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Abstract

In the current context of data explosion, online techniques that do not require storing
all data in memory are indispensable to routinely perform tasks like principal component
analysis (PCA). Recursive algorithms that update the PCA with each new observation
have been studied in various fields of research and found wide applications in industrial
monitoring, computer vision, astronomy, and latent semantic indexing, among others.
This work provides guidance for selecting an online PCA algorithm in practice. We
present the main approaches to online PCA, namely, perturbation techniques, incre-
mental methods, and stochastic optimization, and compare their statistical accuracy,
computation time, and memory requirements using artificial and real data. Extensions
to missing data and to functional data are discussed. All studied algorithms are available
in the package onlinePCA on CRAN.

Keywords. Covariance matrix, Eigendecomposition, Generalized hebbian algorithm,
Incremental SVD, Perturbation methods, Recursive algorithms, Stochastic gradient.

1 Introduction

Principal Component Analysis (PCA) is a popular method for reducing the dimension of
data while preserving most of their variations (see Jolliffe (2002) for a general presentation).
In a few words, PCA consists in extracting the main modes of variation of the data around
their mean via the computation of new synthetic variables named principal components.
This technique has found applications in fields as diverse as data mining, industrial process
modeling (Tang et al., 2012), face recognition (Zhao et al., 2006), latent semantic indexing
(Zha and Simon, 1999), sentiment analysis (Iodice D’Enza and Markos, 2015), astronomy
(Budavári et al., 2009), and more. Traditional PCA, also called batch PCA or offline PCA,
is typically implemented via the eigenvalue decomposition (EVD) of the sample covariance
matrix or the singular value decomposition (SVD) of the centered data. EVD and SVD can
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be standardly computed in O(ndmin(n, d)) floating point operations (flops), where n is the
sample size and d the number of variables (Golub and Van Loan, 2013, Chap. 8). If the
number q of required principal components is much smaller than n and d (this is usually the
case), approximate PCA decompositions can be obtained quickly with little loss of accuracy.
For example, truncated SVD can be computed in O(ndq) flops by combining rank-revealing
QR factorization and R-SVD. Other effective approaches to truncated SVD or EVD include
power methods, Krylov subspace methods (Lehoucq et al., 1998; Golub and Van Loan, 2013),
and random projection methods (Halko et al., 2011). With respect to memory usage, batch
PCA algorithms have at least O(nd) space complexity as they necessitate to hold all data
in computer memory. EVD requires O(d2) additional memory for storing a d× d covariance
matrice (or O(n2) memory to store a n× n covariance matrix, see Section 2). Because of its
time and space complexity, batch PCA is essentially infeasible with: (i) massive datasets for
which n and d are, say, in the thousands or millions, and (ii) datasets that change rapidly and
may need to be processed on the fly (e.g., streaming data, databases). Given the exponential
growth of such data in modern applications, fast and accurate PCA algorithms are in high
demand.

Over the years a large number of solutions has emerged from fields as diverse as signal
processing, statistics, numerical analysis, and machine learning. These approaches, called
recursive, incremental, or online PCA in the literature, consist in updating the current PCA
each time new data are observed without recomputing it from scratch. This updating idea
does not only apply to time-varying datasets but also to datasets that are too large to
be processed as a whole and must be analyzed one subset at a time. We give here a brief
description of the main approaches to online PCA. Some of the most representative techniques
will be examined in detail in the next sections. One of the first historical approaches is the
numerical resolution of so-called secular equations (Golub, 1973; Gu and Eisenstat, 1994;
Li et al., 2000). By exploiting the interlacing property of the eigenvalues of a covariance
matrix under rank 1 modifications, this approach reduces the PCA update to finding the
roots of a rational function. Interestingly, this recursive method is exact, that is, it produces
the same results as batch PCA. Perturbation methods formulate the PCA update as the
EVD of a diagonal matrix plus a rank-1 matrix and obtain closed-form solutions using large-
sample approximations (Hegde et al., 2006). Incremental SVD is a highly effective method
for producing an approximate, reduced rank PCA. It allows for block updates and typically
involves the SVD or EVD of a small matrix of dimension (q + r) × (q + r), where r is
the block size. Important contributions in this area include Zha and Simon (1999), Brand
(2002), and Baker et al. (2012). Stochastic optimization methods enable very fast PCA
updates and bear interesting connections with neural networks. Prominent examples are the
stochastic gradient algorithms of Krasulina (1970), Oja and Karhunen (1985), Oja (1992),
and the generalized hebbian algorithm of Sanger (1989). While many results can be found
on the consistency of these methods, their finite-sample behavior does not lend itself well
to scrutiny. In addition, their numerical performances hinge on tuning parameters that are
often selected by trial-and-error. Related techniques that are less sensitive to the choice
of tuning parameters include Weng et al. (2003) and Mitliagkas et al. (2013). Approaches
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like moving window PCA (Wang et al., 2005) and fixed point algorithms (Rao and Principe
(2000)) have also garnered interest. In recent years, randomized algorithms for online PCA
have been developed in computer science and machine learning (Warmuth and Kuzmin, 2008;
Boutsidis et al., 2015). An important aspect of this line of research is to establish bounds on
finite-sample performance.

In contrast to the wide availability of online PCA methods, very few studies provide
guidance on selecting a method in practice. To our knowledge, the only articles on this
topic are Chatterjee (2005), Arora et al. (2012), and Rato et al. (2015). This gap in the
literature is a significant problem because each application has its own set of data, analytic
goals, computational resources, and time constraints, and no single online PCA algorithm
can perform satisfactorily in all situations, let alone optimally. The present paper consider-
ably expands on previous work in terms of scope of study and practical recommendations.
We investigate a wide range of popular online PCA algorithms and compare their compu-
tational cost (space and time complexity, computation time, memory usage) and statistical
accuracy in various setups: simulations and real data analyses, low- and high-dimensional
data. We discuss practical issues such as the selection of tuning parameters, the potential
loss of orthogonality among principal components, and the choice of vector versus block up-
dates. Particular attention is given to the analysis of functional data and to the imputation
of missing data. All algorithms under study are implemented in the R package onlinePCA
available at http://cran.r-project.org/package=onlinePCA.

The remainder of the article is organized as follows: Section 2 provides a reminder on
batch PCA. Section 3 gives recursive formulae for the sample mean and covariance. It also
presents approximate and exact perturbation methods for online PCA. Incremental PCA
is discussed in Section 4 and stochastic approximation methods are detailed in Section 5.
Extensions to nonstationary data, missing values, and functional data are given in Section
6. In Section 7, the computational and statistical performances of the previous online PCA
methods are compared in simulations and in a face recognition application. Concluding
remarks are offered in Section 8. R code for the numerical study of Section 7 is available
online as Supplementary Materials.

