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Abstract:
This paper deals with the inventory controller design for constrained production systems subject
to uncertainties on the customer demands. The case study focuses on the inventory regulation
problem in production systems where contain perishable finite products. Such systems are
characterized by the presence of delays due to production processes, and constraints from the
instantaneous inventory level, production level and the finite capacities of stocks. To do that,
we propose a management strategy based on the inventory control, using either a linear control
law or a bang-bang control. A design method is proposed to determine the parameters of an
admissible control law. The design method is based on the invariance principle, and our proof
is based on the exact identification of the admissible region on the space of the parameters of
the system and the control specifications.

Keywords: Inventory control design, Perishable finite products, Time-delay systems,
predictor-feedback structure, D-invariance properties.

1. INTRODUCTION

In this paper, we are interested on the inventory regula-
tion problem in perishable inventory systems that must
satisfy the customer demand the we suppose unknown
but bounded by defined values. Also, the production sys-
tem is characterized by the presence of delay due to
the process time, and the positivity constraints due to
the specifications of the system, such as production and
storage capacities. Another characteristic of the system
is the presence of a perishability factor which is related
to the stock. The main difficulty is developing control
laws for perishable inventories stems from the necessity
of conducting an exact analysis of product lifetimes. The
difficulty to obtain a robust control is more complicated
in the situation when the customer demand is subject to
significant uncertainty and the inventories are replenished
with non-negligible delay. Our objective is to maintain
high service level without interruption and at the same
time to minimize the cost inventory. For that, we must
define a control law which is useful to satisfy the demand
during procurement latency but also to compensate the
stock deterioration in that time.

In this paper, we carried out a study on the inventory
control problem of logistical systems subject to delays
and perishable finite products using an approach based
on control theory. Those systems are subject to positivity
and saturation constraints mainly related to the physical
characteristics of the processes and should be taken into

account in the modelling of systems and the design of
control laws to stabilize them with respect to the delay.
We have introduced the basic model for each node of a
logistic system, Which is a delay system on the input.
This delay is interpreted as the duration of production
operations. The logistic system considered must satisfy a
customer demand while respecting constraints induced by
the positivity of the variables and the finite capacity of the
processes.

We proposed two permissible command structures: the
first is an affine law and the second is a bang-bang type
law, which serve to stabilize the logistical system under
consideration, whilst respecting the constraints of satura-
tion and positivity, and for any unknown but bounded
demand d(t). We studied a delayed logistic system for
zero initial conditions, that is to say without taking into
account its dynamics between the instants 0 and theta .
We have obtained necessary conditions for the existence of
the admissible laws according to the intrinsic parameters
of the system, such as sigma, theta, etc.

This article is organised as follows. The second section is
dedicated to the problem statement and the characteristics
of the considered problem. description of the problem.
In the third section, some backgrounds about the D-
invariance properties are briefly described. In section 4, the
inventory control problem with perishable finite products
and under unknown demand is developed. The section 5 is
dedicated to the controller design, where the conditions
of the existence of the controller are given. The paper



concludes with some discussions, as well as the directions
of the future work.

2. PROBLEM STATEMENT

2.1 Model Description

In this study, we consider an elementary production sys-
tem composed of a supplying unit and a storage one. The
supplying unit is characterized by a supplying order rate
denoted u(t), which is limited by a minimum value denotes
umin and a maximum supplying order rate denoted umax.
Furthermore, the production system is characterizer by a
delay θ, θ ≥ 0, which corresponds to the time needed to
complete the finite products. The storage unit is charac-
terized by the inventory level denoted y(t) bounded by a
minimum and maximum storage capacity denoted, respec-
tively, ymin and ymax. In this work, the customer demand
denoted d(t) is supposed to be unknown but assumed to
be bounded by two values denoted dmin and dmax, known
in advance, and corresponding to, respectively, minimum
and maximum demand rates.

This production system is as time-delay system with
perishable products defined by an expiration rate named
σ. Indeed, u(t) is the control input, d(t) is an external
perturbation, and y(t) is the output to be controlled. The
generic model for the inventory level dynamics is then
described by the following first order delayed equation.

ẏ(t) =

{
−σy(t) + u(t− θ)− d(t) for t ≥ θ ,
−σy(t)− d(t) for 0 ≤ t < θ .

