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Abstract. Statistical tolerancing was first proposed by Shewhart (Economic Control of Quality of Manufactured
Product, (1931) reprinted 1980 byASQC), in spite of this long history, its use remainsmoderate.One of the probable
reasons for this low utilization is undoubtedly the difficulty for designers to anticipate the risks of this approach. The
arithmetic tolerance (worst case) allows a simple interpretation: conformity is defined by the presence of the
characteristic in an interval. Statistical tolerancing is more complex in its definition. An interval is not sufficient to
define the conformance. To justify the statistical tolerancing formula used by designers, a tolerance interval should
be interpreted as the intervalwheremost of the parts produced should probably be located.This tolerance is justified
by considering a conformity criterion of the parts guaranteeing low offsets on the latter characteristics. Unlike
traditional arithmetic tolerancing, statistical tolerancing requires a sustained exchange of information between
design andmanufacture to be used safely. This paper proposes a formal definition of the conformity, whichwe apply
successively to the quadratic and arithmetic tolerancing. We introduce a concept of concavity, which helps us to
demonstrate the link between tolerancing approach and conformity.We use this concept to demonstrate the various
acceptable propositions of statistical tolerancing (in the space decentring, dispersion).

Keywords: conformity principle / statistical tolerancing / robust engineering

1 Introduction

Designing and manufacturing an industrial product are the
result of an approach which has the following objective:
ensure the functional product requirements for customer
satisfaction at the lowest possible cost, as soon as possible
and at the expected quality levels. Nevertheless, the parts
manufacturing constituting a product can never be
produced to target, irrespective of the machine precision
used.

Tolerancing limits this variability. It is carried out
based on construction hypotheses, which will have to be
verified by the production. It represents the verification of
the conformity. This conformity is often interpreted as
individual tolerancing conformity for each characteristic.

In this paper, we propose a formal definition of
statistical conformity that does not apply individually to
a part but to a part population. We apply this definition to
different acceptance definition: triangular, rectangular and
inertial. Each of these definitions satisfies a concavity
criterion that we define. We show in appendix the interest
of this particular criterion in the case of a statistical
tolerancing.

2 Issues, ratings and assumptions

The variability of parts is taken into account by specifying
the limits of the specifications of each elementary
characteristic for quantitative and measurable quantita-
tive quantities [1]. The tolerance interval (TI) is the
difference between the maximum and minimum permissi-
ble values, and therefore shows the permissible variation of
a quantity.

The TIs specification for interrelated characteristics is
established according to two possibly complementary
strategies: the analysis and the synthesis of tolerances
[2]. The analysis consists in verifying that the TIs, defined
by the functional characteristics required on the product,
are respected by the tolerances on the elementary
characteristics. The synthesis of the tolerances consists
in allocating the tolerances to the basic characteristics from
those on the functional requirements.

Formally, a characteristic is a quadruplet (Y, v, c, R)
where Y, which denotes a quantity, is a real random
variable with a probability density,1 v∈ ℝ is called
nominal, c∈ ℝ is center and R∈ℝ∗

þ is the radius of a

* Corresponding author: maurice.pillet@univ-smb.fr

1All the real random variables considered in this article are in the
same probability space and will always be integrable squares (i.e.
admitting a variance).
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so-called TI. If the context permits, the quantity Y and the
characteristic (Y, v, c, R) will be associated and described
using the following quantities (see Fig. 1):

* A TI [L, U] and its length TI:
U= c+R, L= c � R and TI=U � L=2R.

* An upper tolerance (respectively lower): TU = U � v
(respectively TL= L � v,).
A characteristic is coherent if v∈ [L, U] and in that case

TU> 0 and TL< 0. It is called the nominal centered if
v = c. In these conditions, TU= � TL and v ¼ UþL

2 is at the
center of [L, U].2

For a characteristic (Y, v, c, R), mY ¼ EðY Þ is the
expectation of Y and sY ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
V ðY Þ

p
its standard deviation.