2 Batch PCA

Given data vectors x1, . . . ,xn in Rd, with d possibly large, batch PCA seeks to produce a
faithful representation of the data in a low-dimensional subspace of Rd. The dimension q

of the subspace must be small enough to effectively reduce the data dimension, but large
enough to retain most of the data variations. The quality of the representation is measured
by the squared distance between the (centered) vectors and their projections in the subspace.
Denoting the sample mean by µn = 1

n

∑n
i=1 xi, the goal of batch PCA is thus to find a

projection matrix Pq of rank q ≤ d that minimizes the loss function

Rn(Pq) =
1

n

n∑
i=1

∥∥ (xi − µn)−Pq (xi − µn)
∥∥2. (1)
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Consider the sample covariance matrix

Γn =
1

n

n∑
i=1

(xi − µn) (xi − µn)T . (2)

Let u1,n, . . . ,ud,n be orthonormal eigenvectors of Γn with associated eigenvalues λ1,n ≥ . . . ≥
λd,n ≥ 0. The minimum of Rn among rank q projection matrices is attained when Pq is the
orthogonal projector

∑q
j=1 uj,nu

T
j,n, in which case Rn(Pq) =

∑d
j=q+1 λj,n. In other words,

batch PCA reduces to finding the first q eigenvectors of the covariance Γn or, equivalently,
the first q singular vectors of X. These eigenvectors are called principal components and
from here onwards, we use the two expressions interchangeably.

The computation of Γn takes O(nd2) flops and its full EVD requires O(d3) flops. When
d is large and q � d, iterative methods such as the power method and implicitly restarted
methods should be preferred to standard EVD as they are much faster and approximate the
first q eigenvectors of Γn with high accuracy (e.g., Lehoucq et al., 1998; Golub and Van Loan,
2013). Despite this speedup, the cost O(nd2) of computing Γn does not scale with the data.
Note that if n � d, batch PCA can be performed on XT , leading to the same result with
reduced time complexity O(n2d+ n3) = O(n2d) and space complexity O(nd+ n2) = O(nd).
The duality between the PCA of X and that of XT comes from the well-known result that
XTX and XXT have the same eigenvalues and that their sets of eigenvectors can be deduced
from one another by left-multiplication by X or XT ; see Holmes (2008) for more details. In
terms of space complexity, batch PCA necessitates having both X and Γn in random access
memory, which incurs a storage cost of O(nd+ d2) = O(d2).

When data arrive sequentially, performing a batch PCA for each new observation may not
be feasible for several reasons: first, as n and/or d becomes large, the runtime O(ndmin(n, d))

of the algorithm becomes excessive and forbids processing data on the fly; second, batch PCA
requires storing all data, which is not always possible. Under these circumstances, much faster
recursive techniques are of great interest. The price to pay for computational efficiency is
that the obtained solution is often only an approximation to the true eigenelements.

3 Perturbation methods

The sample mean vector can be computed recursively as

µn+1 =
n

n+ 1
µn +

1

n+ 1
xn+1 (3)

and similarly, the sample covariance matrix satisfies

Γn+1 =
n

n+ 1
Γn +

n

(n+ 1)2
(xn+1 − µn) (xn+1 − µn)T . (4)

Note that for each new observation, the sample covariance matrix is updated through a rank
one modification. In view of (4), Γn+1 can be expressed as a perturbation of Γn:

Γn+1 = Γn −
1

n+ 1

(
Γn −

n

n+ 1
(xn+1 − µn) (xn+1 − µn)T

)
. (5)
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Hence, if the eigendecomposition of Γn is known, a natural idea to compute the eigenelements
of Γn+1 is to apply perturbation techniques to Γn, provided that n is sufficiently large and
n−1 (xn+1 − µn) (xn+1 − µn)T is small compared to Γn (viewing x1, . . . ,xn as independent
copies of a random vector with finite variance), the latter condition is satisfied with probability
tending to one as n→∞). Note that the trace of Γn, which represents the total variance of
the data, can also be computed recursively thanks to (4).

Large-sample approximations

We first recall a classical result in perturbation theory of linear operators (see Kato (1976) and
Sibson (1979) for a statistical point of view). Denote by A+ the Moore-Penrose pseudoinverse
of a matrix A.

Lemma 3.1. Let B be a symmetric matrix with eigenelements (λj ,vj), j = 1, . . . , d. Consider
the first-order perturbation

B(δ) = B + δC +O(δ2)

with δ small and C a symmetric matrix. Assuming that all eigenvalues of B are distinct, the
eigenelements of B(δ) satisfy

λj(δ) = λj + δ 〈vj ,Cvj〉+O(δ2),

vj(δ) = vj + δ (λjI−B)+Cvj +O(δ2).

We now apply Lemma 3.1 to (5) with B = Γn, C = Γn− n
n+1 (xn+1 − µn) (xn+1 − µn)T ,

and δ = −1/(n + 1). Define φj,n = (xn+1 − µn)T vj,n for j = 1, . . . , d. Assuming that the
eigenelements (λj,n,uj,n) of Γn satisfy λ1,n > . . . > λd,n, we have

λj,n+1 ≈ λj,n +
1

n+ 1

(
n

(n+ 1)
φ2j,n − λj,n

)
, (6)

uj,n+1 ≈ uj,n +
n

(n+ 1)2

∑
i 6=j

φj,nφi,n
λj,n − λi,n

ui,n

 . (7)

Similar approximations can be found in Li et al. (2000) and Hegde et al. (2006). Note that
the assumption that Γn has distinct eigenvalues is not restrictive: indeed, the eigenanalysis
of Γn+1 can always be reduced to this case by deflation (see e.g., Bunch et al. (1978)).

Secular equations

Gu and Eisenstat (1994) propose an exact and stable technique for the case of a rank one
perturbation (see also the seminal work of Golub (1973)). For simplicity, suppose that B is
a diagonal matrix with distinct eigenvalues λ1 > . . . > λd. The eigenvalues of the perturbed
matrix B(δ) = B+δccT , where c ∈ Rd is taken to be an unit vector without loss of generality,
can be computed exactly as the roots of the secular equation

1 + δ

d∑
j=1

c2j
λj − λ

= 0. (8)
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The eigenvectors of B(δ) can then be computed exactly by applying (7) to the eigenvalues
of B(δ) and eigenvectors of B.