(1)

u(t), y(t) and d(t) are non negative variables and they
represent, respectively, the production level, the inventory
level and the customer demand. In this paper, the study
of the production system is focused on the horizon time t,
t ≥ θ.

2.2 Constraints And Objective

The objective of this study consists first to define necessary
and sufficient conditions of existence of an admissible
control law u(t) in order to fulfil the demand d(t) taking
into account the different constraints. related to supplying
units and inventories which are limited resources, and they
can take only non-negative values. These constraints are
formulates as follows.

The controller should be designed such that, for all t ≥ 0:

ymin ≤ y(t) ≤ ymax , (2)

with
umin ≤ u(t) ≤ umax , (3)

and for every demand function satisfying

dmin ≤ d(t) ≤ dmax . (4)

3. PROPOSED CONTROL STRATEGY

3.1 Prediction and invariance

As developed in (Moussaoui, 2014) and extended in (Ab-
bou et al.,, 2015a) and (Abbou et al., 2015b), our proposed

approach to control systems with delayed inputs is based
on a predictor based feedback structure. This struc-
ture permits to stabilize the system and to compensate
the delay effects present in the loop. The specifications
of the production system are introduced as constraints
imposed to the controller, so as to forbid any overruns
on the production rates or on the inventory levels, which
can cause the saturation of the production unit. The role
of the controller is then to keep the production rate and so,
the inventory level, as far as possible within their limits.

Using the feedback-predictor structure, also known as
model reduction or Arstein reduction (Artstein, 1982), the
basic idea of state prediction is to compensate the time
delay θ by generating a control law that enables one to
directly use the corresponding delay-free system, thanks
to the prediction expressed by

z(t) = e−σθy(t) +

∫ t

t−θ
e−σ(t−τ)u(τ)dτ . (5)

By time derivation of the equation (5), one can see that
the resulting system

ż(t) = −σz(t) + u(t)− e−σθd(t) . (6)

is free-delay. Then we can applicate the invariance theory
explained in the next paragraph.

3.2 D-invariance concept

We consider a function f defining a system ẋ(t) =
f(x(t))− d(t). The interval Z defined as Z = [zmin, zmax]
is D-invariant for this system, with D = [dmin, dmax], if
and only if the following conditions are fulfilled.

f(zmin, dmax) ≥ 0 (7)

f(zmax, dmin) ≤ 0 (8)

If we consider the system defined by the equation (6),
and we applicate the D-invariance results, we deduce the
following expressions for the maximum and the minimum
values of z(t), for z(t) = zmin and for z(t) = zmax.

If we consider the system defined by the equation (6),
and we applicate the D-invariance results, we deduce the
following expressions for the maximum and the minimum
values of z(t), for z(t) = zmin and for z(t) = zmax

For z(t) = zmin, the expression is

−σzmin + u(t)− e−σθdmax ≥ 0 (9)

and for z(t) = zmax, we get

−σzmax + u(t)− e−σθdmin ≤ 0 (10)

3.3 Types of control laws

We can consider two forms of control laws that allow
the stability of the system (1) in closed loop taking into
account positivity and saturation constraints (2) et (3).
For each form of the control law, we consider two values
u1 and u2 which fulfil the constraint (3) expressed by

u1 ∈ [umin, umax] (11)

and
u2 ∈ [umin, umax] . (12)



Affine control law

The first control law is an affine one, such as, for all
d(t) ∈ D, and for z(t) ∈ Z, the affine control law is defined
as

u(t) =

{
u1 if z(t) = zmin ,

u2 if z(t) = zmax .
(13)

and structured as follows:

u(t) =

{
K(z0 − z(t)) if u1 6= u2 ,

u1 = u2 if u1 = u2 .
(14)

with K = u2−u1

zmax−zmin
and z0 = (u2zmax−u1zmin)

u2−u1
.

Bang-bang control law

The another law which can be applied is the so called bang-
bang. This law belongs to the class of well-known optimal
control laws. The only both values that the law can take
are the minimum and a maximum as described in Fig. 1
and given as follows.

u(t) =

{
u1 if z(t) ≤ zmin ,
u2 if z(t) ≥ zmax .

