
HAL Id: hal-01701066
https://hal.science/hal-01701066v1

Submitted on 5 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Temporised Conflict-Free Routing Policy for AGVs
Dimitri Antakly, Jean-Jacques Loiseau, Rosa Abbou

To cite this version:
Dimitri Antakly, Jean-Jacques Loiseau, Rosa Abbou. A Temporised Conflict-Free Routing Policy for
AGVs. The 20th IFAC World Congress, Jul 2017, Toulouse, France. �10.1016/j.ifacol.2017.08.1239�.
�hal-01701066�

https://hal.science/hal-01701066v1
https://hal.archives-ouvertes.fr

A Temporised Conflict-Free Routing Policy
for AGVs

Dimitri Antakly Jean Jacques Loiseau Rosa Abbou

Laboratoire des Sciences du Numérique de Nantes,
Université Bretagne Loire, Nantes, France
(e-mail: Dimitri.Antakly@hotmail.com;

{Jean-Jacques.Loiseau,Rosa.Abbou}@irccyn.ec-nantes.fr)

Abstract: This paper deals with the conflict avoidance problem of an Automated Guided
Vehicles (AGV) system, in a Flexible Manufacturing System (FMS). Regarding the complexity
of this kind of problems, it has generated many works to find an optimal strategy for scheduling
and routing AGVs. In this paper, we propose a new strategy based on a temporal logic, modelled
using time Petri nets. It consists in imposing suitable delays on an AGV in order to avoid a
critical situation with another AGV. We built an algorithm including three main stages. In the
first one, we test the evolution of our system. In the second stage, we calculate our suitable
delay, if it exists, by testing the different critical scenario cases. In the last stage, we assign the
delays and update the system. The validity of the algorithm is proven mathematically, and its
feasibility is shown using a simulation.

Keywords: Automated Guided Vehicles (AGV), conflict avoidance, temporal logic, time Petri
nets, discrete event simulation (DES).

1. INTRODUCTION

Increasing the degree of autonomy in a Flexible Manu-
facturing System (FMS) is a main objective in today’s
workshops. Doing so, requires the addition of automated
systems, that can execute alone without any human inter-
ference. All the advantages of automating with industrial
robots, such as decreased production costs, shorter cycle
times, improved quality and reliability, increased safety
and better floor space utilization, are countered with a
big impasse: the increase in complexity. More one seeks
autonomy in a system, the more control in its operation
becomes complex. An AGVS (Automated Guided Vehicles
System), is a set of a driver-less vehicles usually used to
transport products between work stations in a workshop.
All the AGVs of the AGVS, must be coordinated and
work in a cooperative manner. The scheduling of each
AGV’s missions and the routing of its respective path, are
accomplished by a computer-based control system. The
objective of this paper is to establish robust conflict-free
routes for each AGV, and to make sure the entire system is
well synchronised and there is no possible time deadlocks.
A deadlock is when the system is entirely blocked and
requires human interference to be unblocked.

Many approaches have been generated in the literature
dealing with this kind of problems. We can mention the
heuristic approach solving hard problems but with approx-
imate results (Noorul et al. (2003)); approaches based on
simulations over UPPAAL and ARENA in order to get op-
timal routes using discrete event simulation (DES) (Maza
and Castagna (2005); Arnaud et al. (2009)); approaches
based on logical instincts or Genetical Algorithms(GA)
consisting in keeping only the fittest solutions after gen-

erating a number of possible solutions (Subbaiah et al.
(2009)). Another work based on Coloured Timed Petri
Nets (Dotoli and Fanti (2004)) has a similar approach as
the one presented in this paper, and we will be discussing
its positionning regarding this paper later on, in the con-
clusion section. We can also quote most recent timed
automata approach developped by (Girault et al. (2016)),
in which the authors propose a new compositional method
to calculate on the fly the new supervisor, each time the
system evolves in a certain direction. In this work, the
proposed approach combines in a way the advantageous
parts of each cited approach, as explained in the following.