A major drawback of perturbation techniques for online PCA is that they require com-
puting all eigenelements of the covariance matrix. Accordingly, for each new observation
vector, O(d2) flops are needed to update the PCA and O(d2) memory is required to store the
results. This computational burden and storage requirement are prohibitive for large d.

4 Reduced rank incremental PCA

Arora et al. (2012) suggest an incremental PCA (IPCA) approach based on the incremental
SVD of Brand (2002). In comparison to perturbation methods, a decisive advantage of IPCA
is that it does not require computing all d eigenelements if one is only interested in the q < d

largest eigenvalues. This massively speeds up computations when q is much smaller than d.
A limitation of the IPCA algorithm of Arora et al. (2012) is that it only performs updates
with respect to a single data vector. A similar procedure allowing for block updates can be
found in Levy and Lindenbaum (2000).

Let ∆n = UnDnU
T
n be a rank q approximation to Γn, where the q × q diagonal matrix

Dn approximates the first q eigenvalues of Γn and the d × q matrix Un approximates the
corresponding eigenvectors of Γn. The columns of Un are orthonormal so that UT

nUn = Iq.
When a new observation xn+1 becomes available, ∆n can be updated as follows. The centered
vector x̃n+1 = xn+1 − µn is decomposed as x̃n+1 = Uncn+1 + x̃⊥n+1, where cn+1 = UT

n x̃n+1

are the coordinates of x̃n+1 in the q-dimensional space spanned by Un and x̃⊥n+1 is the
projection of x̃n+1 onto the orthogonal space of Un. In view of (4) the covariance Γn+1 is
approximated by ∆n+1 = n

n+1∆n+ n
(n+1)2

x̃n+1x̃
T
n+1 (note that ∆n+1 is not computed in the

algorithm). The previous equation rewrites as

∆n+1 =

[
Un

x̃⊥n+1∥∥x̃⊥n+1

∥∥
]

Qn+1

[
Un

x̃⊥n+1∥∥x̃⊥n+1

∥∥
]T

(9)

with

Qn+1 =
n

(n+ 1)2

(
(n+ 1)Dn + cn+1c

T
n+1

∥∥x̃⊥n+1

∥∥ cn+1∥∥x̃⊥n+1

∥∥ cTn+1

∥∥x̃⊥n+1

∥∥2
)
. (10)

It then suffices to perform the EVD of the matrix Qn+1 of dimension (q + 1) × (q + 1).
Writing Qn+1 = Vn+1Sn+1V

T
n+1 with Vn+1 orthogonal and Sn+1 diagonal, the EVD of

∆n+1 simply expresses as Un+1Dn+1U
T
n+1, where Dn+1 = Sn+1 and

Un+1 =

[
Un

x̃⊥n+1∥∥x̃⊥n+1

∥∥
]

Vn+1. (11)

To keep the approximation ∆n+1 of Γn+1 at rank q, the row and column of Dn+1 containing
the smallest eigenvalue are deleted and the associated eigenvector is deleted from Un+1.
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5 Stochastic approximation

5.1 Stochastic gradient optimization

Stochastic gradient approaches adopt a rather different point of view based on the population
version of the optimization problem (1). Stochastic gradient algorithms for online PCA have
been proposed by Sanger (1989), Krasulina (1970), Oja and Karhunen (1985) and Oja (1992).
Parametric convergence rates for the first eigenvalue and eigenvector have been obtained
recently by Balsubramani et al. (2013). These algorithms are very fast and differ mostly in
how they (approximately) orthonormalize eigenvectors after each iteration.

Let X be a random vector taking values in Rd with mean µ = E(X) and covariance
Γ = E

[
(X− µ) (X− µ)T

]
. Consider the minimization of the compression loss

R(Pq) = E
[
‖(X− µ)−Pq (X− µ)‖2

]
(12)

= tr (Γ)− tr (PqΓ) ,

where Pq is a projection matrix onto some q-dimensional subspace of Rd. Note that (12) is
the probabilistic version of the empirical loss (1).

Let U be a d × q matrix whose columns form an orthonormal basis of the projection
subspace, so that Pq = UUT . The minimization of (12) is conveniently reformulated as the
maximization of

Ψ(U) = tr (ΓUUT ) (13)

whose gradient is
∇Ψ(U) = 2 ΓU. (14)

Assuming for now that Γ is known and ignoring the orthonormality constraints on U, a
gradient ascent algorithm would have updates of the form Un+1 = Un + γn ΓUn with γn

a step size. Since Γ is in fact unknown, it is replaced by a random approximation whose
expectation is proportional to Γ. Accordingly, for each new observation xn+1, the matrix Un

of orthonormal vectors is updated as follows:

Ũn+1 = Un + γn
(
xn+1 − µn+1

) (
xn+1 − µn+1

)T
Un, (15)

Un+1 = Orthonormalization
(
Ũn+1

)
, (16)

where (γn) satisfies the usual conditions of Robbins-Monro algorithms:
∑

n≥1 γ
2
n < ∞ and∑

n≥1 γn =∞ (e.g., Duflo, 1997). The first condition ensures the almost sure convergence of
the algorithm whereas the second guarantees convergence to the global maximizer of (13),
namely, the eigenvectors associated to the q largest eigenvalues of Γ.

The update (15) of the projection space has computational complexity O(qd), which is
much less than the complexity O(d2) of perturbation techniques if q � d. The orthonormal-
ization (16) can be realized for example with the Gram-Schmidt procedure. In this case, Oja
(1992) describes the combination (15)-(16) as the Stochastic Gradient Ascent (SGA) algo-
rithm. Although the Gram-Schmidt procedure requires O(q2d) elementary operations, the
space generated by the estimated eigenvectors remains the same even if orthonormalization
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is not performed at each step. As a result, if orthonormalization is performed every q steps or
so, the overall complexity of the SGA algorithm remains O(qd) per iteration. Alternatively,
computational speed can be increased at the expense of numerical accuracy by using a first
order approximation of the Gram-Schmidt orthonormalization (i.e., neglecting the terms of
order O(γ2n)). This enables the approximate implementation

uj,n+1 = uj,n + γnφj,n

[(
xn+1 − µn+1

)
− φj,nuj,n − 2

j−1∑
i=1

φi,nui,n

]
, (17)

where φj,n =
(
xn+1 − µn+1

)T
uj,n. This fast implementation of the SGA algorithm can be

interpreted as a neural network (Oja, 1992).
The SGA algorithm also allows consistent recursive estimation of the eigenvalues of Γ

(see Oja and Karhunen, 1985, and (6)):

λj,n+1 = λj,n + γn
(
φ2j,n − λj,n

)
. (18)

Subspace Network Learning (SNL) is another stochastic gradient algorithm in which the
orthonormalization (16) consists in multiplying Ũn+1 by

(
ŨT
n+1Ũn+1

)−1/2 (Oja, 1983, 1992).
Using first order approximations, a fast approximate implementation of SNL is

uj,n+1 = uj,n + γnφj,n

[(
xn+1 − µn+1

)
−

q∑
i=1

φi,nui,n

]
. (19)

The SNL algorithm is faster than SGA but unlike SGA, it only converges to the eigenvectors
of Γ up to a rotation. In other words, SNL recovers the eigenspace generated by the first q
eigenvectors but not the eigenvectors themselves.

