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Abstract

Generative models have proved to be useful tools to rep-
resent 3D human faces and their statistical variations. With
the increase of 3D scan databases available for training, a
growing challenge lies in the ability to learn generative face
models that effectively encode shape variations with respect
to desired attributes, such as identity and expression, given
datasets that can be diverse. This paper addresses this chal-
lenge by proposing a framework that learns a generative
3D face model using an autoencoder architecture, allowing
hence for weakly supervised training. The main contribu-
tion is to combine a convolutional neural network-based en-
coder with a multilinear model-based decoder, taking there-
fore advantage of both the convolutional network robust-
ness to corrupted and incomplete data, and of the multilin-
ear model capacity to effectively model and decouple shape
variations. Given a set of 3D face scans with annotation
labels for the desired attributes, e.g. identities and expres-
sions, our method learns an expressive multilinear model
that decouples shape changes due to the different factors.
Experimental results demonstrate that the proposed method
outperforms recent approaches when learning multilinear
face models from incomplete training data, particularly in
terms of space decoupling, and that it is capable of learning
from an order of magnitude more data than previous meth-
ods.

1. Introduction
Generative models of 3D faces are commonly used as

priors when solving under-constrained problems such as
reconstructing 3D face shape from partial or noisy data,
recognition of faces or expressions, and face or expression
transfer among others, e.g. [6]. They proved to be beneficial
in these tasks as they provide parametric representations for
sampling 3D face models which can differentiate changes
due to natural factors including identity, expression or even
age, e.g. [26, 1]. An important challenge is then to learn
these models from datasets that can be diverse and so that
they effectively encode shape variations with respect to de-

sired attributes. This is especially true with the recent in-
crease of available databases of 3D face scans that can be
used as training data, e.g. [18].

Methods that build generative face models should there-
fore ideally present the following characteristics. First, the
methods should leverage all available training data, which
prohibits strategies assuming specific factor representativity
in the data, e.g. a complete training data tensor that captures
all combinations of identities and expressions. Second, the
methods should handle data corrupted by noise including
both geometric noise and erroneous labels for the factors.
Third, the methods should require little or no preprocess-
ing, and hence avoid the need for accurate registrations of
the training data. Fourth, the resulting generative models
should encode the rich shape variation of 3D faces while
decoupling the effects of the different factors considered.

In this paper, we take a step towards achieving these
goals by proposing a novel framework that learns a gen-
erative 3D face model using an autoencoder architecture.
The main innovation is to combine a convolutional neural
network (CNN)-based encoder with a multilinear model de-
coder. By leveraging that classical autoencoders are unsu-
pervised, our modified autoencoder framework allows for
weakly supervised model learning. It further combines the
advantages of convolutional networks of being robust to
corrupted and incomplete data, as assured by the encoder,
with the advantages of multilinear models of effectively
modeling and decoupling shape variations, over data at-
tributes, in the decoder. Our approach inherits the advan-
tage of autoencoders of being scalable for large datasets.
Moreover, using a multilinear model as decoder rather than
a CNN allows our approach to explicitly take advantage of
redundant training data showing the same factor, and to ef-
fectively decouple shape variations in the learned represen-
tation. Note that while we choose a multilinear model for
the decoder, our architecture easily generalizes to other gen-
erative models with similar properties.

Our approach builds on recent works that use deep neu-
ral networks for 3D face modeling. In particular, two of
them [16, 24] have successfully explored the combination
of a CNN-based encoder with a linear generative model as



decoder for the 3D reconstruction of faces from 2D pho-
tos and videos. We follow a similar strategy however, un-
like Tewari et al. [24] our decoder is learned with the rest
of the network, and unlike Laine et al. [16], our learned
model generalizes to various factors captured for different
subjects.