We proposed a policy that ensures conflict avoidance be-
tween the AGVs of the system, based on a temporal logic
but handles both the logic and the time aspects of the sys-
tem. The policy consists in adding extra delays, if needed,
on the execution time of an AGV on a working station,
in order for it to avoid a possible accidental situation, as
our system evolves. What makes this strategy different
than the Ramadge and Wonham theory of supervision
(Ramadge and Wonham (1987)), is the fact that the added
temporised aspect allows us to handle the unwanted states
or situations instead of throwing them away. In order
to solve the problem and proceed with the strategy, the
system was modelled using TPN (Time Petri nets) and an
algorithm was built, detailing the strategy step by step.

This article is organised as follows. The second section is
dedicated to the description of the problem. In the third
section, we introduce the algorithm proposed and we prove
it mathematically along with a simulation. Finally, section
four is dedicated for the conclusion and future works.

2. PROBLEM STATEMENT AND OVERVIEW

In this section, we will introduce the time Petri nets, as
well as the different hypotheses used to define the area of
our work.

2.1 Time Petri Nets

A time Petri net is defined as a tuple (P, T, Pre(., P),
Post(P, .), α, β,M0) (Berthomieu and Diaz (1991), where:

• P = {P1, P2,, Pm}, is a finite non empty set of
places (or states),
• T = {T1, T2,, Tn}, is a finite non empty set of

transitions (T ∩ P = ∅),
• Pre(., P) ∈ (NP)T is the function defining the places

at the start of a transition,
• Post(P, .) ∈ (NP)T is the function defining the places
at the end of a transition,
• M0 ∈ NP is the initial marking of the net,
• α ∈ (Q+)T and β ∈ (Q+ ∪ {∞})T are the functions
giving for each transition, respectively, its earliest and
latest firing moments (α ≤ β).

A time Petri net (TPN) has two conditions for transition
occurrence, the logical and the timed condition. The
logical condition of a state (or configuration) is a marking
Mi(t) defining the number of tokens in the place Pi at time
t. The vector M(t) defines the number of tokens in all the
places at time t. The logical condition of a transition is
enabled if the tokens required by the preconditions are
present in the marking. The timed condition for transition
occurrence is defined by the interval [α, β], a transition
is enabled if its clock value lies in that interval. An
example of a TPN is shown in Fig. 1 (modelled using
ROMEO (Lime et al. (2009))). To explain more the logical
condition, we can see in Fig. 1 (representing a small
parallel manufacturing process) that the transition T1 is
enabled when there’s a token in place P1. As for transition
T2, it’s only enabled when there are tokens in places P2
and P3.

Fig. 1. Example of a TPN

We cite two types of arcs, that are useful for the work to
follow:

• The logical inhibitor arc which its role is to inhibit
the transition occurrence, as long as the place, at the
first end of the arc, has tokens in.
• The reset arc which role is to reset the place, at
the first end of the arc, when the corresponding
transition, at the other end of the arc, is fired.

2.2 Problem Description

The problem we are handling in this paper is a very com-
mon problem, which has generated many works dealing
with it. This work was inspired by the real AGV platform
of the IUT-University of Nantes (Institut Universitaire de
Technologie de Nantes, FRANCE). In our case study, the
paths of the circuit are unidirectional and the capacity
of the resources (or the working stations), as well as the
paths, are unitary which means that only one AGV at
a time is allowed on a path or on a node (the working
stations will be named nodes for simplification reasons).
We also add that an AGV cannot take any order while it
is on its way (on a path) between two working stations,
it is only controllable on the nodes (it is blind on the
paths). This leads us to induce the accidental situations,
where two AGVs can collide either on a path or on a node.
The most important thing to define here in our discrete
events system is the temporised aspect. The travel time
on each path and the execution time on each node are
already known and they are inevitable. For example, the
rest period of an AGV on a node P1 lies necessarily in the
interval [T1;T1 + ∆1], where ∆1 is a delay imposed on the
node, ∆1 ≥ 0.