Sanger (1989) proposes a neural network approach called the Generalized Hebbian Algo-
rithm (GHA):

uj,n+1 = uj,n + γnφj,n

[(
xn+1 − µn+1

)
− φj,nuj,n −

j−1∑
i=1

φi,nui,n

]
. (20)

The almost sure convergence of the estimator uj,n to the corresponding eigenvector of Γ for
j = 1, . . . , q, is established in the same paper. By construction, the vectors uj,n, j = 1, . . . , q,

are mutually orthogonal. In practice however, loss of orthogonality may occur due to roundoff
errors. As noted in Oja (1992), GHA is very similar to the fast implementation (17) of SGA,
the only difference being that there is no coefficient 2 in the sum. Strictly speaking, however,
GHA is not a stochastic gradient algorithm.

5.2 Choosing the learning rate

The choice of the learning rate sequence (γn)n≥1 in the previous stochastic algorithms has
great practical importance, yet is rarely discussed in the literature. A usual choice is γn = c/n

for some well chosen constant c. However, if c is too small, the algorithm may get stuck far
from the optimum whereas if c is too large, it may have large oscillations. There are no
universally good values for c because a sensible choice should depend on the magnitude of
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the data vectors, the distance between the starting point of the algorithm and the global
solution, the gaps between successive eigenvalues of Γ, etc.. In practice, c is often selected
by trial and error (e.g., Oja, 1983).

A more prudent strategy consists in using learning rates of the form γn = cn−α with
α ∈ (1/2, 1). In this way, γn tends to zero less rapidly so that the algorithm is allowed to
oscillate and has less chances to get stuck at a wrong position. This is particularly important
if the starting point of the algorithm is far from the solution.

Data-driven methods have been proposed in the literature to select the learning rate.
For example, a non-zero-approaching adaptive learning rate of the form γn = c/uTnΓnun is
studied in Lv et al. (2006), where c is a constant to be chosen in (0, 0.8). In our simulations
however, this technique produced poor performances not reported here.

5.3 Candid covariance-free incremental PCA

Weng et al. (2003) propose a method called candid covariance-free incremental PCA (CCIPCA)
that resembles SGA and GHA. This method however does not aim to optimize an objective
function or train a neural network. Following Weng et al. (2003), we first present the algo-
rithm in the case where µ = 0 and then consider the general case. Let u be an eigenvector of
Γ with unit norm and let λ be the associated eigenvalue. Assume that estimates v0, · · · ,vn−1
of v = λu have been constructed in previous steps. The idea of CCIPCA is to substitute
xix

T
i to Γ and vi−1/‖vi−1‖ to u in the eigenequation Γu = λu for i = 1, . . . , n, and to

average the results:

vn =
1

n

n∑
i=1

xix
T
i

vi−1
‖vi−1‖

. (21)

The normalized eigenvector u and eigenvalue λ are estimated by un = vn/‖vn‖ and ‖vn‖,
respectively. A proof of the almost sure convergence of vn to v can be found in Zhang and
Weng (2001).

As can be seen in (21), CCIPCA produces a sequence of stochastic approximations to the
eigenvectors of Γ and then averages them. This is a major difference compared to the previous
stochastic approximation algorithms that directly target the population covariance matrix.
Because it is based on averaging, CCIPCA does not require specifying tuning parameters.
This is a major advantage over SGA and GHA.

From a computational standpoint, (21) is conveniently written in recursive form as

vn+1 =
n

n+ 1
vn +

1

n+ 1
xn+1x

T
n+1

vn
‖vn‖

. (22)

The algorithm can be initialized by v0 = x1. In the general case where µ is unknown, it
should be estimated via (3) and xn+1 should be centered on µn+1 in (22) for n ≥ 1 (note
that x1 − µ1 = 0). A suitable initialization is v0 = v1 = x1 − µ2.

When estimating more than one eigenvector, say v1, . . . ,vq, the same deflation method
as in GHA is applied to enforce orthogonality of the estimates: to compute vj+1,n, the input
vector xn+1 is replaced by xn+1−

∑j
k=1

(
xTn+1uk,n

)
uk,n in (22). This saves much computation
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time compared to Gram-Schmidt orthonormalization but may cause loss of orthogonality due
to roundoff errors.

To handle data generated by nonstationary processes, a parameter ` ≥ 0 called amnesic
factor can be introduced in (22):

vn+1 =
n− `
n+ 1

vn +
1 + `

n+ 1
xn+1x

T
n+1

vn
‖vn‖

. (23)

This parameter controls the weight given to earlier observations. According to Weng et al.
(2003), ` should typically range between 2 and 4, with larger values of ` giving more weight
to recent observations. For ` = 0, (23) reduces to the stationary case (22).

6 Extensions

6.1 Nonstationary processes

The perturbation methods of Section 3 and IPCA algorithm of Section 4 have been presented
under the implicit assumption of a stationary data-generating process. However, these meth-
ods can easily handle nonstationary processes by generalizing the sample mean and sample
covariance as follows:

µn+1 = (1− f)µn + f xn+1, (24)

Γn+1 = (1− f) Γn + f (1− f) (xn+1 − µn) (xn+1 − µn)T , (25)

where 0 < f < 1 is a "forgetting factor" that determines the weight of a new observation in
the mean and covariance updates. In the stationary case, equations (3)-(4) are recovered by
setting f = 1/(n+1). More generally, larger values of f give more weight on new observations.

The stochastic algorithms of Section 5.1 naturally accommodate nonstationary processes
through the learning rate γn.

6.2 Missing data

Standard imputation methods (mean, regression, hot-deck, maximum likelihood, multiple
imputation, etc.) can be used to handle missing data in the context of online PCA. See e.g.,
Josse et al. (2011) for a description of missing data imputation in offline PCA.

