be used on electricity load
forecast. Indeed, having only one (infinite-dimensional) parameter to describe the transition between
any two consecutive days is not reasonable. Variants have been studied. We may mention [3] which
incorporate weights in (2) making the impact of recent functions more important; the doubly stochastic
ARH model that considers the linear operator ρ to be random [10]; or the conditional ARH where an
exogenous covariate drives the behavior of ρ [5]. In the sake of more flexibility, we aim to make predictions
on a time-varying setting where the mean function µ(t) and the operator ρ are allowed to evolve.

2.2. Spline smoothing for functional data

In practice, one only disposes a finite sampling x = {x(tj), j = 1, . . . , N} observed eventually with
noise, from the trajectory x(t) of the random function X(t). Then, one wishes to approximate x(t)
from the discrete measurements. A popular choice is to develop x(t) over the elements of a L2 basis
φ1(t), . . . , φk(t), . . ., that is to write

x(t) =
∑
k

ỹkφk(t) (3)

where the coefficients ỹk =< x(t), φk(t) > are the coordinates resulting of projecting the function x on
each of the elements of the basis. Among the several basis usually used, we choose to work with a B-spline
basis because they are adapted to cope with the nature of the data we want to model and have nice
computational properties.

B-splines is a basis system adapted to represent splines. In our case, we use cubic spline that is 3th-
order polynomial piecewise functions. The connections are made at points called knots in order to join-up
smoothing, that is warranting the continuity of the second order derivative. An appealing property of
B-spline is the compact support of its elements which gives good location properties as well as efficient
computation. Figure 1 illustrates this fact from the reconstruction of a daily load curve. The B-spline
elements have a support defined over compact subintervals of horizontal axis.

Another important property is that at each point of the domain, the sum of the spline functions is 1.
Since the shape of the spline functions on the border knots are clearly different, this fact is clearly observed
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Figure 1: Illustration of the representation of a daily load curve (thick line) by a rank 20 B-spline bases (thin lines).

on the extreme points of the horizontal axis where only one spline has a non null value. Together with the
regularity constrains and the additional knots on the extreme the support, these points are subject to a
boundary condition. Figure 1 illustrates this important issue concerning the behavior of the boundaries.
To avoid this undesirable effect we will use a large number of spline functions on the basis that empirically
allows to reduce the boundary condition.

2.3. Functional principal components analysis

Like in multivariate data analysis, Functional Principal Components Analysis (FPCA) provides a
mechanism to reduce the dimension of the data by a controlled lost of information. Since data in FDA
are of infinite dimension, some care must be given to the sense of dimension reduction. Indeed, what
we look for is a representation of the functions like the one in (3) with a relatively low number of basis
functions which are now dependent on the data. Moreover, if we demand also that the basis functions
form an orthonormal system, then the solution is given by the elements of the eigendecomposition of the
associated covariance operator (i.e. the functional equivalent to the covariance matrix) [17].

However, the problem is that these elements are functions and so of infinite dimension. The solution
is to represent themselves into a functional basis system (for instance the one presented on the precedent
section). Thus, the initial curve x(t) can be approximated in the eigenfunctions basis system:

xi(t) =

p∑
k

yikξk(t) (4)

where the number p of eigenfunctions, expected to be relatively small, will be chosen such according to
the error of approximation of the curves.

Since the representation system may be non orthogonal then it can be shown that the inner product
needed in FPCA is connected to the properties of the representational basis system.

Then, the notion of dimension reduction can be understood when one compares the lower number of
eigenfunctions with respect to the number of basis functions needed to represent an observation. FPCA
reduction of representation dimension which will yield on dramatical drop of the computational time of
the model we describe next.
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2.4. State space model

State Space Models (SSM) are a powerful useful tool to describe dynamic behavior of time evolving
processes. The shape of the load curve may present long term changes which induce non stationary
patterns on the signal. Taking into account these changes is one of the challenge of electricity demand
forecast.

The linear SSM [9] includes two terms. An inertial term in the form of an intrinsic state of the
whole system being modeled. The observed output is a function of the state, some covariate and a noise
structure. The state evolution over time is modeled as a linear equation involving the previous state and
other observed variables summarized in a vector η. The general formulation is given by:{

yi = ziαi + εi
αi+1 = Tiαi +Riηi

, (5)

where yi is the target variable observed at time i, zi ∈ Rm+1 is a vector of predictors, the state at
time i is represented as αi ∈ Rm+1, Ti and Ri are known matrices, and εi and ηi are the noise and
disturbance processes usually assumed to be independent Gaussian with zero-mean and its respective
covariance matrices Hi and Qi which usually contains unknown parameters.

The evolution of the states are useful to understand the system. Using the celebrated Kalman Filter
and smoothing, one is able to extract information about the underlying state vector [9]. The one-step-
ahead prediction and prediction error are respectively

ai+1 = E[αi+1|y1, . . .yi]
vi+1 = yi − ziai.