Example. As an illustration of the problem described
before, a presentation of the real workplace of the IUT-
University of Nantes, is shown in Fig. 2. In this figure, the
coloured points are not only the working stations but also
the action points, on which the AGVs can take orders such
as "go straight", "take a turn", "load", etc.

Fig. 2. Schematic of the circuit at the IUT-University of
Nantes

To execute any order, the AGV needs a response time
(or execution time). The execution times on the differ-
ent nodes are different and may be brief, but they are
inevitable. The fact that leads us to be, in this example,
in the context of the hypotheses we described before.

3. PROPOSED METHODOLOGY

Now that we have defined the problem, we seek to manage
the possible conflicts on the resources (modelled by the
places in the TPN). The algorithm we propose resolves this
problem for any size or shape of the circuit. The algorithm
leads to a valid solution, if it exists. It handles the conflict
avoidance for two AGVs, and can be certainly developed
to handle N AGVs since the conflicts occur between two
AGVs at a time. Hence, the problem is always reduced
to two AGVs at the end (N = 2), but its complexity
will increase at high rate as we increase the number of
AGVs; the order of complexity will be discussed later, in
section three. The objective is to calculate, on-line (after
the start-up of the AGVs) and during a predefined run
time, the effective dates of liberation of each node after
adding the delays, if needed. We note i and j the AGV
numbers. We associate for the AGVs the delays ∆i and ∆j

which will be calculated. The function ChoixDe∆(∆i,∆j)
used in the algorithm is implemented in a way to choose
one ∆ between the two possible values, impose it on the
corresponding node and resetting the other to zero. This
way we delay one AGV not both. The choice of a ∆
strongly depends on imposed specifications, for example:

• Passing priority of an AGV on the other, considering
energetic or capacity constraints, or simply to respect
a certain ratio of production between different cycles;
• Total delays imposed on the node;
• Total delays imposed on the AGV;
• Minimising the waiting time.

We note that if we find ∆ < 0, we assign the value zero
to it, knowing that our system is causal and the execution
times are inevitable (we can not accelerate the procedures
on the nodes). We now introduce the notation used to
formulate the algorithm:

• Ti: execution time on node i.
• Θij : travel duration between the nodes i and j.
• Ui(t): command allowing the liberation of a node i

(or working station).
• zi: the date of a job completion on node i.
• ∆i: the delay imposed on node i.
• ki: the date of liberation of node i.
• Timer: global clock.
• t: date of arrival on the last node occupied by AGV1.
• t′: date of arrival on the last node occupied by AGV2.
• D: total run time.
• m: security margin, imposed by the specification of
the system, between the date of liberation of a node
and the date of a new occupation.
• InitialisationDuCircuit(): function that initialises
the circuit, the travel durations and the execution
times.
• InitialisationDesGammes(V1, V2): function that ini-

tialises the sequences of each AGV (k = 1 or 2).
• PositionsInitiales(V1, V2): function determining the
initial position of each AGV.
• Mi(Vk): marking function determining if the node i is
occupied by the AGV k and that by examining the se-
quences initialised by InitialisationDesGammes(V1,
V2), in order to detect if an AGV exists its cycle and
in this case be prepared for a deadlock.

• Succ(Mi, Vk): function determining the successor of
the AGV k exiting the node i, and that also is done
regarding the sequences (it returns the number of the
succeeding node).
• Position(Vk): function returning the actual position
of the AGV k.