Hereafter we describe the approach of Brand (2002) that imputes missing values in the
observation vector xn+1 by empirical best linear unbiased prediction (EBLUP). The key idea
is to consider xn+1 as a realization of the multivariate normal distribution Nd(µn,UnDnU

T
n ).

In other words, the population mean vector µ and covariance matrix Γ are approximated
using the current sample mean vector and PCA.

Partition xn+1 into two subvectors xon+1 (observed values) and xmn+1 (missing values) of
respective sizes d−mn and mn, where 0 < mn < d is the number of missing values. Similarly,
partition µn in two subvectors µon and µmn whose entries correspond to xon+1 and xmn+1. Also
partition Un in two submatrices Uo

n and Um
n of respective dimensions (d−mn)×q andmn×q

whose rows correspond to xon+1 and xmn+1. Let D
1/2
n be the diagonal matrix containing the
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square roots of the diagonal elements of Dn. By the properties of conditional expectations
for multivariate normal distributions, the empirical best linear unbiased predictor of xmn+1 is

x̂mn+1 = E
(
xmn+1

∣∣xon+1,µn,Un,Dn

)
= µmn +

(
Um
n D1/2

n

)(
Uo
nD

1/2
n

)+ (
xon+1 − µon

)
. (26)

6.3 Functional data

In many applications, the data are functions of a continuous argument (e.g., time, space, or
frequency) observed on a dense grid of points a ≤ t1 < . . . < td ≤ b. The corresponding
observation vectors xi = (xi(t1), . . . , xi(td)) ∈ Rd, i = 1, . . . , n, are often high-dimensional.
Rather than carrying out PCA directly on the xi, it is advantageous to consider the functional
version of this problem (FPCA). FPCA consists in finding the eigenvalues and eigenfunctions
of the linear operator Tn : φ ∈ L2([a, b]) 7→

(
t 7→

∫ b
a Γn(s, t)φ(s)ds

)
associated to the empirical

covariance function

Γn(s, t) =
1

n

n∑
i=1

(xi(s)− µn(s)) (xi(t)− µn(t)) ,

where µn(t) = n−1
∑n

i=1 xi(t) the empirical mean function. By accounting for the structure
of the data (e.g., time ordering) and the smoothness of the eigenfunctions, FPCA can both
reduce data dimension, hence computation time, and increase statistical accuracy.

An efficient way to implement FPCA is to first approximate the functions xi in a low-
dimensional space:

xi(t) ≈
p∑
j=1

βijBj(t), (27)

where B1, . . . , Bp are smooth basis functions and p� d. The FPCA of the approximate xi in
(27) now reduces to the PCA of the basis coefficients βi = (βi1, . . . , βip) ∈ Rp in the metric
M = (〈Bj , Bk〉) ∈ Rp×p, which is the Gram matrix of the basis functions. More precisely,
writing βn = n−1

∑n
i=1 βi, it suffices to diagonalize the matrix

∆nM =
1

n

n∑
i=1

(
βi − βn

) (
βi − βn

)T
M

with eigenvectors φj,n ∈ Rp, j = 1, . . . , p, satisfying the orthonormality constraints

φTj,nMφ`,n = δj`. (28)

Further details can be found in Ramsay and Silverman (2005).
In turn, the eigenvectors φj,n can be found through the eigenanalysis of the symmetric

matrix M1/2∆nM
1/2. Indeed, if φ̃j,n is a (unit norm) eigenvector of M1/2∆nM

1/2 associated
to the eigenvalue λj,n, then φj = M−1/2φ̃j is an eigenvector of ∆nM for the same eigenvalue
and the φj , j = 1, . . . , p, satisfy (28). It is possible to obtain a reduced-rank FPCA by
computing only q < p eigenvectors, but this is not as crucial as for standard PCA because
the data dimension has already been reduced from d to p� d.

To extend FPCA to the online setup, the following steps are required:
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1. Given a new observation xn+1 ∈ Rd, compute βn+1 = Axn+1 ∈ Rp, where A is a
suitable matrix. Typically, A =

(
BTB + αP

)−1
BT with B = (Bj(tk)) of dimension

d× p, P a penalty matrix, and α ≥ 0 a smoothing parameter.

2. Update the sample mean βn via (3) and compute β̃n+1 = M1/2
(
βn+1 − βn+1

)
.

3. Apply an online PCA algorithm to update the eigenelements (λj,n, φ̃j,n) with respect
to β̃n+1. Note that the PCA takes place in Rp and not Rd.

4. Compute the eigenvectors φj,n+1 = M−1/2φ̃j,n+1. If needed, compute the discretized
eigenfunctions Bφj,n+1 ∈ Rd.

Steps 1 and 2 can be gathered for computational efficiency, that is, the matrix product
M1/2A can be computed once for all and be directly applied to new data vectors. This
combined step requires O(pd) flops. The time complexity of step 3 depends on the online
PCA algorithm used; it is for example O(q2p) with IPCA and O(qp) with GHA. If q = O(p),
one can also explicitly compute and update the covariance matrix ∆n with (3), and perform
its batch PCA for each n. The cost per iteration of this approach is the same as online PCA,
namely O(p3). Step 4 produces the eigenvectors φj,n+1 ∈ Rp in O(pq) flops and requires
O(qd) additional flops to compute eigenfunctions. Using for example IPCA in step 3, the
total cost per iteration of FPCA is O(pd), which makes it very competitive with standard
(online) PCA. In addition, if p � d and the eigenfunctions of the covariance operator Tn
are smooth, FPCA can greatly improve the accuracy of estimates thanks to the regularized
projection (27) onto smooth basis functions. This fact is confirmed in the simulation study.

A standard choice for the penalty is P = (〈B′′j , B′′k〉), which penalizes curvature in the
basis function approximation (27). The parameter α can be selected manually using pilot
data. Alternatively, an effective automated selection procedure is to randomly split pilot data
in two subsets and select the value α for which the FPCA of one subset (i.e., the projection
matrix Pq(α)) minimizes the loss function (1) for the other subset.