Also their associated covariance matrices are of interest so let us define Pi+1 = Var(αi+1|y1, . . .yi) and
Fi = Var(vi) = ziPiz

′
i + Hi. Since these definitions uses recursion an important step is its initialization.

When the observations are unidimensional an exact diffusion method can be used from uninformative
diffuse prior. However, the method may fail with multivariate observations because the diffusion phase
can yield into a non invertible Fi matrix. Moreover, even when Fi is invertible computations become
slow due to its dimensionality. It is however possible to obtain an univariate alternative representation of
(5) which theoretically reduces computational cost of the Kalman filter and allows one to use the diffuse
initialization.

Inference on SSM can be obtained by maximum likelihood. From the Kalmar filter, the log-likelihood
can be written as

logL(Yn|ψ) = −np
2

log(2π)− 1

2

n∑
i=1

(log(|Fi|) + v′iF
−1
i vi),

where Yn = {(y1, z1), . . . , (yn, zn)} and all the unknown parameters are in the parameter vector φ. Notice
that logL quantity depends on data and parameters only through the prediction error vi term and its
associate covariance matrix Fi. Both quantities are obtained from the application of the Kalman filter.
The maximum likelihood estimation if obtained by numerical optimization of (slight variants of) logL.

2.5. A functional state space model

Approaches of SSM in continuous-time also exists. For instance, [9] presents the simple mean level
model. There, the random walk inherent to the state equation is replace by a Brownian motion that drives
the time-varying mean level. Early connections between FDA and SSM yielded on derivations of a SSM
with the help of FDA. For example, [20] use spline interpolation to approximate the behavior of a time
dependent system which is described by a space model.

Our choice is to keep the time discrete by allowing the observations to be functions or curves. A similar
idea is behind the model in [19] where functions are used to represent observation on a SSM model but
only dependence between states is considered.
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Let us consider the vector yi as the p FPCA scores resulting from the projection of xi(t), the load
curve for day i, into the eigenfunctions basis system. Then, we may represent an autoregression system
by replacing the covariate zi by the past load curve, or more precisely by its spline coefficients yi−1.

We propose the following Functional State Space Model (FSSM),{
yi = yi−1αi + εi

αi+1 = αi + ηi.
(6)

As before the disturbance terms εi and ηi follow independent Gaussian distribution with zero mean vector
and generally unknown variance matrices Hi and Qi. The sizes of these matrices are in function of p, the
number of FPCA scores retained on the approximation step discussed above.

In order to keep the computation time under control while keeping some flexibility on the modeling, we
focus on three structural forms of matrices Hi and Qi: full, diagonal and null; which yields on 6 possible
models. Table 1 summarizes the variants as well as the number of parameters to be estimated on the
covariance matrices. The complexity of the variant grows while going from 1 to 6. When Qi is null, then
the state equation establishes that states are simple constant on time. Diagonal structures on Qi and
Hi assumes that all the correlations are null and so only variance terms are to be treated. Conversely,
full structures allows for a maximum of flexibility letting all the covariances to be free. However, the
important drawback of dimensionality becomes crucial since the number of terms to be estimated if of
order p4.

Variant Hi Qi nb. of param.
1 Diagonal Null p
2 Diagonal Diagonal p+ p2

3 Diagonal Full p+ p4

4 Full Null p2

5 Full Diagonal p2 + p2

6 Full Full p2 + p4

Table 1: Variants considered for the model (6) showing different structures of matrices Hi and Qi and number of unknown
parameters as function of p.

The FSSM we propose is a SSM on the FPCA scores. Another choice could have been to apply the
SSM directly on the spline basis coefficients ỹi, but such choice would be computationaly too expensive.
It is illustrative to link these dimensions to the problem of electricity demand forecasting. Recall that
the number of daily records on our load curves is 48 (sampled at half-hourly) which is prohibited to treat
within our framework. Even if this number can be easily divide by two using spline approximation, the
number of coefficients would be still too high. Moreover, since the spline coefficients can not be considered
independent, one would need to use full diagonal structures on the covariance matrices Hi and eventually
on Qi. Last, the choice we make to reduce the dimension by using FPCA approach is then justified since
with a handy number of eigenfunctions, say less than 10, most of the variants discussed above can be
easily computed.

3. Experiments on simulated data

We illustrate in this section our approach to forecast using the proposed functional state space models
on a functional time series. There are three steps in our approach. First, we approximate the initial
data using a B-spline basis. Then a FPCA is performed using the B-splines approximations of the curves.
Finally, a fit of the FSSM is obtained. Prediction can then be done by applying the recursion equations
on the last estimated state. The resulting predicted coefficients are then put into the functional expansion
equations (see Equation (3) and Equation (4)) to obtain the predicted function. For the experiments we
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use the statistical software R [16] to fit our model with the packages fda [18] for spline approximation
and FPCA computation and KFAS [12] for the FSSM estimation.