Algorithm 1 Calculation of the delays
InitialisationDuCircuit();
InitialisationDesGammes(V1, V2);
PositionsInitiales(V1, V2);
while Timer ≤ D do

if (Mi(V1)) == 1||Mj(V2) == 1) then
zi = t+ Ti;
zj = t′ + Tj ;
∆i = 0;
∆j = 0;
if (Mi(V1)) == 1||Mj(V2) == 0) then
S = Succ(Mj , V2);
Position(V2) = Succ(Mj , V2);
zS = (kj + ΘjS) + TS ;
zj = zS ;

end if
if (Mi(V1)) == 0||Mj(V2) == 1) then
S = Succ(Mi, V1);
Position(V1) = Succ(Mi, V1);
zS = (ki + ΘiS) + TS ;
zi = zS ;

end if
if (Succ(Mi, V1) == Position(V2)
&&Succ(Mj , V2) == Position(V1)) then

∆i = zj − (zi + Θij) +m;
∆j = zi − (zj + Θij) +m;
ChoixDe∆(∆i,∆j);

else if Succ(Mi, V1) == Succ(Mj , V2) then
l = Succ(Mi, V1) = Succ(Mj , V2);
∆i = (zj + Θjl) + Tl − (zi + Θil) +m;
∆j = (zi + Θil) + Tl − (zj + Θjl) +m;
ChoixDe∆(∆i,∆j);

else if Succ(Mi, V1) == Position(V2) then
∆i = zj − (zi + Θij) +m;
if ∆i < 0 then

∆i = 0;
end if

else if Succ(Mj , V2) == Position(V1) then
∆j = zi − (zj + Θji) +m;
if ∆j < 0 then

∆j = 0;
end if

end if
ki = zi + ∆i;
kj = zj + ∆j ;
Ui(ki) = 1;
Uj(kj) = 1;

end if
end while

We first comment this Algorithm 1 and give some explana-
tion before formally proving its validity. In the first part,
we start by initialising the circuit, the execution times, the
sequence of each AGV, the travel durations, and the initial
position of each AGV which should be a node. During a
specified run time, we observe the evolution of the system

(the 1st if test). In other words, each time an AGV occupy
a new node, we anticipate the presence of the other AGV
(supposedly on the road, in the worst case) on its next
node by calculating the date of job completion on the node
(2nd and 3rd if tests). The use of this anticipation will be
elaborated and clearer as we go on. We note that the first
time we enter the big "While" loop the values of k do not
exist, but anyway we will not be risking to use them since
the two AGVs are on nodes and we will go straight to
the following tests. The first test corresponds to the most
critical case where the AGVs are permuting places, that
is why we calculate two values of ∆: one corresponding
to the waiting time of the AGV on the node i and the
other corresponding to the waiting time of the AGV on
the node j. This waiting time is the difference between the
date of job completion on the succeeding node (adding the
security marge m to it) and the arriving date of the AGV
occupying the first node on the succeeding one.

After calculating the two ∆, the function ChoixDe∆(∆i,
∆j) (already explained) will choose the fittest one and
reset the other to zero. It is the same for the last two
tests, except that in these cases we know already on which
node we should impose the delay. Finally, the second test
corresponds to the case where the two AGVs have the
same next destination. Thus, for this case to calculate
a ∆ corresponding to a given node, we should do the
difference between on one hand, the execution time on the
destination node named Tl, adding to it the arrival date
of the AGV occupying the other node (and the marge m),
and on the other hand the necessary time for the AGV
occupying the current node to arrive to the destination.

Each time the system evolve there is a single true test or
none, and due to that we will obtain a suitable value of
∆ for a determined node. The last stage (or the iteration)
consists in defining the dates k in where the commands of
liberation of the working stations are not equal to zero. So
we have our set of commands Uc(t).

Proof.
We demonstrate mathematically the validity of the pro-
posed algorithm, using a reduction to the absurd. We prove
the absence of conflict proving that, for the system super-
vised and delayed by the values calculated with Algorithm
1, any conflict leads to a contradiction.