Our method takes as input a set of 3D face scans an-
notated with labels for each factor, e.g. identities and ex-
pressions are given, and provides: (i) A multilinear model,
which is able to accurately reconstruct the training data
and decouples shape changes due to different factors; (ii)
Improved registrations of the training data; (iii) A trained
autoencoder with a CNN-based encoder and a multilinear
model decoder capable of regressing from any 3D face scan
to the registered model, thus allowing to efficiently compute
correspondences for new data.

Our model performs favorably against other recent ap-
proaches that learn multilinear face models from incomplete
training data tensors [4, 27]. Especially, we show experi-
mentally that our method is capable of building rich mod-
els which achieve a better decoupling of factors. This is
demonstrated by a classification rate of synthetically trans-
ferred expressions that is over 13% higher than for the com-
peting methods. While experiments in this paper focus
on identity and expression attributes present in the train-
ing data, our formalism readily generalizes to other factors
as well such as age. Our code and models are available at
http://mae.gforge.inria.fr/.

2. Related Work
There is an extensive amount of work on 3D human face

modeling and recognition, and a full review is beyond the
scope of this work. In the following, we focus on the works
most closely related to the proposed method.

Generative modeling of 3D faces Linear models have first
been introduced to model face shape in neutral expression
along with appearance information [3] and later been ex-
tended to include expression change as a linear factor [1].
These linear models are often called 3D morphable models
(3DMM), and such models have recently been learned from
large training sets [5] and with high-quality appearance in-
formation [9]. These models do not account for correlations
of expression and identity spaces.

Multilinear models were introduced to model the in-
fluence on face shape of different factors as independent,
which allows for expression transfer [26]. They were later
used to edit 2D images and videos with the help of 3D face
reconstructions [10, 6]. FaceWarehouse [6] is a popular
publicly available multilinear 3D face model. While mul-
tilinear models effectively decouple shape variations due
to different factors, they require carefully acquired training
data where each subject is captured in every factor.

Li et al. [18] recently introduced a generative model
learned from a large collection of 3D motion sequences of
faces. Pose changes due to skeletal motion is modeled us-
ing a skinning approach, while shape changes due to iden-
tity, expression, and pose correction are modeled as linear
factors similar to 3DMM. Interestingly, they note that it is
an open problem to extend tensor-based multilinear models
to handle dynamic training data.

We take a step in this direction by deriving an efficient
method to learn a multilinear model, from an incomplete
tensor of training data, that effectively decouples factor ef-
fects.

Learning a multilinear model from partial or noisy data
Traditionally, multilinear models are learned by assembling
a set of training data into a tensor and performing a tensor
decomposition [17]. This requires each training face to be
present in all factors to be modeled. Furthermore, noise
in the data, registration or labeling affect the quality of the
model. While tensor completion methods can be used to
solve the problem of incomplete data, they do not scale well
in practice, especially if the tensor is dense as in our case.

Two recent methods were proposed to address these
problems. A groupwise optimization was proposed to han-
dle both missing and noisy data and was shown to outper-
form tensor completion methods [4]. However, this method
is computationally costly and hence does not scale to large
datasets with high dimensionality in two or more factors.
Another work proposed an unsupervised method to com-
pute a multilinear model from partial data [27]. While this
method is computationally more efficient, it uses a non-
standard tensor decomposition that leads to a generative
model that does not fully decouple the modes.

We present in this paper a scalable solution to this prob-
lem.

Deep neural networks for 3D face modeling Deep neu-
ral networks have experimentally been shown to summarize
large groups of data and automatically extract only the rel-
evant features for a large variety of problems. They provide
an efficient structure for the optimization of large datasets.
This motivates the use of deep learning as a more scalable
and robust approach with such datasets.

Recent works use CNN frameworks to recover detailed
3D models from a single input photograph [30, 20, 21,
25]. To represent the solution space a linear 3DMM is
used, which restricts the solution from being very detailed.
Richardson et al. [21] improve the initial 3DMM estimate
with the help of a fine-scale network that allows to recover
mid-scale facial detail. CNNs have also been used for shape
regression of 3D faces in-the-wild [13].