3.1. Simulation scheme

Let us consider a process Y generated as follows

Y (t) = β0 + β1m1(t) + β2m2(t) + ε(t)

m1(t) = cos(2πt/64) + sin(2πt/64)

m2(t) = cos(2πt/6) + sin(2πt/6)

ε(t) = ν(t) + θν(t− 1) + σ2

. (7)

where ν(t) is strong white noise process (i.e. an independent and identical distributed zero-mean normal
random variables N (0, σ2). Following [2] we set β0 = 8, β1 = 0.8 and β2 = 0.18, θ = 0.8 and σ2 = 0.05.
Expression (7) is evaluated on discrete times ranging from 1 to δ × n where n is the number of functions
of length δ = 64. Then we consider the segments of length δ as a discrete sampling of some unobserved
functional process.

Figure 2: Simulated signal generated via model (7).

Figure 2 represents a time window of the simulated data generated through model (7). Notice that the
signal is composed of two additive sinusoidal terms of different frequency plus a moving average structure
for the noise term in order to mimic the double seasonal structure of load curves.

3.2. Actual prediction procedure

For each model variant we build and fit the FSSM with the first 26 segments on the simulated signal.
That is, each segment is projected on the B-spline basis, and these projections are used into a FPCA.
We let the number p of principal components as a tune parameter of the whole procedure. Parameters
are estimated and the states are filtered and smoothed as described in Section 2. The last state, together
with the last segment coefficients are then used to predict the coefficients of the next segment of the signal
which is naturally not used on the estimation of the model. Using the reconstruction expression the actual
predicted segment is obtained which closes a prediction cycle.
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In order to provide more robust prediction measures, several prediction cycles are used where a se-
quential increment of the train dataset is done. In what follow we report results on 4 prediction cycles
following the describe one-segment-ahead rolling basis.

3.3. How do we measure prediction quality

There are three steps through which the prediction quality must be measured: the splines represen-
tation quality of the initial functions x, the functional principal components representation of x, and the
forecasting. For all these three steps of quality measurement we use the RMSE (Root Mean-Square-Error)
and the MAPE (Mean Absolute Percentage Error). For one-step-ahead forecasting of vector xi on time
i, if we consider the length of xi as h (h = δ in this case) these metrics are defined as:

RMSE =

√∑h
t=1(xi(t)− x̂i(t))2

h
, MAPE =

100

h

h∑
t=1

|xi(t)− x̂i(t)|
|xi(t)|

.

The RMSE is measured in the scale of the data (e.g. kWh for our electricity demand data), and MAPE
is expressed in percentage. Notice that MAPE can not be calculated if target variable is zero at some
time point. While this is quite unlikely in practice, our simulated signal may present values quite close to
zero making MAPE to be unstable. However, this measure is useful to compare prediction performance
between signals of different mean magnitude.

3.4. Results

3.4.1. Spline representation and reconstruction

To represent the simulated data we use cubic splines using a regular grid for the knots (with augmented
knots on the extremes). To avoid cutting down predictive power of our forecast model we may want to
retain here as many spline coefficients as possible (in our case 63). However, we have to make special point
here since a boundary condition may yield on artefacts on the spline coefficients near the boundaries. A
simple way to reduce this problem was to choose this number of splines (and so the length of the interior
knots) to be about 59. This choice produces reasonable quality reconstructions with a MAPE error less
than 0.18%.

3.4.2. Functional principal components

The reconstruction quality of the initial functions highly depends on the number of principal compo-
nents. Of course, the quality of the forecasts will also be impacted by this choice.

Table 2: MAPE and RMSE for the reconstruction step using 59 splines, and 2, 3 or 4 functional principal components.

Reconstruction error
Spline 2 FPC 3 FPC 4 FPC

RMSE 0.0023 0.1282 0.0258 0.0249
MAPE (%) 0.1800 15.0600 2.7900 2.7200

Table 2 reports the reconstruction quality as mean MAPE and RMSE for 2, 3 and 4 principal compo-
nents.

3.4.3. Forecasting results

In this topic we discuss on the forecasting errors for each choice of the structure of the matrices Qi

and Hi. We take cases of null, diagonal and full matrices Qi and Hi, as described in Table 1. Table 3
reports RMSE and MAPE values for the forecasting of the simulation data. Both mean and standard
deviation are presented. Better prediction performances produce lower MAPE and RMSE. On the one
hand, as expected, the number of principal components retained has a large impact on the mean prediction
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performance. When only 2 principal components are kept, the prediction error is unreasonably large due
to a poor reconstruction. On the other hand, there is no clear advantage for any variant since the standard
deviations are large enough to compensate any pairwise difference. This is mainly due to the very small
number of prediction segments. Variants with null Qi matrix are slightly more performant (e.g. smaller
errors). This would indicate that a static structure is detected where no time-evolving parameters are
needed to predict the signal which is the true nature of the simulated signal.

Table 3: MAPE and RMSE for the forecasting in function of the number of principal components for the simulated signal
and for the 6 model variants. Mean values are obtained from 4 one-step-ahead predictions. Standard deviations are reported
in parenthesis.