First remark that the possible conflicts can be sorted
into two families: conflicts on the places (or nodes) and
conflicts on the trajectories (or transitions). A conflict
on a place means that there is a possibility that two
AGVs collide while trying to occupy the same working
station, and a conflict on a transition means that there is
a possibility that an AGV blocks the path of another AGV.
Hence, these scenarios are the only "accidental" ones.
We use the notation, "places", "arcs" and "transitions"
in the following, since in the simulation that follows the
modelling is done using a TPN.

We successively exam these two categories. We should
prove the absence of conflicts (or accidents), considering
both the logical and the temporal states of the system.

On the places: We consider the nodes Pl, Pi et Pj

such as, the following relations are verified: Post(., Pi) ∩
Pre(Pl, .) 6= ∅ and Post(., Pj)∩Pre(Pl, .) 6= ∅, or in other

words, there exists one (or many) route(s) leading from Pi

and Pj towards Pl. We suppose thatMPl
(t) > 1 is verified,

then there is two possible cases:

- If MPl
(t0) = 1 (with t0 the initial moment and t0 < t)

thus, MPi(t0) = 1 and a transition til is firable such as:
zi + Θil + ∆i ≤ zl (with ∆i ≥ 0).

- If MPl
(t0) = 0 thus, MPi(t0) = 1 and MPj (t0) = 1 and

two transitions til and tjl are firable such as: (zi + Θil +
∆i ≤ zj +Θjl +Tl) or (zj +Θjl +∆j ≤ zi +Θil +Tl) (with
∆i ≥ 0 and ∆j ≥ 0).

In each case, we verify by reduction to the absurd, that
the initial hypothesis (MPl

(t) > 1) is not possible.
- In the first case, we have ∆i = zl − (zi + Θil) + m
(with m > 0), or ∆i = 0 (according to the algorithm). By
replacing the two possible values of ∆i in the inequality,
we obtain: zl − zi − Θil + m ≤ zl − zi − Θil giving us
m ≤ 0 which is absurd; with the second value, if ∆i = 0
we obtain: 0 ≤ zl − zi − Θil ⇒ zl ≥ zi + Θil which defies
the initial proposition.
- In the second case, we have ∆i = (zj + Θjl) + Tl −
(zi + Θil) +m (and ∆j = (zi + Θil) + Tl− (zj + Θjl) +m)
(according to the algorithm and withm > 0). By replacing
these values in the inequality, we obtain: m ≤ 0, which is
absurd.

On the transitions: There are two possibilities to have
an accidental situation:
- The same transition is fired two times during an interval
smaller to the travel time, for example tij is firable at t
and at [t; t+ Θij [.
- Two transitions til and tjl, both leading to Pl, are fired
during an interval smaller to the travel time Θil (or Θjl).
For example, til is firable in [t; t+ Θjl[(with tjl fired at t),
or tjl is firable in [t; t+ Θil[(with til fired at t).

We verify that both possibilities are absurd.

- The first proposition is written mathematically using the
delay times: zi +∆i < Θij , but according to the algorithm
in this case we have z̄i = zi+Θij +Tj , with z̄i representing
the new value of zi calculated in the algorithm using the
intermediate value zS . Having Θij + Tj > 0 thus we have
zi > Θij (∆i > 0), then to say that zi + ∆i < Θij is
absurd.
- The second proposition is written mathematically using
the delay times: zi + ∆i < Θjl, but according to the
algorithm in this case we have ∆i + zi = (zj + Θjl + Tl +
m) − Θil. Leading to two possible cases, the first where
zj + Tl +m > Θil, giving zi + ∆i > Θjl, contradicting the
second proposition; the second where z̄j + Tl + m < Θil

(with z̄j = zj + Θjl + Tl) and thus representing a non
accidental situation because Θil > zj + Θjl + Tl, then the
path leading from i to l is of a bigger duration than the
sum of the liberation time on j, the travel time from j to
l and execution on l. In this case the AGVs will not be in
an accidental situation. All of this is absurd, which ends
the proof. �

We took into consideration the logical and the temporal
states (having all the information on the durations and
the arrival dates of the AGVs in their current positions)
in our proof, so we can say that the proposed algorithm
gives robust solutions if the solutions actually exist (and

since we did not take any "due dates" into account, so
the solutions will always exist). We add that a Deadlock
is impossible in this algorithm, since that always we have
one AGV waiting for the other to proceed and never two
AGVs waiting at the same time.