A similar recent line of works have explored combining
a CNN-based encoder with a generative model as decoder

http://mae.gforge.inria.fr/


for the problem of 3D face reconstruction from 2D photos
and videos [16, 24]. Unlike our method, these works use
linear models to represent 3D faces, which captures limited
expression variation w.r.t. tensor-based models.

In most of these works the linear solution space is
learned a-priori and fixed during training. A notable ex-
ception is Laine et al. [16], in which the linear 3DMM is
initialized with principal component analysis, and refined
during fine-tuning of the network. The model trained by
Laine et al. is person-specific and does not generalize to
new subjects.

Sela et al. [23] propose a model-free network that di-
rectly regresses from an input image to a depth image and a
correspondence map, thereby allowing to recover fine-scale
geometric detail. However, as no model is used, noise, ac-
cessories and facial hair not present in the training data can-
not be handled by the network.

Inspired by these works, our approach takes a middle-
ground between the use of a linear model and a model-
free approach to represent 3D faces. We choose multilinear
models as they offer rich representations for various factors
across different subjects [6].

3. Overview
The goal of our method is to learn a generative model

of faces from a set of labeled 3D scans that are possibly
corrupted by both geometric noise and label errors. To
achieve this goal, we propose an autoencoder architecture
with a CNN-based encoder and a multilinear model-based
decoder, as illustrated in Figure 1 and detailed in the fol-
lowing section.

Input Data To train the autoencoder we consider 3D
face scans showing variations in different factors, e.g. iden-
tity and expression, along with the corresponding labels.
Not all combinations of factors are required in the input
scans, and part of the training data can come without la-
bels. The input scans are registered using a non-rigid ap-
proach, e.g. [2, 18], which enables reconstruction errors be-
tween the output meshes and the input scans to be estimated
in a consistent way. These registrations need not be precise
since they only serve as initialization and will be refined.

Encoder The CNN encoder maps each 3D face scan into
a low-dimensional representation that decouples the influ-
ence of the different factors on the final shape. Extending
CNNs to unorganized 3D geometric data is an active field
of research (e.g. [19]) and beyond the scope of this work.
Instead, we take advantage of the fact that 3D faces can be
mapped onto 2D depth images for which regular CNN ap-
ply. Hence, the first step of the encoder is to project input
3D scans into grayscale images that contain depth informa-
tion. The remainder of the encoder consists of a ResNet-18

architecture [14] followed by three fully connected layers,
which transform depth images into d-dimensional vectors
with the concatenated coefficients for each mode.

Decoder The multilinear decoder splits the encoder’s out-
put according to the factors, applies mode-n multiplication
between latent vectors and the core tensor, and adds a previ-
ously computed mean face, as usually done with multilinear
models (see Section 4.1). The output of the decoder are 3D
vertex coordinates that, combined with the mean face con-
nectivity, define 3D face meshes.

Training In addition to a generative loss that accounts
for reconstruction errors, the training phase optimizes
also a latent loss that measures whether input faces with
the same labels are mapped onto close-by points in the
parameter space, hence enforcing shape variations to be
decoupled with respect to their factors in the latent space.
The space that models face variations is large compared
to the available training data and a good initialization is
required to learn it. To this aim, both encoder and decoder
are pre-trained, as will be detailed in Section 4.4.

Once the autoencoder has been trained, it can be used to
regress from any 3D face scan to the model, thereby allow-
ing to efficiently register new data.

4. Multilinear Autoencoder
We now describe the proposed autoencoder architecture

that allows to learn k modes of variation in the input face
data through a multilinear model.