MAPE RMSE
Variant (Hi/Qi) 2 3 4 2 3 4
1. Diag / Null 18.14 (6.37) 3.32 (0.47) 3.34(0.46) 0.1753 (0.0291) 0.0279 (0.0012) 0.0279 (0.0017)
2. Diag / Diag 31.00 (14.89) 3.63 (0.4) 3.6 (0.55) 0.1832 (0.0330) 0.0279 (0.0018) 0.0280 (0.0024)
3. Diag / Full 23.38(8.74) 3.68(0.48) 3.92(0.59) 0.1832 (0.0330) 0.0279 (0.0018) 0.0280 (0.0024)
4. Full / Null 18.15(6.34) 3.32(0.47) 3.34(0.46) 0.1753 (0.0291) 0.0279 (0.0013) 0.0279 (0.0017)
5. Full / Diag 18.15(6.39) 3.39(0.5) 3.95(0.99) 0.1832 (0.0330) 0.0279 (0.0018) 0.0280 (0.0024)
6. Full / Full 18.96(7.59) 3.53(0.53) 3.96(0.73) 0.1832 (0.0330) 0.0279 (0.0018) 0.0280 (0.0024)

Finally, we compare now the variants from the computational time needed to obtain the prediction. We
can see in Table 4 that differences in computing times are significant since standard deviations are quite
small. For a fixed number of principal components, there is a clear ranking that can be obtained where the
more parsimonious structures produce smaller computing times. Conversely, when the number of principal
components increases the computation time increases. However, the increment is more important for the
variants of covariances matrices having more parameters.

Table 4: Computing time (in seconds) for the whole procedure by number of principal components and for the 6 model
variants. Mean values are obtained from 4 one-step-ahead predictions of the simulated signal. Standard deviations are
reported in parenthesis.

Variant (Hi/Qi) 2 3 4
1. Diag / Null 0.24 (0.03) 0.29 (0.05) 0.38 (0.01)
2. Diag / Diag 0.66 (0.26) 0.47 (0.05) 13.5 (4.96)
3. Diag / Full 4.13 (0.32) 26.24 (10.88) 319.23 (31.98)
4. Full / Null 0.38 (0.10) 1.73 (1.97) 19.5 (14.84)
5. Full / Diag 1.20 (0.22) 6.63 (1.6) 34.82 (7.76)
6. Full / Full 6.91 (0.50) 52.78 (14.33) 421.22 (12.11)

4. Experiments on real electrical demand data

We treat now the case of the electricity load data from the French electricity supplier ENERCOOP1.
The utility has several kind of customers such as householders, industries as well as small and medium-
sized enterprise (SME) with different profiles of electricity consumption. Householders for example, use
electricity mainly for lightning, heating and, sometimes cooling and cooking. We work with the aggregated
electricity data that is the simple sum of all the individual demands.

We first introduce the data paying special attention to those salient features that are important for
the prediction task. Then, we introduce a simple benchmark prediction technique based on persistence

1enercoop.fr
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that we compare to the naive utilization of our prediction procedure. Next, in Section 5, we study some
simple variants constructed to cope with the existence of non stationary patterns.

4.1. Description of the dataset

Let us use some graphical summaries to comment on the features of these data. Naturally we adopt
the perspective of time series analysis to describe the demand series. Figure 3 represents the dataset which
consists in half-hourly sampled records over 6 years going from January 1, 2012 to December 31, 2017.
Vertical bars delimits years which are shown on top of the plot. Each record represent the load demand
measured in kWh.

Figure 3: Electricity demand for the supplier ENERCOOP during six years.

First, we observe a clear up growing long-term trend that is connected to a higher variability of the
signal at the end of the period. Second, an annual cycle is present with lower demand levels during
summer and higher during winter. Both the industrial production calendar and the weather impacts on
the demand explain this cyclical pattern.

Figure 4 shows the profile of daily electricity consumption for a period of three weeks (from October
31, 2016 to November 20, 2016). This unveils new cycles presented in data that can be seen as two new
patterns: the weekly one and the daily one. The former is the consequence of how human activity is
structure around the calendar. Demand during workable days is larger than during weekend days. The
latter is also mainly guided by human activity with lower demand levels during night, usual plateau during
afternoon and peaks during evening. However, a certain similarity can be detected among days. Indeed
even if the profile of Fridays is slightly different, the ensemble of workable days share a similar load shape.
Similarly, the ensemble of weekends form a homogeneous group. Holiday banks and extra days off may
impact also on the demand shape. For instance in Figure 4 the second segment, which corresponds to the
1st November, is the electrical demand on a bank Holiday. Even if this occurs on a Tuesday, the shape of
load of this days and the preceding one (usually an extra day off) are closer to weekend days.