(15)

Fig. 1. Bang-bang control automaton

Application of the D-invariance concept

By applying the D-invariance concept, and from the in-
equalities (9) and (10), we suppose that there are two
values of the control u(t), which are u1 et u2, such as

u1 ≥ σzmin + e−σθdmax, (16)

and
u2 ≤ σzmax + e−σθdmin . (17)

We deduce from these expressions (16), (17), (11) and (12)
that the following conditions are fulfilled

umax ≥ σzmin + e−σθdmax (18)

umin ≤ σzmax + e−σθdmin (19)

Then, the conditions (18) and (19) are necessary for the
D-invariance of the interval [zmin, zmax].

Inversely, if the conditions (18) and (19) are satisfied,
u1 and u2 which fulfill (16), (17), (11) and (12), can be
chosen as u1 = umax and u2 = umin. We can see that the

conditions (18) and (19) are necessary and sufficient for the
D-invariance of the interval [zmin, zmax] for the system (6)
verifying the following condition

zmin < zmax (20)

4. PROPERTIES OF THE PROPOSED STRATEGY

4.1 Admissibility conditions of the control law

From the properties of D-invariance, if the interval Z =
[zmin, zmax] is D-invariant for the closed-loop system, then
the control law u(t) evolves in the interval [umin, umax], for
any demand d(t) evolving in the interval [dmin, dmax].

In order to determine the admissibility conditions of the
control law for the studied system expressed by (1), we
apply a predictor based feedback structure. The predictor
expressed by (5) can be written such as

y(t) = eσθ(z(t)−
∫ t

t−θ
e−σ(t−τ)u(τ)dτ) (21)

We choose the values u1 and u2 which fulfill (11) and (12).
One can see that y(t) evolves in the interval

[eσθ(zmin −
1− e−σθ

σ
u2), eσθ(zmax −

1− e−σθ

σ
u1)] (22)

if u1 ≥ u2,

otherwise in the interval

[eσθ(zmin −
1− e−σθ

σ
u1), eσθ(zmax −

1− e−σθ

σ
u2)] (23)

if u1 ≤ u2.

We can then deduce that the constraint on y(t) expressed
by (2) is met if the following conditions are satisfied:

ymin ≤ eσθ(zmin −
1− e−σθ

σ
u2) (24)

ymax ≥ eσθ(zmax −
1− e−σθ

σ
u1) (25)

if u1 ≤ u2,

otherwise

ymin ≤ eσθ(zmin −
1− e−σθ

σ
u1) (26)

ymax ≥ eσθ(zmax −
1− e−σθ

σ
u2) (27)

if u1 ≥ u2.

Therefore, the interval Z = [zmin, zmax] is D-invariant
by the control law expressed either by(16) or (17), which
verifies the constraint of u(t) such that u(t) ∈ [umin, umax],
for all d(t) ∈ D, for all t ≥ 0, if and only if the following
conditions are satisfied

umax ≥ u1 ≥ σzmin + e−σθdmax

umin ≤ u2 ≤ σzmax + e−σθdmin

4.2 Main results

Theorem 1. Being given a system of the form (1), there
exists a command of the form (14) or (1), for which the



system is stable and the constraints (2) and (3) are fulfilled
for any demand d(t) ∈ D, if and only if the following
conditions hold true

max(
1− e−σθ

σ
dmax + ymin,

1− e−σθ

σ
umin + e−σθymin)

≤ 1

σ
(umax − e−σθdmax) (28)

1

σ
(umin − e−σθdmin)

≤ min(
1− e−σθ

σ
dmin+ymax,

1− e−σθ

σ
umax+e−σθymax)

(29)

max(
1− e−σθ

σ
umin + e−σθymin,

1− e−σθ

σ
dmax + ymin)

< min(
1− e−σθ

σ
umax+e−σθymax,

1− e−σθ

σ
dmin+ymax)

(30)

Lemma 1
As seen in the last sections, we can deduce that the con-
ditions (18), (19), (20) , (24), (25), (26) and (27) are
sufficient for the admissibility of the affine and bang-bang
control laws defined by u1, u2, zmin and zmax.
These conditions are expressed in terms of different pa-
rameters such θ, σ, u1, u2, zmin, zmax, ymin, ymax, dmin,
dmax, umin and umax.