4.1. Multilinear Model

In a multilinear model a face is represented by a set of
vectors

{
wT

2 ,w
T
3 , . . . ,w

T
k+1

}
, wj ∈ Rmj , where k is the

number of linear modes attached to faces in the model. Let
x be the vector of 3D coordinates associated to the n ver-
tices of a face mesh, then the multilinear model relates the
latent k factors wi with the 3D face x by:

x = x̄ +M×2 w
T
2 ×3 w

T
3 . . .×k+1 w

T
k+1, (1)

where x̄ is the mean face, M ∈ R3n×m2×m3×...mk+1 is
a tensor that combines the linear modes wj called the core
tensor of the multilinear model, and×j is the product ofM
and a vector along mode j [15]. The full model is therefore
represented by the entries of M in addition to the set of
coefficients w(i)

j for the i-th face and the j-th factor.
The training process seeks to obtain good reconstruc-

tions of the data, while at the same time decoupling the la-
tent representation with respect to the factors of variation.
Hence, we will use two loss functions: a geometric loss
that measures the reconstruction error, and a latent loss that



Figure 1: Architecture for our multilinear autoencoder. The encoder takes as input a 3D mesh, which is rendered into a
heightmap, processed by a deep CNN architecture, and transformed into a latent representation by the fully-connected layers.
The decoder splits the latent representation according to the specified factors and performs a multilinear transformation in
order to get the output mesh. Both encoder and decoder are optimized during training.

softly evaluates how decoupled the latent space is, by mea-
suring how close two embeddings with the same label are.

Generative loss The loss of a generative multilinear model
over a dataset X of faces is measured as the error between
the reconstructions by the generative model (see Equation
1) and the observed faces xi:

LG =
∑

xi∈X

∥∥∥xi −
(
x̄ +M×2 w

(i)
2 . . .×k+1 w

(i)
k+1

)∥∥∥2
2
, (2)

As shown by Wang et al. [27], this equation can be writ-
ten in matrix form as:

LG =
∑

xi∈X

∥∥∥∥xi −
(
x̄ + M(1)

(
k+1
⊗

j=2
w

(i)
j

))∥∥∥∥2
2

, (3)

where⊗ represents the Kronecker product of vectors wj ,
and M(1) is the matricized version of M containing the
mode-1 fibers of M as columns [15]. Writing the trans-
formation M(1)

(
⊗k+1

j=2 w
(i)
j

)
as layers of a neural network

allows to learn the multilinear modelM while training the
autoencoder. Note also that Equation 3 allows to represent a
given label in mode j by different coefficients wj for differ-
ent faces. This can be an advantage when the labeling is not
trust-worthy, allowing for flexibility in the factor separation.

Latent loss The previous formulation does not evaluate the
coefficients wj directly but the reconstruction they yield.
Hence, a given mode of variation j might be affected not
only by its mode coefficients wj , but possibly also by the
others. In other words, a simple geometric loss can lose the
ability to decouple the different modes of variation, which
impacts the expressiveness of the model. For instance, ex-

pression transfer can then not be performed by simply ex-
changing the expression coefficients.

To overcome this, we define a loss function that softly
constrains latent parameters. Considering the subset X(j)

l

of training faces with provided labels in mode j, and the set
W

(i)
j =

{
w

(i1)
j ,w

(i2)
j , . . .

}
of all mode-j coefficients in

the training data that share the same label in mode j as xi,
the function writes:

LL =

k+1∑
j=2

∑
xi∈X

(j)
l

1∣∣∣W(i)
j

∣∣∣
∑

w
(p)
j ∈W

(i)
j

∥∥∥w(i)
j −w

(p)
j

∥∥∥2
2
, (4)

where the average over coefficients accounts for very dif-
ferent sizes of the sets W(i)

j . We choose this soft constraint
to preserve some flexibility over the labels.

4.2. CNN Encoder

The encoder transforms the 3D face input data into a vec-
tor w which contains the concatenated model coefficients,
i.e. the latent parameters of the face. In order to do this
both robustly and efficiently, we leverage recent advances
achieved by convolutional neural networks.

The first layer of the network takes as input a 3D scan
and converts it into a 2D depth image that encodes heights
from a fixed plane, computed by casting rays in the di-
rection normal to the plane. The regression from the 2D
heigthmap to the model coefficients is implemented using
ResNet-18 [14], a state-of-the-art architecture which has re-
cently shown very good performances in face-related prob-
lems [20, 25]. The CNN reduces the image to a 256-
dimensional vector, after which three fully-connected layers
perform the regression towards the coefficient vector wT of
the specified dimensions.