We may also inspect the shape of the load curve across the annual cycle. A simple way to do this is
to inspect the mean form between months. Figure 5 represents the mean load on four months, one per
season of the year. Some differences are easy to notice, for instance the peak demand is during afternoon
in Autumn and Winter but at midday in Spring and Summer. Other are more subtle, like the effect of
daylight saving time clock change which horizontally shifts the whole demand. Transitions between the
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Figure 4: Electricity consumption from October 31, 2016 to November 20, 2016.

cold and warm seasons are particularly sensitive for the forecasting task, specially when the change is
abrupt.

4.2. Spline and FPCA representation

As before, we report on the reconstruction error resulting from the spline and FPCA representations.

Table 5: RMSE and MAPE between the splines approximation and the electrical load data in function of the number of
splines.

Number of splines
12 24 40 45 47

MAPE (%) 1.310 0.480 0.160 0.060 0.010
RMSE (kWh) 130.030 48.800 19.480 8.860 3.850

For comparison purposes, we compute the error criteria for 5 choices on the number of splines (12,
24, 40, 45 and 47 splines) on the reconstruction of the coded functions. Table 5 shows the MAPE and
RMSE between the reconstruction and the real load data. As expected, the lower the number of splines
the higher the reconstruction error. This shows that using only spline interpolation our approach is not
pertinent because a relatively large number of spline coefficients is needed. The extremest case of 12
splines, which would make the computing times reasonable, produces a too large MAPE of 1.310% which
hampers the performance of any forecasting method based on this reconstruction. On the other extreme,
using 47 cubic splines to represent the 48-length discrete signal of the daily demand produces boundary
effects that will dominate the variability of the curves.

Since spline approximation is connected to the FPCA in our approach, we may check the reconstruction
quality for all the choices issued from the crossing of the selected number of splines and a number of
principal component between 2 and 10. Table 6 shows the MAPE and RMSE of the reconstructions
obtained by each of the possible crossings. We may target a maximum accepted MAPE value of 1% in
reconstruction. Then, the options are just a few, most of them with very close MAPE values. In what
follows, we choose to work with 45 cubic splines and 10 principal components.
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Figure 5: Mean of electricity daily consumption for four months: February, May, August and October.

Table 6: RMSE and MAPE errors for splines smoothing load data reconstitution via FPCA in function of the number of
splines and the number of principal components.

MAPE (in %) RMSE (in kWh)
nb. of splines nb. of splines

nb PC 12 24 40 45 47 12 24 40 45 47
2 3.400 3.250 3.320 3.770 4.190 343 331 332 351 385
3 2.560 2.340 2.420 2.940 3.690 250 232 233 260 333
4 2.120 1.860 1.960 1.820 2.780 205 180 182 177 262
5 1.770 1.440 1.550 1.400 2.280 176 145 149 141 217
6 1.650 1.250 1.200 1.210 1.770 160 121 116 116 168
7 1.540 1.120 1.040 1.060 1.370 148 103 97 98 135
8 1.440 0.900 0.820 0.830 1.160 139 84 76 76 109
9 1.390 0.830 0.740 0.770 0.960 135 75 65 68 92
10 1.350 0.760 0.680 0.750 0.790 132 69 58 64 71

4.3. Forecasting results

Forecasting is done in a rolling basis over the whole last year in the data. The first five years are
used as initial training dataset. Predictions are obtained at horizon one-segment ahead. This means that
actually we are making predictions for the next 48 time steps (1 day) if we adopt a traditional time series
point of view. Once the prediction is obtained, we compare it with the actual data and incorporate the
observation into the training dataset. Thanks to the recursion in the SSM only an update step is necessary
here.

To give a comparison point to our methodology we propose to use a simple but powerful benchmark
based on persistence forecasting.

4.3.1. Persistence-based forecasting

A persistence-based forecasting method for a functional time series equals to anticipate Xn+1(t) with
the simple predictor X̂n+1(t) = Xn(t). Thus, the predictor can be connected to the ARH model (Equation
(2)) where the linear operator is the identity operator ρ = Id. However, this approach is not convenient
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since there are two groups of load profiles in the electricity demand given by workable days and the other
days (e.g. weekends or holidays). We use then a smarter version of the persistence model which takes into
account the existence of these two groups. The predictor is then written

X̂n+1(t) =

{
Xn(t) if day n is Monday, Tuesday, Wednesday or Thursday
Xn−7(t) otherwise

. (8)

Table 7 summaries the MAPE on prediction by type of day for the persistence-based forecasting
method. We can observe the global MAPE errors is several times the reconstruction error we observed
above. There is a clear distinction between those days predicted by the previous day and the other ones
(i.e. Saturdays, Sundays and Mondays). The lack of recent information for the latter group is severe
drawback and impacts on its prediction performance. The increased difficult of predicting bank holidays
is translated into the highest error levels.

Table 7: MAPE (in %) for the persistence-based forecasting method.