7 Comparison of online PCA algorithms

7.1 Time and space complexity

Table 1 compares the time and space complexity of the batch and online PCA algorithms
under study. The usual batch PCA (EVD) does not scale with the data as it requires
O(ndmin(n, d)) time. In comparison, truncated SVD has a computational cost that grows
linearly with the data and hence can be used with fairly large datasets. When n is small,
batch PCA (EVD or SVD) can provide reasonable starting points to online algorithms. If
the dimension d is large, perturbation methods are very slow and require a large amount of
memory. At the opposite end of the spectrum, the stochastic algorithms SGA and SNL (with
neural network implementation - “nn." in the table), GHA, and CCIPCA provide very fast
PCA updates (O(qd)) with minimal memory requirement O(qd) (this is the space needed to
store the q eigenvectors and eigenvalues). If q is relatively small compared to n and d, SGA
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Table 1: Computational cost and memory usage of online PCA per iteration

Method Required Memory Computation time
Batch (EVD) O(nd) O(ndmin(n, d))

Batch (SVD) O(nd) O(ndq)

SGA (ortho.) O(qd) O(q2d)

SGA (nn) O(qd) O(qd)

GHA O(qd) O(qd)

CCIPCA O(qd) O(qd)

Perturbation Approximation O(d2) O(d2)

Incremental PCA O(qd) O(q2d)

and SNL (with exact orthonormalization - “ortho." in the table) and IPCA offer efficient
PCA updates (O(q2d) time complexity) albeit slightly slower than the previously mentioned
stochastic algorithms.

7.2 Simulation study

7.2.1 Setup

A simulation study was conducted to compare the numerical performances of the online PCA
algorithms. The data-generating model used for the simulation was a Gaussian random vector
X in Rd with zero mean and covariance matrix Γ = (min(k, l)/d)1≤k,l≤d. This random vector
can be interpreted as a Brownian motion observed at d equidistant time points in [0, 1].
For d large enough, the eigenvalues of the scaled covariance Γ/d decrease rapidly to zero
(λj ∼ (j − 0.5)−2) so that most of the variability of X is concentrated in a low-dimensional
subspace of Rd (e.g., Ash and Gardner, 1975). In each simulation a number n of independent
realizations of X was generated with n ∈ {500, 1000} and d ∈ {10, 100, 1000}. The online
PCA algorithms were initialized by the batch PCA of the first n0 = 250 observations and
then run on the remaining (n − n0) observations. The number q of estimated eigenvectors
varied in {2, 5, 10, 100}.

To evaluate the statistical accuracy of the algorithms, we considered the relative error in
the estimation of the eigenspace associated to the q largest eigenvalues of Γ. Let Pq = UUT

be the orthogonal projector on this eigenspace. Given a matrix Û of estimated eigenvectors
such that ÛT Û = Iq, we consider the orthogonal projector P̂q = ÛÛT and measure the
eigenspace estimation error by

L(P̂q) =
∥∥P̂q −Pq

∥∥2
F

/∥∥Pq

∥∥2
F

(29)

= 2
(
1− tr

[
P̂qPq

]
/q
)
,

where ‖ · ‖F denotes the Frobenius norm. In unreported simulations we also used the cosine
between the top eigenvector of Γ and its estimate as a performance criterion and obtained
qualitatively similar results to those presented here.
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7.2.2 Computation time

Computation times (in milliseconds, for one iteration) evaluated on a personal computer (1,3
GHz Intel Core i5, with 8GB of RAM) are presented in Table 2. The results are globally
coherent with Table 1. When the dimension d of the data is small, all considered methods
have comparable computation times at the exception of the secular equation approach which
is at least ten times slower than the others. As d increases, the perturbation techniques,
which compute all eigenelements, get slower and slower compared to the other algorithms. For
example, if we are interested in the first q = 5 eigenvectors of a 1000×1000 covariance matrix,
the CCIPCA and GHA algorithms are more than 500 times faster than the perturbation
approaches. The effect of the orthonormalization step on the computation time becomes
much larger for high dimension d and a relatively large number of computed eigenvectors q.
When d = 1000 and q = 100, the GHA and CCIPCA algorithms that perform approximate
orthonormalization are about seven times faster than IPCA and SGA that perform exact
Gram-Schmidt orthonormalization.

Table 2: Computation time (in milliseconds per iteration) of the online PCA algorithms

d = 10 d = 100 d = 1000

q = 2 q = 5 q = 5 q = 20 q = 5 q = 20 q = 100

SGA (ortho.) 0.12 0.09 0.10 0.13 0.17 0.77 15.26

SGA (nn) 0.09 0.09 0.16 0.10 0.12 0.37 2.20

SNL (ortho.) 0.14 0.16 0.19 0.51 0.25 1.46 26.77

SNL (nn) 0.08 0.12 0.10 0.09 0.10 0.31 2.40

GHA 0.05 0.06 0.08 0.07 0.09 0.36 2.30

CCIPCA 0.06 0.06 0.07 0.18 0.13 0.44 2.04

IPCA 0.08 0.17 0.11 0.30 0.17 1.00 15.80

Perturbation (approx.) 0.09 0.08 1.81 1.50 1221.35 1167.27 1197.58

Perturbation (secular) 1.49 1.36 17.26 18.81 1515.46 1532.43 1481.94

7.2.3 Statistical accuracy

Table 4 shows the eigenspace estimation error L (averaged over 100 to 500 replications) of the
online PCA algorithms for the first q = 5 eigenvectors of Γ and different values of n and d.
To increase statistical accuracy, each algorithm actually computed 2q eigenvectors; only the
first q eigenvectors were kept for estimation in the end. It is in general advisable to compute
more eigenvectors than required to maintain good accuracy for all target eigenvectors.

The approximate perturbation approach produces estimation errors that are much greater
at the end (that is, after all n observations have been processed) than at the beginning
(initialization by batch PCA of n0 = 250 observations). Therefore, this approach should not
be used in practice. In contrast, the exact perturbation algorithm based on secular equation
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performs as well as batch PCA.
The convergence of stochastic algorithms largely depends on the sequence of learning rates

γn. Following the literature, we considered learning rates of the form γn = c/nα, with c > 0

and α ∈ (0.5, 1]. Larger values of α can be expected to produce better convergence rates but
also increase the risk to get stuck close to the starting point of the algorithm. This can lead
to poor results if the starting point is far from the true eigenvectors of Γ. In our setup we use
the values α ∈ {1, 2/3} and obtain the constants b by minimizing the eigenspace estimation
error L over the grid {.01, .1, 1, 10, 100} (see Table 3). Interestingly, smaller values of c are
chosen when the dimension d increases and when α is decreases. The sample size n does not
seem to strongly impact the optimal value of c. With our calibrated choice of the constant c
in the learning rates, the SGA and GHA algorithms display virtually identical performances.
In addition, there is no great difference for the estimation error between α = 1 and α = 2/3.
Given its high speed of computation, CCIPCA performs surprisingly well in all situations.
IPCA is even more accurate and, although it is an approximate technique, it performs nearly
as well as exact methods in this simulation study.