4.3. Multilinear Decoder

The multilinear decoder takes as input the vector wT ,
which is seen as a concatenation of mode coefficients wT ={
wT

2 ,w
T
3 , . . . ,w

T
k+1

}
, and transforms it into 3D vertex co-

ordinates by performing mode multiplications with the core
tensor. As explained in Section 4.1, this operation can be
written as the product between the matricized version of the
tensor M(1) and the Kronecker product of each mode co-
efficient (see Equation 3). Thus, in order to learn the core
tensor M parameters, we implement each of these opera-
tions as a layer in the global network, and allow the linear
module represented by M(1) to be learned with the rest of
the parameters. This way, we benefit from the capacity of
CNNs to robustly summarize the representative aspects of
an entire dataset, and from the associated optimization ma-
chinery to find the model in a scalable manner.

4.4. Estimation

The multilinear autoencoder estimation proceeds in two
stages. First, we initialize both CNN encoder and multilin-
ear decoder since our training data is limited with respect to
the number of parameters involved in the multilinear au-
toencoder. Initializing the multilinear decoder with ran-
dom values does not yield good results in our experiments.
Thus, we initialize it by performing Higher Order Singular
Value Decomposition (HOSVD) [17] on a complete subset
of the data, i.e. a subset in which all the factors of varia-
tion are present for all elements. To subsequently pre-train
the CNN encoder, we optimize it separately using the gen-
erative loss in Equation 2 with the fixed initial multilinear
model, and with both registered and unregistered scans to
augment training data.

Second, the full network is optimized with all available
face data. This is achieved by minimizing the following
combined generative and latent loss:

argmin
M(1),{w

(i)
j }

LG + λLL, (5)

where λ weighs the contribution of the latent loss.

5. Evaluation
This section starts by presenting implementation details

and an evaluation protocol (Section 5.1). As the final goal
of this work is to obtain a generative model of 3D faces,
we subsequently present in Section 5.2 evaluations of the
multilinear model that can be extracted after training, i.e.
of the multilinear decoder independently of the rest of the
network. We measure both the quality of the model and
the decoupling of the latent space, and compare to state-of-
the-art methods that learn multilinear 3D face models from
incomplete data. Finally, Section 5.3 evaluates the multilin-
ear autoencoder and its ability to register raw scans into the
new model.

5.1. Implementation and Evaluation Protocol

Implementation details To pre-train the encoder and to
learn the generative model during fine-tuning we use the
AdaDelta algorithm [29], with parameters as provided in
the paper. We use a mini-batch size of 32, a learning rate
of 0.1 and no weight decay. The encoder was pre-trained
for 17 epochs. For model learning, the full autoencoder is
fine-tuned for 100 epochs. The fully connected layers are
initialized to random Gaussian weights. Unless specified,
we set the dimensions of identity and expression spaces to
65 and 20, respectively, and use λ = 1e−1. The framework
was implemented using Torch7 [7].

Training data for initialization As explained earlier, ran-
dom initializations are not satisfying and we perform there-
fore HOSVD on a complete tensor; particularly on the BU-
3DFE [28] dataset, which provides 100 identities perform-
ing 25 expressions. To pre-train the CNN encoder we use
the BU-3DFE and Bosphorus [22] datasets, with the regis-
trations provided by Bolkart and Wuhrer [4], which gives
∼ 5000 registered scans. To augment the training data, we
sample from the initial multilinear model, randomly rotate
each face by an angle θ ∈ [−30◦; 30◦] in yaw, pitch or roll
axes, and apply a random scale in [0.7; 1.1]. Furthermore,
we use both the registered data and the corresponding raw
3D scans, for which the registered versions allow to recover
ground truth vertex correspondences for training. This aug-
mentation allows the CNN encoder to learn richer feature
extractors, as the raw scans contain larger geometric errors,
holes and extra parts such as hair and the neck. This results
in a training set of about 500, 000 depth images.