Minimum 1st quartile Median 3rd quartile Maximum Mean (sd)
Monday 0.86 3.10 4.99 9.82 24.41 7.48 (5.72)
Tuesday 0.66 1.52 2.03 5.00 13.97 3.61 (2.86)
Wednesday 0.47 1.39 2.23 3.11 11.34 2.85 (2.25)
Thursday 0.39 1.26 2.27 3.87 10.99 2.78 (2.12)
Friday 0.27 1.45 2.33 3.73 11.55 2.74 (1.78)
Saturday 0.27 3.04 6.85 11.05 24.21 7.60 (5.61)
Sunday 0.42 2.80 6.11 9.15 21.41 6.86 (5.11)
Bank Holiday 1.13 6.27 10.80 12.65 25.73 10.90 (5.82)
Global 0.27 2.60 4.70 7.30 25.73 5.60 (1.78)

4.3.2. FSSM forecasting

We now present the results for the proposed FSSM. Only the variant 1 in Table 1 is used, namely we
consider the covariance matrix of the observations Hi as diagonal and the covariance matrix of the states
Qi as null. The reason is twofold. First, we show on simulations that basic models give as satisfactory
results as the more involved ones. Second, computing time must be kept into reasonable standards for
the practical application.

Table 8: Daily MAPE (in %) on prediction for the FSSM forecasting.

Minimum 1st quartile Median 3rd quartile Maximum Mean (sd)
Monday 1.27 2.49 3.19 4.21 10.97 3.66 (1.61)
Tuesday 0.79 1.64 2.64 3.63 7.96 2.93 (1.57)
Wednesday 0.83 1.52 2.20 3.67 11.20 2.65 (1.4)
Thursday 0.77 1.70 2.47 3.93 8.98 2.90 (1.71)
Friday 0.77 1.66 2.41 3.12 8.70 2.59 (1.21)
Saturday 0.83 2.59 4.32 6.19 19.98 4.66 (2.89)
Sunday 1.26 3.91 5.94 7.80 19.98 6.07 (2.55)
Bank Holiday 2.20 5.35 6.03 6.86 11.20 6.18 (2.26)
Global 0.77 2.61 3.65 4.93 19.98 3.96 (1.21)

Tables 8 and 9 show the MAPE on prediction for days and months respectively for the FSSM approach.
In comparison with the persistence-based forecasting, the global error is sensibly reduced with improvement
on almost all day types. Also improvement are observed in all the months of the year but August (results
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Table 9: Monthly MAPE (in %) on prediction for the FSSM forecasting.

Minimum 1st quartile Median 3rd quartile Maximum Mean (sd)
January 0.79 2.15 2.86 4.21 8.54 3.39 (1.81)
February 1.11 2 2.535 3.57 4.36 2.72 (0.94)
March 1.27 2 3.82 5.42 10.71 4.05 (2.29)
April 1.01 2.54 3.67 5.81 10.44 4.31 (2.37)
May 0.83 1.99 3.19 6.03 8.70 3.85 (2.26)
June 0.93 1.69 2.43 4.11 10.54 3.25 (2.11)
July 1.26 2.8 3.94 5.05 7.37 3.97 (1.46)
August 0.77 1.45 2.43 5 11.20 3.69 (3.1)
September 0.83 2.14 2.87 5.41 19.98 4.29 (3.67)
October 1.04 1.66 2.7 3.69 19.98 3.22 (2.01)
November 1.45 3.26 4.415 5.68 9.48 4.65 (1.95)
December 1.28 1.58 2.59 4.26 8.98 3.09 (1.81)

for persistence-based forecasting are not shown). If we look at the distribution of MAPE we see that the
range is compressed with a lower maximum error but also a higher minimum error. This last effect is
the price to pay for having an approximate representation of the function. We may think the MAPE on
approximation as a lower bound for the MAPE on forecasting. The higher this bound the more limited
the approach is. Despite this negative result, the gain on the largest errors observed before more than
compensates the increment on the minimum MAPE and yields on a globally better alternative. Among
workable days, Mondays presents the higher MAPE. FSSM being an autoregressive approach, it builds on
the previous days which present a different demand structure. Moreover, the mean load level of these two
consecutive days is sharply different. Undoubtedly incorporating the calendar information would help the
model to better anticipate this kind of transition. Both mean load level corrections and calendar structure
are modification or extensions that can be naturally incorporated in our FSSM. We discuss some clues for
doing this in the next section.

5. Corrections to cope with non stationary patterns

We explore two kind of extensions to add exogenous effects. In the first one the days are grouped into
two groups, workable and non workable days, and the prediction is done separately in each group. In
the second one, the day and the month are introduced as exogenous fixed effect in the model.