4. SIMULATION AND VERIFICATION

4.1 Simulation using ROMEO

We already illustrated a schematic of the actual circuit
that inspired this work (Fig. 2), and given that the circuit
is very large to run a simulation on (and also redundant),
we managed to resume all the critical scenarios that can
happen and represent them in a simpler circuit (Fig. 3),
we also note that the simpler circuit also represents all
the critical scenarios that are possible between two AGVs
in any circuit. We consider that the sequences (cyclic)
of the AGVs are: AGV1 : (P1, P2, P4, P5)∗ and AGV2 :
(P2, P3, P4, P5)∗.

Fig. 3. Simulation Circuit

We model our problem using a TPN (Fig. 4, on the next
page due to its size), the software Romeo allows us to
model, simulate and verify our DES (Lime et al. (2009)).

The execution times on the working stations are shown
in the Fig. 4, as well as the travel time between nodes.
There are two horizontal sequences representing the two
cycles of each AGV. These two are connected by places
P2Occ, P4Occ and P5Occ, representing the occupation
(or the vacancy) of the working stations P2, P4 and
P5, forming the only conflict zones for the considered
sequences (because they are the only nodes visited by the
two AGVs, the others are only visited by either AGV1
or AGV2). These places are responsible of inhibiting the
commands "U" from the preceding nodes towards the
nodes 2, 3 and 5 (for example the command of the nodes 1
and 5 for the node 2); and thus inhibiting every transition
towards the node if it is occupied (by using the logical
inhibitor arc). The execution times on the places 2, 4 and
5 is divided into two parts (the places "debut"), when the
token (corresponding to the AGV) passes to the second
part, the places P2Occ, P4Occ and P5Occ are emptied
(using the Reset arc or Flush). This division into two parts
takes into consideration the travel time from the preceding
node to the current node and the security margin (m).

The transitions D represent the ∆ or the waiting time
on the place after the execution has finished. Simulating
this net step by step we managed to regroup without any
conflict, the necessary delays to be added. For example Fig.
5, 6 and 7 show respectively the calculation of ∆1, ∆3 and
∆2 corresponding to AGV1 that is why it is named D21
(the two AGVs can use this place). We obtain ∆1 = 2,
∆3 = 0, ∆2 = 4.

Fig. 5. Calculation of ∆1 for the first cycle of AGV1

Fig. 6. Calculation of ∆3 for the first cycle of AGV2

Fig. 7. Calculation of ∆2 for the first cycle of AGV1

With the help of the model-checker of ROMEO, we can
verify that the model is conflict free using the CTL logic.
For example in Fig. 8, we verify the absence of conflicts
on the places "P2début1" and "P2début2", by verifying
that the proposition "does it exists globally (which means
any path), between 0 and infinity, a situation where the
marking of the place is superior to 1"; the model-checker
replies that this proposition is false and a marking like
that does not exist (the indexes of the places tested are
respectively 2 and 18, the index on ROMEO depends on
the order of placement of the places).

Fig. 8. Verification of the absence of conflicts on node P2

So, with no hazards occurrences, we can prove (this time
by simulation) that the previous algorithm works.

4.2 Complexity Study

We analyse the complexity of the proposed algorithm, and
study the possibility of extending it to a higher number of
AGVs (three or more).

The proposed algorithm is of the order of O(n2), with n
the number of times the tests are launched or in other

Fig. 4. TPN model on ROMEO tool

words the system evolves (n = max(total number of places
occupied by AGV1; total number of places occupied by
AGV2)). Because each time a new node is occupied we
launch a series of tests requiring the computation of a
two dimensional array (one dimension for each AGV),
containing the sequences and the delay times; in order to
update them in case we add delays. The computation time
estimated for this algorithm will be between 10ms and 1s
for n between 1000 and 10000.