Training data for model optimization We demonstrate
the capabilities of the multilinear autoencoder (MAE)
trained on two different datasets. A first MAE is learned
from static data, using the combined Bosphorus and BU-
3DFE databases, with registrations provided by Bolkart and
Wuhrer, for a total of 5194 meshes. We will refer to this
MAE as Bu+Bosph. The second MAE is learned by com-
bining the previous with a subset of the dynamic database
D3DFACS [8] using the publicly available registrations of
Li et al. [18], which allows to build a considerably larger
training set. We will refer to this MAE as D3DFACS. For
this data, we provide sparse expression labels by consider-
ing the first 5 frames of each sequence as the neutral ex-
pression, and frames located in the middle as peak frames,
which are assigned the indicated facial action unit. For test-
ing we leave all sequences of one subject out of the training
set, as well as two sequences for each of the other subjects.
In total, D3DFACS is trained from 49169 scans. Note that
the D3DFACS training set is an order of magnitude larger
than the training sets used in previous methods [4, 27]. Us-



ing these training sets shows that MAE can be learned from
diverse data and handle inaccurate registrations obtained us-
ing fully automatic methods as well as missing labels.

Test data We test both Bu+Bosph and D3DFACS on parts
of the sequences of the D3DFACS database that were left
out. In particular, we manually subsample these sequences
to keep the most relevant key-frames for testing and to avoid
evaluations on very similar scans. In total, there are 270 test
frames covering ten subjects and a large expression range.

Evaluation metrics We evaluate the quality of generative
models using the metrics generalization and specificity [11].
Generalization measures the ability of the model to adapt to
unseen data, and is evaluated by projecting test data into the
model space and calculating the reconstruction error. To
provide a common framework for comparisons, this is im-
plemented by iteratively fixing one space and finding the
optimal coefficients for the other one [26]. Specificity mea-
sures whether only valid members of the shape class are
modeled, or in other words, the model’s suitability for gen-
erating synthetic data. To evaluate specificity, we assume
the data to follow independent normal distributions in iden-
tity and expression spaces and sample 1000 faces. To com-
pute the normal distribution using a maximum likelihood
estimation while accounting for an imbalanced number of
training samples for different labels, we group the coeffi-
cients by label and summarize each group by its medoid.
For each randomly drawn sample we measure its mean ver-
tex distance to all elements in the training data and keep the
minimum value; specificity is defined as the average of this
process over all synthetically generated faces.

In Section 5.2, to objectively evaluate the capacity of the
model to decouple the spaces, we transfer a recent protocol
proposed for body poses [12] to faces. For this, we train
a classifier to recognize expressions from a given depth im-
age. We then transfer expressions to each of the identities in
the test set and let the classifier measure whether the trans-
ferred expression label is preserved. To perform the trans-
fer, we replace the expression weight w3 of the test face
by the medoid of all expression weights with a fixed label
over the training data. To train the classifier, we fine-tune
the encoder of our architecture, only this time for a classi-
fication task. The expression classifier is trained to distin-
guish 7 prototypical expressions (anger, happiness, disgust,
sadness, fear, surprise and neutral) by using the Bospho-
rus and BU3DFE databases. Note that the goal here is to
objectively compare the expression transfer capabilities of
different models and not to build an accurate classifier.

5.2. Generative Model Evaluation

This section shows evaluations on the quality of the
learned generative models, as well as comparisons to two

state-of-the-art methods on multilinear model learning of
3D faces from incomplete data.