5.1. Adding effects as grouping variables

We aim to tackle some of the difficulties non stationary patterns imposes on the forecasting of load
data by explicitly consider two groups of days: workable (i.e. Monday, Tuesday, Wednesday, Thursday,
Friday), and non workable (i.e. Saturday, Sunday and Holidays). We adapt our model FSSM described
in Equation (6) by adapting it on each group separately, that is we consider the model{

yg
i = yg

i−1α
g
i + εgi

αg
i+1 = T g

i α
g
i + ηgi

, g ∈ workable, non-workable (9)

The only difference between models (6) and (9) is the data used in estimation of parameters. In the
case of (9), we have two groups of data, workable days and, non workable days. The structure of the
matrices are the same as in the model 6, but now they are specific to each group of days. In term of
forecasting procedure, if we want to predict a workable day, we choose the data for the group workable.
Similarly for non workable days. In Tables 10 and 11) we present MAPE obtained with this procedure
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reported by day type and month. The results for this approach globally improve the forecast with respect
the initial model since the global MAPE decreases. Also, reduced MAPE are obtained for most of the day
types. However, we can see also that for Saturday and Monday the error are significantly increased. These
days are those where the transition between the groups occur. They share then the additional difficult
of not having the most recent information (that one from the precedent day) in the model. Some cold
months prediction is not improved. Improvement are observed during summer months or months around
summer. The high level load demand and variability of winter months impacts on the rise of prices and
thus makes these months of particular interest. The accuracy in forecasting for these months is important
because bad prediction can have a large economical impact for electricity suppliers.

Table 10: Daily MAPE (%) for model (9).

Minimum 1st quartile Median 3rd quartile Maximum Mean (sd)
Monday 0.92 2.61 3.68 7.42 15.85 5.10 (3.38)
Tuesday 0.64 1.20 2.02 3.24 15.85 2.51 (1.83)
Wednesday 0.60 1.39 2.03 2.71 8.62 2.18 (1.12)
Thursday 0.66 1.43 2.01 3.10 6.76 2.42 (1.3)
Friday 0.75 1.47 2.15 3.23 9.51 2.53 (1.32)
Saturday 1.16 2.39 3.24 7.46 27.72 5.69 (5.34)
Sunday 1.15 2.01 2.33 3.67 8.06 3.00 (1.6)
Bank Holiday 1.39 3.77 4.51 5.88 9.51 4.89 (1.92)
Global 0.60 2.03 2.75 4.59 27.72 3.54 (1.32)

Table 11: Monthly MAPE (%) for model (9).

Minimum 1st quartile Median 3rd quartile Maximum Mean (sd)
January 0.75 1.75 3.16 4.37 13.88 4.26 (3.8)
February 0.60 1.63 2.515 3.98 14.82 3.60 (3.24)
March 0.82 1.81 3.23 5.36 22.10 4.40 (4.48)
April 1.14 2.16 2.885 4.11 8.62 3.71 (2.25)
May 0.91 2.01 2.39 3.63 9.51 2.91 (1.77)
June 0.90 1.54 2.2 3.15 4.78 2.35 (1)
July 0.96 1.47 2.01 2.78 4.51 2.12 (0.85)
August 1.16 2.04 2.63 3.24 9.24 2.84 (1.41)
September 1.08 1.93 2.32 3.08 4.39 2.49 (0.86)
October 0.66 1.2 1.91 3.57 10.40 2.84 (2.53)
November 1.40 2.26 4.36 6.35 13.04 4.93 (2.87)
December 0.64 1.56 2.8 5.29 27.72 4.27 (5.05)

One thing we can also do to improve forecasting of load demand, is to integrate some exogenous
variables such as days types and weather variables. Day types are fixed variables and weather variables
are random variables. In this paragraph, we have just implicitly introduced days types in our modeling
but not as exogenous variable. In the next paragraph we introduce in our model the variable day types.

5.2. Adding effects as covariates

In this paragraph, we introduce in model (6) the variables day type and months. We must have an
appropriate presentation of this exogenous deterministic variables before predicting. We choose to create
for each day of the week, a binary dummy variable. In total we have eight days (including Holidays) type
which we use as eight dummies variables. Each variable takes values in {0, 1}. The value 1 corresponds
to the case where the response vector yi is observed on the same day as the day which is being used. For
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example, if the response variable yi is observed on Sunday, the dummy variable for Sunday take value 1.
The dummy variable for Sunday will take 0 if the response vector yi is not observed on Sunday, but yi

takes 1 for other day dummy variable on which it was observed. In addition we choose a numeric variable
which represents the months of the year. We would like to control the seasonal effect of the series with
this variable. The months variable has 12 values representing the month of the year. Let’s choose Day
as days dummy variables and Month as the numeric months variable. The model (6) becomes:{

yi = Dayiβ
D
i + Monthiβ

M
i + yi−1αi + εi

αi+1 = Tiαi + ηi.
(10)

Dayi ∈ {0, 1}1×8, βD
i ∈ R8×p, Monthi ∈ {1, . . . , 12} and βM

i ∈ R1×p . Dayi and Monthi are fixed in
the time but βD

i and βM
i are not fixed in time because the profile of the series changes with time. These

regression coefficients can be interpreted as estimation of each day and month mean profiles of the series.
Lets note βi = {βD

i , β
M
i }. In term of mixed linear models modeling, βi controls the fixed effects of the

load data. Parameters estimation of (10) is bit different when using the package KFAS which allows to
estimate states space models parameters. In the case of the model (6), we choose random approach to
estimate αi, which consequently explains the randoms part of the load curves. That means we assume Qi

exists.