Getting to three AGVs, we already risk having the tests
launched two times on parallel threads at the same time
which is likened to a matrix multiplication (of cubic
complexity O(n3)). The computation time is estimated for
this algorithm to be between 10s and 2.7h for a n between
1000 and 10000.

We conclude that already passing to three AGVs increases
the risk of an exploding computational time.

5. CONCLUSION

In this paper, we proposed a new policy to build con-
flict free routes for two AGVs working in any circuit,
independently of its size or configuration, as opposed to
previous works based on the Petri nets approach (Dotoli
and Fanti (2004)). In the latter, the authors divided
the circuit into zones, so the efficiency highly depends on
the size of the circuit and making sure that the "zones"
are optimal. Plus, we don’t need to decide online weither
or not to accept a new route (or mission) given to the
AGV, since in our approach any of the two AGVs can
accept any mission at any time guaranteeing a conflict
and deadlock-free routing. Although this study is based
on a real circuit on the platform of the IUT-University
of Nantes, this policy could be applied to any real time
system with delays, and in particular could be applied
in traffic control. Its advantages are that it allows us to
simulate step by step the evolution of our system, detecting
the dynamics and the delays that are needed to be added
each time our system evolves, in order to conserve the
conflict-free objective.

For future works, we propose to test the performance of the
algorithm by applying it to different real time systems with
bidirectional trajectories or more than two resources (in
this case the resources were the AGVs), since the conflict-

free problem can always be reduced to two AGVs at a
time. We can find a set of solutions for each pair of AGVs
in the system (using our strategy) and intersect the sets of
solutions in order to get a valid solution for all pairs, but
we risk the absence of solution.

REFERENCES

Arnaud Y., Cury, J., Loiseau, J.J., and Martinez, C.
(2009). Using UPAAL for the secure and optimal control
of AGV fleet. In Proc. 7th Workshop on Advanced Con-
trol and Diagnosis ACD 2009, Pologne, 19-20 novembre
2009.

Berthomieu, B., Diaz, M., Modelling and Verification of
Time Petri Dependent Systems Using Time Petri Net.
IEEE Trans. Software Engineering, vol. 17, no. 3, 259–
273, 1991.

Dotoli, M., Fanti, M.P., Coloured timed Petri net model for
real-time control of automated guided vehicle systems.
Int. Journal of Production Research, vol. 42, no. 9, 1787–
1814, 2004.

Girault, J., Loiseau, J.J., and Roux, O.H. (2016). On-line
compositional controller synthesis for AGV. Discrete
Event Dynamic Systems, 26, 583–610.

Lime, D., Roux, O.H., Scidner, C., Traoumouez, L.M.
(2009). Romeo: A parametric model-checker for Petri
nets with stopwatches. In Int. Conference on Tools
and Algorithms for the Construction and Analysis of
Systems, vol. 5505, 54–57.

Maza, S., and Castagna P. (2005). Performance-based
structural policy for conflict-free routing of bi-
directional automated guided vehicles. Computers in
Industry, vol. 56, no. 7, 719–733.

Noorul, A., Karthikeyan, T. , and Dinesh, M. (2003).
Scheduling decisions in FMS using a heuristic approach.
Int. Journal of Advanced Manufacturing Technology,
vol. 22, no. 5-6, 74–379.

Ramadge, P.J., and Wonham, W.M. (1987). Supervisory
control of a class of discrete event processes. SIAM
journal on control and optimization, vol. 25, no. 1, 206–
230.

Subbaiah, K.V., Nageswara Rao, M., and Narayana Rao
K. (2009). Scheduling of AGVs and machines in FMS
with makespan criteria using sheep flock heredity algo-
rithm. Int. Journal of Physical Sciences, vol. 4, no. 3,
139-148.

