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Extended Abstract

1 Introduction

An input-output linear system given in the form of a convolution,

y = h ? u , (1)

is BIBO-stable if its kernel belongs to the class A of measures of the form

h(t) = ha(t) +
∑
i∈N

hiδ(t− ti) ,

where ha is in L1, hi ∈ R, ti ∈ R+, ti < ti+1 for i ≥ 0, and
∑
i∈N |hi| < ∞ . The set A endowed

with the convolution product forms a Banach commutative algebra for the norm

||h||A =

∫ +∞

0

|ha(t)|dt+
∑
i∈N
|hi| .

This norm was shown to be the induced norm when h is seen as an operator over L∞. We indeed
have

sup
u6=0

||h ? u||∞
||u||∞

= ||h||A , (2)

for every h in A. Here, as usually, || · ||∞ denotes the sup-norm on L∞, say ||u||∞ = ess supt≥0 |u(t)|,
||y||∞ = ess supt≥0 |y(t)|. This shows that every bounded input leads to a bounded output, and
that ||h||A gives an exact bound on the output y(t).

Of course, this result is very well-known. Many properties of the set A are exposed in [5], and
its use in control theory was gradually introduced by various authors, among them C. A. Desoer,
F. Callier [3, 2] and M. Vidyasagar [4]. The Callier-Desoer class, properly speaking, is the set of
fractions of elements of A(σ) = e−σtA, which is the key concept to describe robust stabilization
methods for a large class of distributed systems. The matter continues to generate interesting
results, see for instance P. Lakkonen [7] for a recent survey.

This result can also be interpreted in terms of reachability or invariance in an input-output set-
ting. It shows indeed that the output y(t) of system (1) remains in the interval [−α||h||A,+α||h||A]
if the input u(t) evolves in the interval [−α, α], for every positive real α. The aim of this commu-
nication is to develop this idea and some of its applications.
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2 Polyhedral bound of the reachable set

We now consider a multivariable convolution system, defined by a kernel H ∈ Ap×m, say

y = H ? u , (3)

where u(t) ∈ U ⊂ Rm. Recall that the convolution product ? is defined as

yi(t) =

∫ t

0

∑
j

Hij(t− τ)uj(τ)dτ .

A basic question consists in determining the range of y(t), and more precisely the reachable set of
the considered system.

Definition 2.1 System (2) and a subset U of Rm being given, we define the reachable set R(U) as
the set of vectors x ∈ Rp for which there exists a control u, with u(t) ∈ U , for t ≥ 0, and an instant
t such that y(t) = x.

We are interested into the computation of polyhedral approximations of the reachable set of system
(2). We first introduce the following definitions.

Definition 2.2 A matrix M ∈ Rm×n being given, the convex polytope of Rm generated by the
columns of M is the set denoted C(M), and defined by

C(M) = {x ∈ Rm | ∃v ∈ Γ, x = Mv} ,

with Γ = {v ∈ Rn | v ≥ 0,
∑n
i=0 vi ≤ 1}. The open convex polytope generated by M is the set

Co(N) = {x ∈ Rm | ∃v ∈ Ω, x = Nv} ,

with Ω = {v ∈ Rn | v ≥ 0,
∑n
i=0 vi < 1}.

Definition 2.3 A matrix P ∈ Rq×p and a vector π ∈ Rq being given, the polyhedron denoted
P(p, π) is the set defined as

P(p, π) = {z ∈ Rp | Pz ≤ π} .

The open polyhedron Po(P, π) is the set

Po(P, π) = {y ∈ Rp | Py < π} .

For the monovariable system (1), if α < u(t) < β, we remark that

h(t− τ)u(τ)dτ < max{h(t− τ)α, h(t− τ)b} ,

in addition, this bound is exact. For the multivariable system (2), and a matrix M ∈ Rm×n being
given, we remark on the same way that, if u(t) ∈ CoM , for t ≤ 0, then the following inequality
holds true ∑

j

Hij(t− τ)u(τ) < max
j
{H(t− τ)M)ij} ,

for i = 1 to p. From this preliminary remark, we can deduce the following.
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Theorem 2.1 System (1) being given, together with a convex polytope Co(M), and a polyhedron
Po(P, π), then the inclusion R(Co(M)) ⊂ Po(p, π)is satisfied if and only if the following condition
holds true for i = 1 to q:

sup
t≥0

∫ t

0

max
j
{(PH(τ)M)ij} dτ ≤ π

In other words, the output of system (1) with input constrained in the convex polytope Co(M)
remains into the polyhedron Po(P, π), for t ≥ 0. A preliminary version of this result was obtained
in [8]

3 Exact polyhedral bounds

Remark that the difference between the left and right members of the condition of Theorem 2.1 is
the distance between the reachable set and the plan {y ∈ Rp |

∑
j Pijyj = πi}. The left member of

the condition, say

λi = sup
t≥0

∫ t

0

max
j
{(PH(τ)M)ij} dτ , (4)

is therefore so that the plan {y ∈ Rp |
∑
j Pijyj = λi} is tangent to the reachable space. If the

matrix P is given, the polyhedron Po(P, λ) is the least polyhedron whose faces are oriented according
to P , and that contains the reachable set. One can also compute a point of the intersection between
the face and the reachable set. We first define

jk(t) = arg max
j
{(PH(τ)M)kj} ,

and

νi(k) = sup
t≥0

∫ t

0

(PH(τ)M)ijkdτ ,

for k = 1 to q. Then, the matrix N which columns are the vectors ν(k), say

Nij = νi(j) ,

for i = 1 to p, j = 1 to q.