Influence of latent loss We first measure how different val-
ues of λ affect the quality of the generative models, both
for BU+Bosph and D3DFACS. Results are shown in Ta-
ble 1. As expected, greater values of λ result in better de-
coupling of the spaces, as well as more specific models.
Higher values also result in higher errors for the training
data, which can be explained by the fact that the reconstruc-
tion error takes less precedence and that the latent represen-
tation is more heavily constrained. For the same reasons,
the generalization ability also decreases with higher values
of λ. Qualitative examples of the results can be seen in
Figure 2. All selected models produce plausible synthetic
faces, but there is a clear decrease in the quality of the trans-
fers when the value of λ is too low. For this reason, we
select λ = 1e−1 for the following experiments.

Comparison to initialization We found experimentally
that the multilinear decoder needs to be initialized with a
previously trained multilinear model. Hence, we evaluate
how the autoencoder-based learning process improves this
initial model. To this end, we measure generalization, speci-
ficity and expression transfer of the initial HOSVD model,
and compare it to the model learned with our MAE on the
same dataset (BU-3DFE). Table 2 shows the result. We
can see that while the generalization error remains approxi-
mately the same, the new model becomes more specific and
is better able to transfer expressions on unseen data, which
implies that our multilinear decoder effectively decouples
shape variations due to different factors.

Figure 2: Influence of latent loss on expression transfer on
Bu+Bosph. From left to right: original registration, trans-
ferred expressions: happy, sad, surprise. From top to bot-
tom: λ = 1, λ = 1e−1, λ = 1e−2.



λ BU+Bosph D3DFACS
Training error Generalization Specificity Expression Training error Generalization Specificity Expression

1 1.60 0.93 0.92 36.95 0.48 0.43 1.39 19.66

1e−1 1.11 0.92 1.53 48.87 0.44 0.40 1.68 20.03

1e−2 1.02 0.90 1.61 34.37 0.41 0.40 1.84 19.93

Table 1: Influence of latent loss. Median error in training data (mm), generalization error (mm), specificity error (mm) and
percentage of correct classifications after expression transfer for our two training datasets. Best values in bold.

Model Generalization Specificity Expression
Initial model 0.92 2.50 15.66

MAE 0.93 1.43 53.08

Table 2: Comparison between our MAE decoder and the
initialization in terms of median generalization error (mm),
specificity error (mm), and percentage of correct classifica-
tions for expression transfer.

Method Generalization Specificity Expression
RMM [4] 1.34 1.83 32.99

Wang et al. [27] 1.23 2.38 18.50

MAE 1.35 1.43 46.39

Table 3: Comparison between state-of-the-art and our MAE
decoder on Bu-Bosph-subset data, in terms of median gen-
eralization error (mm), specificity error (mm), and percent-
age of correct classifications for expression transfer.

Comparison to state-of-the-art We compare our model to
two closely related works, which learn multilinear models
of 3D faces from incomplete data: RMM [4] and Wang et
al. [27]. For RMM we use the publicly available model pro-
vided by the authors, which was built using a subset of the
databases we consider; in particular, all 205 identites from
BU-3DFE and Bosphorus dataset, and 7 expressions from
BU-3DFE plus 23 expressions from Bosphorus. For a fair
comparison we use the same training data, which will be
referred to as Bu-Bosph-subset, and select the same dimen-
sions of the representations i.e. 23 for identity space and
6 for expression space. We build a model using this set-
ting for the method of Wang et al. with code provided by
the authors. Table 3 shows the results obtained. We can
see that our method outperforms the other two in terms of
specificity and expression transfer, while keeping a general-
ization error close to the others. Figure 3 shows an example
of expression transfer results. Note that while RMM and
MAE achieve visually plausible results, Wang et al. gives
noisy implausible faces as their tensor decomposition does
not yield a good decoupling of the different modes.

(a) RMM [4]

(b) Wang et al. [27]

(c) MAE

Figure 3: Comparison between state-of-the-art and our
MAE decoder. From left to right: original scan, transferred
expressions: happy, sad, surprise.

5.3. Multilinear Autoencoder Evaluation

Finally we evaluate the full multilinear autoencoder by
its ability to reconstruct the original training data, and its
ability to register new, unseen data. We start by discussing
the computation times of the method.