Table 3: Best constant c for the learning rate γn = c/nα of the SGA and GHA algorithms.
The best constants are identical for the two methods

α = 1 α = 2/3

d = 10 d = 100 d = 1000 d = 10 d = 100 d = 1000

n = 500 10 1 0.1 1 0.1 0.01
n = 1000 10 1 0.1 1 0.1 0.01

Figures 1–2 present the eigenspace estimation error L (averaged over 100 replications) in
function of the sample size n for the most effective online algorithms under study: IPCA,
SGA, and CCIPCA. Although the data dimension is d = 100 in Figure 1 and d = 1000 in Fig-
ure 2, the two figures are similar, meaning that the effect of the dimension d on the evolution
of the accuracy is not crucial. IPCA produces reliable estimates and always outperform the
SGA and CCIPCA algorithms. The SGA algorithm with learning rate γn = c/n produces a
stronger initial decrease in L than with γn = c/n2/3. In the long run however, L decreases
faster with the slower rate n−2/3.

The random vector X considered in our simulation framework can be seen as a discretized
standard Brownian motion. Given the smoothness of the eigenfunctions associated to the
Brownian motion (sine functions) and the high dimension d of the data, the functional PCA
approach of Section 6.3 seems an excellent candidate for estimating the eigenelements of the
covariance matrix Γ. To implement this approach, we used a basis of p = 28 cubic B-splines
controlled by equispaced knots. The penalty matrix P was as in Section 6.3, namely, a
roughness penalty on the second derivative of the approximating function, with a smoothing
parameter α = 10−7. The estimation error L is presented in Table 5 for d = 100 and
d = 1000. Thanks to the dimension reduction, all online PCA algorithms can be rapidly
computed even when d = 1000. Comparing Tables 4 and 5, it is clear that FPCA improves
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Table 4: Eigenspace estimation error L for the first q = 5 eigenvectors of Γ

n = 500 n = 1000

d = 10 d = 100 d = 1000 d = 10 d = 100 d = 1000

Batch (n0) 0.041 0.027 0.032 0.041 0.028 0.031

Batch (n) 0.020 0.014 0.014 0.010 0.007 0.007

SGA (α = 1) 0.031 0.020 0.021 0.025 0.014 0.016

SGA (α = 2/3) 0.033 0.021 0.023 0.026 0.015 0.017

GHA (α = 1) 0.030 0.020 0.023 0.024 0.014 0.016

GHA (α = 2/3) 0.032 0.021 0.023 0.026 0.015 0.017

CCIPCA 0.026 0.016 0.016 0.016 0.010 0.010

IPCA 0.020 0.015 0.015 0.011 0.007 0.007

Perturbation 0.546 1.697 1.997 0.499 1.727 1.989

Secular 0.020 0.014 0.014 0.010 0.007 0.007

the statistical accuracy. Again, the performances of the stochastic approximation approaches
strongly depend on the dimension d and the learning rate γn. As before, IPCA offers a good
compromise between computation time and accuracy.

Table 5: Eigenspace estimation error L for the first q = 5 eigenvectors of Γ when the
discretized trajectories are approximated by spline functions with 28 equispaced knots

n = 500 n = 1000

d = 100 d = 1000 d = 100 d = 1000

Batch (n0) 0.0244 0.0245 0.0251 0.0227

Batch (n) 0.0120 0.0114 0.0060 0.0055

SGA (α = 1) 0.0241 0.0242 0.0245 0.0221

SGA (α = 2/3) 0.0242 0.0242 0.0246 0.0222

GHA (α = 1) 0.0241 0.0242 0.0245 0.0221

GHA (α = 2/3) 0.0242 0.0242 0.0246 0.0222

CCIPCA 0.0149 0.0148 0.0090 0.0080

IPCA 0.0120 0.0114 0.0060 0.0055

Perturbation 0.6085 0.6137 0.6249 0.5962

Secular 0.0120 0.0114 0.0060 0.0055

7.2.4 Missing data

The ability of the IPCA algorithm to handle missing data was evaluated in a high dimensional
context (d = 1000) using the EBLUP imputation method of Section 6.2. Missing values were
removed by simple random sampling without replacement with different sampling fractions
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Figure 1: Eigenspace estimation error L for the first q = 5 eigenvectors of Γ with d = 100

(f = 0, 0.1, 0.2, 0.5, 0.8). As shown in Figure 3, the incremental algorithm performs well
even when half of the data are missing. We note that imputation based on EBLUP is well
adapted to this simulation study due to the rather strong correlation between variables. It
is also worth noting that the computation time if the imputation is about of the same order
as the computation time of the IPCA algorithm itself.

7.3 A face recognition example

To assess the performance of online PCA with real data, we have selected the Database of
Faces of the AT&T Laboratories Cambridge (http://www.cl.cam.ac.uk/research/
dtg/attarchive/facedatabase.html). This database consists in 400 face images of
dimensions 92 × 112 pixels in 256 gray levels. For each of 40 subjects, 10 different images
featuring various facial expressions (open/closed eyes, smiling/non-smiling) and facial details
(glasses/no-glasses) are available.
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Figure 2: Eigenspace estimation error L for the first q = 5 eigenvectors of Γ with d = 1000

The database was randomly split in a training set and a test set by stratified sampling.
Specifically, for each subject, one image was randomly selected for testing and the nine others
were included in the training set. The IPCA, SGA, and CCIPCA algorithms were applied to
the (vectorized) training images using q = 20 or q = 40 principal components as in Levy and
Lindenbaum (2000). No image centering was used (uncentered PCA). IPCA and CCIPCA
were initialized using only the first image whereas the SGA algorithm was initialized with
the batch PCA of the first q images. The resulting principal components were used for two
tasks: compression and classification of the test images. We also computed the batch PCA
of the data as a benchmark for the online algorithms.

For the compression task, we measured the performance of the algorithms using the
uncentered, normalized version of the loss function (1):

Rn(P̂q) =
1

n

n∑
i=1

∥∥xi − P̂qxi
∥∥2

‖xi‖2
.
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Figure 3: Eigenspace estimation error L of the IPCA algorithm for the first q = 2 eigenvectors
of Γ with different levels of missingness in the data and d = 1000

For the purpose of classifying the test images, we performed a linear discriminant analysis
(LDA) of the scores of the training images on the principal components, using the subjects
as classes. This technique is a variant of the well-known Fisherface method of Belhumeur
et al. (1997); see also Zhao et al. (2006) for related work.