Definition 3.1 An open set R being given, together with a polyhedron Po(P, ν) and a polytope
Co(N), we say that Po(P, ν) is an exact upper approximation of R if its faces are tangent to S, and
that Co(N) is an exact lower approximation of R, if its vertices are on the boundary of R.

Theorem 3.1 The system (1) being given, together with the matrices P and M , and taking N and
ν defined as above, the convex polytope Co(N) is an exact lower approximation, and the polyhedron
Po(P, ν) is an exact upper approximation, of R(Co(M)).

This formulation is well fitted for numerical computations. The integrals can be easily approximated
using Matlab or Scilab, provided that the kernel H(t) is explicitly known, or can be computed. We
also remark that this formula gives the way to calculate a control law umax that maximizes the
output.

We shall complete this study by some remarks and examples.
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4 Remarks and examples

4.1 Link with BIBO stability

The link between the bound (2) and Theorem 2.1 is more visible when H is a positive measure.

Definition 4.1 The measure h ∈ A is said to be positive if hi ≥ 0, for i ∈ N, and ha(t) ≥ 0, for
t ≥ 0. In the multivariable case, H is positive if all its entries are positive measures.

In this case, if u(t) lies in ]α, β[, we have for t ≥ 0 the following inequalities

α

∫ t

0

h(τ)dτ < y(t) < β

∫ t

0

h(τ)dτ .

In addition, these bounds are exact. From Theorem 2.1, we then obtain the following.

Corollary 4.1 Let system (1) have a positive kernel h and be subject to inputs constrained by
α < u(t) < β, for t ≥ 0, where α and β are real numbers such that α < β. Then the reachable set
of system (1) is equal the interval ]α||h||A, β||h||A [

This first result can be generalized to kernels that are not necessarily positive. Every measure h
in A can be uniquely decomposed into a difference h = h+−h−, where h+ and h− are two positive
measures in A with disjoint supports. Then if α ≤ u(t) ≤ β, then the range of y(t) is given by

α

∫ t

0

h+(τ)dτ − β
∫ y

0

h−(τ)dτ ≤ y(t) ≤ β
∫ t

0

h+(τ)dτ − α
∫ t

0

h−(τ)dτ ,

for any positive t, that can be rewritten as∫ ∞
0

min {αh(τ), βh(τ)} dτ ≤ y(t) ≤
∫ t

0

max {αh(τ), βh(τ)} dτ ; .

The latter formulation is well fitted for numerical computations, since it avoids the computation
of h+ and h−. Indeed the infinite integral can be easily approximated using Matlab or Scilab,
provided that h(t) is explicitly known, or can be computed. We also remark that this formula gives
the way to calculate a control law umax that maximizes the output. This control law is given by

umax(t) =

{
α , if max {αh(τ), βh(τ)} = αh(τ) ,
β , else ,

(5)

for any positive t. In the same way, the control given by

umin(t) =

{
α , if min {αh(τ), βh(τ)} = αh(τ) ,
β , else ,

4.2 Closed input sets

The bounds found in Theorem 2.1 may be useful to study constrained systems. In this case, the
input space U is generally closed, but in general, the reachable space is not closed, nor open. We
have the following in the case of a monovariable positive system.
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Corollary 4.2 Let system (1) have a positive kernel h and be subject to inputs constrained by
α ≤ u(t) ≤ β, for t ≥ 0, where α and β are real numbers such that α < β. Then the reachable
set of system (1) is equal the interval [α||h||A, β||h||A], if h has a finite support, and, if h has
an unbounded support, ]α||h||A, β||h||A[, if α, β are nonzero, [α||h||A, β||h||A[ if α equals 0, and
]α||h||A, β||h||A] if β equals 0

In general, the bounds (5) are reached or not. The singular part of the kernel can indeed cause
discontinuities of the integral that makes the reachable space not closed. When the integral is a
monotone function of the time, its behaviour at infinity, if the kernel is not of finite support, can
also create the same result.

4.3 Constrained control and D-invariance
We would finally like to develop that these techniques may be useful to design control laws for
constrained systems. We consider the following system

ẏ(t) = −µy(t) + u(t− θ)− w(t) , (6)

where u is an input control with delay θ ≥ 0, w is a disturbance, µ is a constant coefficient. Such a
model is used in the control of communication networks [6] and of logistic systems [1]. In the latter
case, w(t) corresponds to an instantaneous demand, that is assumed to be unknown, but lies into
[dmin, dmax]. The variable u(t) is the instantaneous production order, y(t) is the inventory level,
and µ ∈ [0, 1[ is a loss factor. One wants to design of u, subject to u(t) ∈ [umin, umax], so that
y(t) ∈ [ymin, ymax], for t ≥ 0, whatever be the demand in the required range. Equation (6) can be
rewritten in the form

y = h ? u− g ? w ,

where

h(t) =

{
0 if t < θ ,
e−µt−θ if t ≥ θ ,

and
g(t) = e−µt , for t ≥ 0.

We assume that the system is well-sized, so that constant demand can be satisfied. We then have
umax ≥ µymin + wmax, and umin ≤ µymax + wmin. Applying Theorem 2.1 to this case, we obtain
that

ymax − ymin ≥
1

µ
(1− e−µθ(wmax − wmin) .

Reversely, we can generalize the control laws proposed by [1, 6], that are respectively a bang-bang
control and a sliding mode control, to obtain a production strategy that permit the constraint on
the inventory level to be met, whatever be the demand in the specified range, if

ymax − ymin >
1

µ
(1− e−µθ(wmax − wmin) .

These last comments will be further developed in the final version of this work, together with
an example of the computation of approximation of the reachable space.
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