The decentering of this characteristic is dY=mY � c. It is
centered if mY= c (i.e.dY=0). When the characteristic is
indexed and does not cause confusion, only the index will
appear in the denomination of expectation, standard
deviation or decentering.

In general, a functional requirement is a function of
elementary characteristics. The tolerancing consists in
modelling the behaviour in the target vicinity of each of the
elementary characteristics. Consequently, the Taylor
expansion near the target makes it possible to obtain a
linear relationship that relates the functional requirement
to the elementary characteristics.

In these conditions, a functional requirement, denoted
YClearance, is expressed as a linear function of n independent
characteristicsðY iÞi¼1...n. There are then reals ðaiÞi¼1...n

3

such as:

Y Clearance ¼
Xn

i¼1

aiY i: ð1Þ

mClearance ¼
Xn

i¼1

aimi and s2Clearance ¼
Xn

i¼1

a2is
2
i : ð2Þ

We will also make the following assumptions4:

nClearance ¼
Xn

i¼1

aini and cClearance ¼
Xn

i¼1

aici: ð3Þ

The tolerancing question is asked like this: Which
relationship between RClearance and the n-uplet ðRiÞi¼1...n
makes it possible to verify the following principle of
conformity: “If all the characteristics ðY iÞi¼1...n are
conformed, then YClearance is conformed, too”?

The most natural notion of conformity in the worst case
is expressed as follows: if for all i=1…n, and all the Yi
characteristics are within the TI [Li, Ui] then the YClearance
fulfilments have to be within the TI [LClearance, UClearance].
This formulation of conformity justifies the following
formulae:

• Arithmetic tolerance:

RClearance ¼
Xn

i¼1

jaijRi: ð4Þ

In other words, the designer who uses this tolerance to
verify thatRClearance guarantees the assembly functionality
from knowledge of the Ri does not wish to take any risk: if
the production is conform to the tolerances of the basic
characteristics, it is certain that the functional requirement
will be within the tolerance.

This tolerancing is often too restrictive because it is
based on the condition that all the elementary character-
istics are at the limits of specification. In order to be more
flexible, a second formulae is available to the designer:

• Statistical tolerance (or augmented quadratic)5:

R2Clearance ¼
6

h

� �2Xn

i¼1

a2i R
2
i : ð5Þ

For the tolerance radii Ri of the given characteristic, the
tolerance radius RClearance obtained by this formula is
smaller than that obtained by using the arithmetic
tolerancing formula, which can greatly facilitate the life
of the designer who has a functional constraint on
RClearance.

This formula is traditionally justified in the following
way: if all the characteristics Yi follow a normal average law
mi= ci and standard deviationsi, then YClearance follows a

Fig. 1. Illustration of quantities associated with a characteristic.

2 The notion of centered nominal characteristic is totally different
from the notion of centered characteristic which means that a
process makes it possible to produce the characteristic, on
average, at the center of its tolerance interval. In other words, it is
not because the nominal of a characteristic is at the center of its
tolerance interval that this characteristic is centered. Unfortu-
nately, the usual vocabulary makes confusion frequent and leads
to misinterpretations.
3 These real coefficients of influence are, in general, for a chain of
dimensions equal to ±1.

4 These relationships cannot be justified by identifying mean and
nominal or centers and using the relation on the averages (2). It
should be noted that if the characteristics are, on average, at
nominal or at the center, there is no evidence that the resultant
characteristic is on average at nominal or center.
5 Factor h> 0 is a weighting factor introduced to ease certain
constraints of the quadratic tolerancing [13]. If h=6, it is the
quadratic tolerancing strictly speaking and when h ¼ 2

ffiffiffi
3
p

, it is
called probabilistic tolerancing.
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normal mean law mClearance= cClearance and standard devia-
tion sClearance according to (2). The statistical tolerancing
formulae are deduced by assuming that tolerance rays are
proportional to the standard deviations: Ri ¼

6
h
3si and

RClearance=3sClearance. In these conditions, ℙ(YClearance∉ [
LClearance,UClearance])� 0, 135% and the risk of having a non-
compliant clearance seems to be under control.