These parameters can be classified into different cate-
gories, first, there are intrinsic parameters to the system
which are θ and σ, then, different parameters related
to the specification which must be satisfied, ymin, ymax,
dmin, dmax, umin and umax, finally, the parameters of the
structure of control laws which are u1, u2, zmin and zmax.

4.3 Elimination of the parameters u1, u2, zmin and zmax

• Elimination of u1

Resulting from the lemma 1, the conditions (16), (25) and
(26) depend on u1, which we want to extract from these
conditions, using the mentioned expressions. From these
conditions, we get the following one which is independent
of the parameter u1

zmax − e−σθymax ≤ zmin − e−σθymin . (31)

Conversely, if the last condition is fulfilled, one can choose
u1 such that the conditions (11), (25) and (26) are satis-
fied. The expression (31) is equivalent to the existence of
a number u1 which satisfies (11), (25) and (26). Using the
conditions (16), (11) and (25), we can deduce the following
relation.

max(
1− e−σθ

σ
umin, zmax − e−σθymax,

1− e−σθ

σ
(σzmin + e−σθdmax))

≤ 1− e−σθ

σ
u1 (32)

From the expressions (11) et (26), we deduce the following
condition:

1− e−σθ

σ
u1 ≤ min(

1− e−σθ

σ
umax, zmin−e−σθymin) (33)

Then, from the conditions (32) and (33), we find the
condition (31)We conclude then the conditions mentioned
below

1− e−σθ

σ
umax ≥ zmax − e−σθymax (34)

1− e−σθ

σ
umax ≥

1− e−σθ

σ
(σzmin + e−σθdmax) (35)

zmin − e−σθymin ≥
1− e−σθ

σ
umin (36)

zmin − e−σθymin ≥
1− e−σθ

σ
(σzmin + e−σθdmax) (37)

Lemma 2
Being given a system of the form (1). There exist a number
u1 that verifies the conditions (16), (11), (25) and (26) if
and only if the conditions (31), (34), (35), (36) and (37)
are fulfilled.
In this paragraph, we have operated on the conditions
of the lemma 1 and we are interested to the elimniation
of the parameter u1, we have got conditions independant
on u1. Similarly, we will elimnate u2 to get independant
conditions on this parameter.

• Elimination of u2

With a similar way as for u1, and from the conditions (24)
and (27) resulting from the lemma 1, we get the condition
(31), and taken into account the expressions (24) and (27),
we get the conditions as formulated below

1− e−σθ

σ
u2 ≤

min(
1− e−σθ

σ
umax, zmin − e−σθymin,

1− e−σθ

σ
(σzmax + e−σθdmin)) (38)

1− e−σθ

σ
u2 ≥ max(

1− e−σθ

σ
umin, zmax − e−σθymax)

(39)
Then, from the formulations (38) et (39), we get the
conditions (19),(31), (34) and (36) that was got from
the elimination of u1, and the we get also the following
conditions

1− e−σθ

σ
(σzmax + e−σθdmin) ≥ 1− e−σθ

σ
umin (40)

1− e−σθ

σ
(σzmax + e−σθdmin) ≥ zmax − e−σθymax (41)

Lemma 3
Being given a system of the form (1). There exist a number
u2 that verifies the conditions (17), (12), (24) and (27) if
and only if the conditions (31),(34), (36), (40) and (41)
are fulfilled.

From the lemma 2 and 3, we can reformulate the lemma 1
using the conditions independent on the auxiliary param-
eters u1 and u2.



4.4 Elimination of zmin and zmax

In this section, as done for the elimination of u1 and u2, we
will eliminate the auxiliary parameters zmin and zmax. We
will operate on the conditions (31),(34), (35), (36), (37),
(40) and (41), we get the following expressions

zmax − zmin ≤ e−σθ(ymax − ymin) (42)

zmax ≤
1− e−σθ

σ
umax + e−σθymax (43)

zmin ≤
1

σ
(umax − e−σθdmax) (44)

zmin ≥
1− e−σθ

σ
umin + e−σθymin (45)

zmin ≥
1− e−σθ

σ
dmax + ymin (46)

zmax ≥
1

σ
(umin − e−σθdmin) (47)

zmax ≤
1− e−σθ

σ
dmin + ymax (48)