Computation times Building the initial model using
HOSVD requires on average 20 seconds. The pre-training
of the encoder takes about 100ms per mini-batch on a
Nvidia Titan X GPU, which amounts to about 25 minutes
per epoch for our training data. Fine-tuning the model takes
about 300ms per mini-batch, which implies 40s per epoch
for Bu+Bosph and about 8 minutes for D3DFACS. Generat-
ing each depth image takes around 30ms for the registered
data. Once the training is finished, regressing from a sin-
gle raw scan to 3D vertices requires around 0.5s, and this
timing can be improved by batch processing.



Improvement of initial registrations The MAE learning
process performs a simultaneous optimization over all train-
ing data. We observe that this allows to overcome geomet-
ric and registration errors that might be present in part of
the data. This can be quantitatively assessed by observing
the compactness of the training data, before and after model
learning [11]. The main idea of this quantitative evaluation
is that better registrations lead to more compact models as
drift in the registration is (erroneous) variation that needs to
be encoded. Compactness is computed by measuring the
percentage of variability explained by a fixed number of
principal components. Figure 4 shows the compactness of
the initial registration and the registrations after Bu+Bosph
training. Note that compactness improved significantly: af-
ter training, 99% of the variability can be explained with
less than 15 principal components, whereas the initial reg-
istrations require 90 principal components to explain this
variability. This increase in compactness is achieved while
keeping similar model generalization and slightly improv-
ing specificity, as shown in Table 2.
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Figure 4: Improvement of initial registrations shown by
compactness of the Bu+Bosph initialization and registration
after our MAE training.

Registration of raw scans To test on real data, we eval-
uate the reconstructions of the test set obtained by regress-
ing with the multilinear autoencoder when the input is the
original raw scan. For quantitative evaluation, we con-
sider initial registered versions of the scans as ground-truth
even though this might not be exact, since the registrations
were manually verified to be globally correct. The MAE re-
construction obtains a median per-vertex Euclidean error of
3.1mm for Bu+Bosph, and a median per-vertex Euclidean
error of 3.6mm for D3DFACS. Figure 5 shows examples of
the registrations obtained. Even though in both cases the er-
rors are relatively high, we observe that the registrations are
in general visually close to the expected identity and expres-
sion, and could be used as initializations for optimization-
based refinements. Figure 6 presents further examples of
the registrations obtained with Bu+Bosph for scans with

different types of occlusion of a subject of the Bosphorus
dataset that were not used for training. This shows that the
MAE is robust to geometric noise and occlusion.

Figure 5: Registration of raw scans using Bu+Bosph. Top:
input scans. Bottom: registered results.

Figure 6: Registration of raw scans presenting different
types of occlusion using Bu+Bosph. For each pair, left: in-
put scan; right: registered result.

6. Conclusions and Future Work

We presented a multilinear autoencoder architecture for
3D faces that is capable of learning a generative model
from incomplete and varied datasets, as well as regressing
into this model from raw scans. Experimental evaluation
showed that our generative model outperforms current state-
of-the-art methods that learn from incomplete data, and that
the architecture can be used for fast registration into this
model.

The proposed method has limitations, among which the
most notable is the need to trade-off between detailed re-
constructions and decoupling the latent spaces. For future
work we will investigate different loss functions that could
remove the need for this trade-off, and improve both the
quality of the registrations and the decoupling of the spaces.
We believe this work opens possibilities for learning rich
generative 3D face models from large training sets; explor-
ing this direction is also a line of future work.
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and C. Theobalt. MoFa: Model-based deep convolutional
face autoencoder for unsupervised monocular reconstruc-
tion. In International Conference on Computer Vision, pages
3715–3724, 2017.

[25] A. T. Tran, T. Hassner, I. Masi, and G. Medioni. Regressing
robust and discriminative 3d morphable models with a very
deep neural network. Conference on Computer Vision and
Pattern Recognition, pages 5163–5172, 2017.

[26] D. Vlasic, M. Brand, H. Pfister, and J. Popović. Face transfer
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