Table 12: Daily MAPE (in%) for model (10).

Minimum 1st quartile Median 3rd quartile Maximum Mean (sd)
Monday 1.48 2.35 2.81 3.96 8.90 3.30 (1.39)
Tuesday 0.65 1.51 2.16 2.93 8.06 2.56 (1.46)
Wednesday 0.65 1.44 2.04 2.73 8.06 2.21 (1.12)
Thursday 0.78 1.41 1.87 2.97 7.50 2.42 (1.41)
Friday 0.77 1.42 1.93 3.39 8.39 2.39 (1.43)
Saturday 0.77 2.14 3.04 4.44 13.11 3.55 (1.96)
Sunday 0.96 3.02 4.49 6.02 13.11 4.67 (1.92)
Bank Holiday 1.83 3.10 4.28 7.12 8.14 4.90 (2.03)
Global 0.65 2.05 2.83 4.20 13.11 3.25 (1.43)

Table 13: Monthly MAPE (in%) for model (10).

Minimum 1st quartile Median 3rd quartile Maximum Mean (sd)
January 0.90 1.87 2.59 3.86 8.14 3.10 (1.68)
February 1.24 1.925 2.33 2.9 4.44 2.52 (0.88)
March 0.94 1.81 3.08 5.09 8.90 3.50 (1.95)
April 1.34 2.17 3.38 4.78 8.06 3.75 (2)
May 0.82 2.03 3.07 5.34 7.12 3.40 (1.76)
June 0.77 1.34 1.985 2.93 8.03 2.46 (1.52)
July 0.87 1.83 2.65 3.37 5.19 2.61 (1.08)
August 0.78 1.41 2.1 3.3 6.71 2.61 (1.63)
September 0.65 1.4 2.2 3.16 13.11 2.74 (2.24)
October 0.89 1.61 2.15 3.56 13.11 2.68 (1.5)
November 1.62 3.35 4.205 5.48 9.70 4.57 (1.88)
December 1.13 1.61 2.26 3.58 7.86 2.85 (1.65)

It can be observed that, the global MAPE decreases. On Monday, the MAPE decreases significantly.
It is still difficult to have accurate prediction on winter and spring months, except December and February.
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For the month of November, the great value of MAPE is due to unprecedented increase of the number
of customers on November 2016. Figure 6 shows the errors of observations equation and their variance
Hi. It can be observed at the end of year 2016 (from November 2016), that there was a big change in the
errors variance. This change comes from the change in the rhythm of electricity consumers subscription as
clients of ENERCOOP. In the end of year 2016, there were COP21 (21st Sustainable Innovation Forum)
in France. As ENERCOP’s politic is to support renewable electricity production and consumption, at
this moment, the communication of the image of ENERCOOP increased in the population. ENERCOOP
was well known in French public than ever. This communication brought many customers to subscribe to
electricity supplied by ENERCOOP. For this moment, it is difficult for the model to be accurate because
at this moment outliers values were being observed.

6. Conclusion and discussion

In a concurrent environment, electrical companies need to anticipate load demand from data that
presents non stationary patterns induced by the arrives and departs of customers. Forecasting in this
context is a challenge since one desires to use as much past data as possible but needs to reduce the usable
date to the records that describe the current situation. In this trade-off, adaptive methods have their role
to play.

Figure 6 witnesses of the ability that FSSM has to adapt into certain extent to the changing environ-
ment. The impact of an external event to the electrical demand is translated into larger variability on the
error and so an inflation of the trace of the errors variance matrix (cf. at the end of 2016).

Forecasting process in this paper is mainly endogenous. Only some calendar information is used as
exogenous variable. However, in electricity forecasting it is well known that weather have a great influence
on the load curve. For instance temperature impacts through the use of cooling systems in hot season and
electrical heating during cold seasons. In France this dependence is known to be asymmetrical with higher
influence of temperature on cold days. The nature of this covariable on forecasting is different to the ones
we used. Indeed, while calendar can be deterministically predicted it is not the case for the temperature.
Using forecasted weather on an electrical demand forecast inserts the eventual bias and the uncertainty
of the weather forecasting system to the electrical demand prediction. Integration of weather information
into our model, eventually changing the structure of the matrix Hi, and obtaining prediction interval for
the predictions are perspectives of future work.

Also, only point predictions are obtained. In a probabilistic framework one would like to have not
only an idea of the mean level anticipation of the load, but also some elements about the predictive
distribution of the forecast. Whether the whole distribution, some quantile levels or a predictive interval,
this information is not trivially obtained from our approach. While SSM do provides intervals through the
Gaussian assumptions coupled with the estimation of the variance matrices, FSSM have these information
on the coefficients of the functional representation. Transporting these information to the whole curve
need to be studied.
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(a)

(b)

Figure 6: Diagnostics plot from model FSST: (a) Daily mean of errors ε̂i; (b) Daily trace of variance matrix Hi.
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