Then, from the expressions (43) et (48), we deduce the
formulation below

zmax ≤ min(
1− e−σθ

σ
umax+e−σθymax,

1− e−σθ

σ
dmin+ymax)

(49)
Similarly, for the condition on zmin, from the expressions
(45) et (46), we get

zmin ≥ max(
1− e−σθ

σ
umin+e−σθymin,

1− e−σθ

σ
dmax+ymin)

(50)

4.5 Geometric interpretation of the obtained conditions

Based on the conditions mentioned above, those results
have a geometric interpretation. Indeed, one can remark
that the four inequalities (44), (47), (49) and (50) define
a rectangle in the plane (zmin, zmax). Furthermore, the
expressions (20) and (42) correspond to the definition of a
strip located above the main diagonal zmin = zmax. The
area obtained corresponds well to a polyhedron.

In order to obtain the necessary ans sufficient conditions
of an admissible control law regardless of the intermediary
parameters, we must eliminate the parameters zmin et
zmax from the set of inequalities. Therefore, from the
conditions (44) and (50), we obtain the first inequalities
expressed by

1− e−σθ

σ
dmax + ymin ≤

1

σ
(umax − e−σθdmax) (51)

1− e−σθ

σ
umin + e−σθymin ≤

1

σ
(umax − e−σθdmax) (52)

And from the conditions (47) et (49), we obtain

1

σ
(umin − e−σθdmin) ≤ 1− e−σθ

σ
umax + e−σθymax (53)

1

σ
(umin − e−σθdmin) ≤ 1− e−σθ

σ
dmin + ymax (54)

Finally, we obtain the necessary and sufficient conditions
depending only on the parameters of the studied system
(umin, umax, θ, ymin, ymax, σ, dmin, dmax).

Lemma 4
Being given a system of the form (1). There exist two
numbers zmin and zmax that verifies the conditions (20),
(31), (34), (35), (36), (37), (40) and (41) if and only if
the conditions (51),(52), (53) et (54) are fulfilled.

Corollary 1
Being given a dynamic system of the form (1), there exist
numbers u1, u2, zmin and zmax that verifies the inequali-
ties (18), (19), (20) , (24), (25), (26) and (27) if and only
if the conditions (31),(34), (35),(36), (37), (40) and(41)
are fulfilled.

5. DISCUSSIONS ON THE PROPOSED APPROACH

In this study, the first contribution compared to the work
of our predecessors, consists in considering generic inter-
vals for the variations of constraints and specifications. In
the literature, the authors considered minimal boundary
intervals for the stock level, the production order and the
demand. In our case, we have defined these intervals by
taking non-zero minimum values. The second contribution
is to add the uncertainty constraint on the stock dynamics
- which is the perishable rate of loss - in addition to
the uncertainty about customer demand and production
times. Finally, the originality of this work, from the point
of view of production management, lies in the study of
the conditions of existence of a control law. Indeed, before
investing and choosing the production and storage units,
someone has to study the constraints of dimensioning of
the production system, under the existence of the control
law.

As we assumed a time-independent static loss factor,
further study is required to extend the proposed approach
by considering a time-varying dynamic rate σ(t), and
study its impact on of the laws structure of orders as
well as the conditions of their existences. Also, it would be
interesting to consider the delay theta as variable, which
is a great importance in distribution logistics.

6. CONCLUSION

The paper deals with the problem of perishable inventory
control of supply chain subject to the demand variability
under constraints. It focused in searching the conditions of
existence of a control law which satisfy the demand while
fulfilling the system constraints. A sufficient conditions
of existence of two control laws are proposed. These
conditions are based on the system parameters such as
the perishability factor σ and the delay θ, in addition, the
limits of the storage capacity ymin, ymax, then the limits of
the demand dmin, dmax, and finally, the production orders
levels umin, umax. The main advantage of the conditions
proposed in this work is it permits the analysis of the
existence of control laws before their conception and the
the implementation in the space of parameters permits

This study opens perspectives at various levels. In our case,
we consider two control laws. Further study is required
to generalise these conditions for any type of control.
Also, different hypotheses can be checked: uncertain delay
and uncertain perishability factor which depend on time



or date (date of expiry). Finally, one could consider a
just-in-time strategies to regulate the perishable inventory
systems.
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