The random split of the data was repeated 100 times for each task and we report here
the average results. Table 6 reports the performance of the algorithms with respect to data
compression. As can be expected, the compression obtained with q = 40 principal components
is far superior to the one using q = 20 components. Due to the large size of the training
set (90% of all data), there is little difference in compression error between the training and
testing sets. IPCA and CCIPCA produce nearly optimal results that are almost identical to
batch PCA (see also Figures ref). The SGA algorithm shows worse performance on average
but also more variability. The effectiveness of SGA further degrades if a random initialization
is used. Interestingly, some principal components found by SGA strongly differ from those of
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the other methods, as shown in Figure 4 where SGA components are stored in the last row.
Accordingly, SGA may compress images quite differently from the other methods. In Figure
5 for example, some images compressed by SGA (first and third images in the last row) have
sharp focus and are in fact very similar to other images of the same subjects used in the
training phase. In contrast, the corresponding images compressed by batch PCA, IPCA, and
CCIPCA are blurrier, yet often closer to the original image.

Table 6: Compression loss of the batch PCA, IPCA, CCIPCA, and SGA algorithms with the
AT&T Database of Faces

q = 20 q = 40

Training Test Training Test
Batch 0.0323 0.0363 0.0224 0.0286
IPCA 0.0327 0.0367 0.0229 0.0290
SGA 0.0523 0.0551 0.0388 0.0431
CCIPCA 0.0335 0.0373 0.0257 0.0312

Table 7 displays the classification accuracy of the LDA based on the component scores of
the different online PCA algorithms. Overall, all algorithms have high accuracy. IPCA and
CCIPCA yields the best performances, followed closely by batch PCA. It is not surprising
that online algorithms can surpass batch PCA in classification since the latter technique is
only optimal for data compression. SGA produces slightly lower, yet still high classification
accuracy.

Table 7: Classification rates for batch PCA, IPCA, CCIPCA, and SGA coupled with Linear
Discriminant Analysis on the AT&T Database of Faces

q = 20 q = 40

Training Test Training Test
Batch 0.9897 0.9580 0.9986 0.9880
IPCA 0.9915 0.9635 0.9995 0.9875
CCIPCA 0.9920 0.9655 0.9988 0.9837
SGA 0.9788 0.9340 0.9963 0.9710

Table 8 examines the computation time and memory usage of the PCA algorithms. As can
be expected, batch PCA requires much more (at least one order of magnitude) memory than
the online algorithms. Also, the size of the data is large enough so that batch PCA becomes
slower than the online algorithms CCIPCA and IPCA. The fact that the SGA algorithm runs
slower than all other algorithms is not surprising given that its exact implementation used
here requires a Gram-Schmidt orthogonalization in high dimension at each iteration.
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Figure 4: Top five principal components (eigenfaces) for the AT&T Database of Faces. Rows
from top to bottom: batch PCA, IPCA, CCIPCA, SGA

Table 8: Computation time (s) and memory usage (MB) for the PCA of the AT&T Database
of Faces (n = 400, d = 10304).

Method Time Memory
Batch PCA 7.13 924.4
IPCA 7.09 73.3
CCIPCA 3.93 74.6
SGA 9.45 67.8
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Figure 5: Sample of compressed images from the AT&T Database of Faces (q = 40 principal
components). Rows from top to bottom: original image, batch PCA, IPCA, CCIPCA, SGA

8 Concluding remarks

PCA is a popular and powerful tool for the analysis of high-dimensional data with multiple
applications to data mining, data compression, feature extraction, pattern detection, process
monitoring, fault detection, and computer vision. We have presented several online algo-
rithms that can efficiently perform and update the PCA of time-varying data (e.g., databases,
streaming data) and massive datasets. We have compared the computational and statistical
performances of these algorithms using artificial and real data. The R package onlinePCA
available at http://cran.r-project.org/package=onlinePCA implements all the
techniques discussed in this paper and others.

Of all algorithms under study, the stochastic methods SGA, SNL, and GHA provide the
highest computation speed. They are however very sensitive to the choice of the learning rate
(or step size) and converge more slowly than IPCA and CCIPCA. For strongly misspecified
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learning rates, they may even fail to converge. Furthermore, simulations not presented here
suggest that a different step size should be used for each estimated eigenvector. In theory this
guarantees the almost sure convergence of estimators towards the corresponding eigenspaces
(Monnez, 2006) but, as far as we know, there exist no automatic procedure for choosing
these q learning rates in practice. In relation to the recent result given in Balsubramani et al.
(2013), averaging techniques (see Polyak and Juditsky (1992)) could be useful to get efficient
estimators of the first eigenvector. Simulation studies not presented here do not confirm at
all this intuition. As a matter of fact, averaging improves significantly the initial stochastic
gradient estimators when 0.5 < α < 1 but the estimation error remains much larger than
with IPCA and CCIPCA.

The IPCA and CCIPCA algorithms offer a very good compromise between statistical
accuracy and computational speed. They also have the advantage of not having major de-
pendence on tuning parameters (forgetting factor). Approximate perturbation methods can
yield highly inaccurate estimates and we do not recommend them in practice. The method
of secular equations, although slower than the other algorithms, has the advantage of being
exact. It is a very good option when accuracy matters more than speed and the dimension d is
not too large. In particular, it is very effective with functional data that have been projected
onto a small number of basis functions (FPCA). More generally, when applicable, FPCA
should be preferred over standard PCA as it demonstrates both higher accuracy and higher
computation speed. In the presence of missing data, imputation procedures like the EBLUP
of Brand (2002) enable online PCA algorithms to continue running without considerable
increase in computation time or decrease in accuracy.

For reasons of space, we have focused on rank-1 PCA updates in this paper. However
block updates of rank r ≥ 2 are also frequent in practice. The user choice of the block size
r has complex effects on the accuracy and speed of algorithms: for instance, larger blocks
tend to reduce noise and estimation variability, but they may also slow down convergence.
Regarding computations, as r increases the running time initially decreases but then it reaches
a plateau and may even increase if r is too large. In additional simulations (see Supplementary
Materials) we examined two online PCA algorithms that allow for block updates: the IPCA
algorithm of Levy and Lindenbaum (2000) and the block-wise stochastic power method of
Mitliagkas et al. (2013). In the former algorithm, a rule of thumb is to take r of the same
order as the number q of eigenvectors to compute. With the choice r = q, this algorithm was
actually faster than the fast implementations of the SGA, SNL, and GHA while maintaining
the very high accuracy of the rank-1 update IPCA of Section 4. The block-wise stochastic
power method was even much faster and, using the recommended block size r ≈ log(d)/n, as
accurate as the stochastic algorithms.
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