However, this justification is not satisfactory since it
uses manufacturing parameters which are unknown to the
designer under the restrictive and unrealistic nullity
hypothesis of the decentring of the characteristics.

The aim of this article is to show that a correct
justification of the statistical tolerancing formulae requires
defining specific conformity criteria. In order to verify the
conformity, the manufacturer must take the tolerancing
method of the characteristics produced into account.
Sometimes “to be within tolerances” is not sufficient.
Designers should not ignore this fact when they use
statistical tolerancing. Otherwise they will justify a design
with high risks. The management of information between
design and manufacturing is thus affected.

3 Proposition of a definition of conformity
for statistical tolerancing

The acceptance of the conformity by the sole respect of the
TI is too restrictive. Indeed, it is not the measurements of
characteristics carried out on a limited set of production
that are to be considered, but rather the conformity of what
the process can potentially produce, namely, the popula-
tion of parts. In other words, it is not so much an effective
part that one has to judge6 but the capacity to produce
parts in a sufficiently homogeneous way to guarantee their
assembly: one must therefore judge the conformity of the
process that produces them.

Definition 1–Conformity.
A conformity C ¼ ðk; ðr; jobjr ÞÞ is the data of a context

k∈ℝ�þ and a couple ðr; jobjr Þ called conformity objective
where r : [0, 1]! [0, 1], is decreasing and strictly positive on
[0,1[, r(1)= 0, jobjr ∈ℝ�þ and supu∈ 0;1½ �ðrðuÞ þ jobjr uÞ � 1:

The application r is a type of objective and a goal is
maximal if the preceding inequality is equality.

A characteristic at the centered nominal (Y, n, R) is
called C-conformed7 if:

jdY j

R
< jobjr and

sY

R
�
1

k
r
jdY j

jobjr R

 !

: ð6Þ

dY ¼ mY � c

Affirming that a characteristic conformed according to
this definition, is to say that, up to a certain limit, the more
decentering, the more the variability must be small in

proportion to the tolerance radius. The way in which the
reduction of this variability is managed through the type of
objective (r application) qualifies the nature of the
conformity considered. We shall see that the choice of a
concave as a type of objective8 conditions the expected
properties of a quadratic tolerancing.

We considered the following three types of objectives
with (cP, cI)∈] 0, 1 [2 and u∈ 0; 1½ �:

Objective of the tolerance or triangular:

rT ðuÞ ¼ 1 � u and 0 < jobjrT
� 1 ¼ jmax

rT
:

Performance objective or rectangular:

rP ðuÞ ¼ cP IðuÞ and 0 < jobjrP
� 1 � cP ¼ jmax

rP
:

Extended or elliptical inertial objective:

rIðuÞ ¼ cI
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � u2
p

and 0 < jobjrP
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � c2I

q

¼ jmax
rP

:

For a conformityC ¼ ðk; ðr; jobjr ÞÞ, these denominations
come from the surface form represented in the plane %
decentering�%standard deviation (Fig. 2) where the
percentage is relative to a radius of tolerance [3]:
Surfacekðr;j

obj
r Þ ¼ ðx;yÞ∈ � jobjr ;jobjr

�
� ℝ�þ=y � 1kr

xj j

j
obj
r

� �
g:

A characteristic Y is conformed according to a
conformity defined by a particular surface if the couple

d
R
; s
R

� �
is a point inside this surface.

We demonstrate in the appendix that the surface
defining compliance must:
* on the one hand is included in the triangle so the base is
equal to the arithmetic tolerancing and the height is
equal to the dispersion of the quadratic tolerancing;

* on the other hand be a concave surface. Rectangle, circle
and ellipse are concave surface.
In the example (Fig. 2) below, the characteristic is

extended inertial and tolerance-compliant but is not
performance-compliant. Rectangle and Ellipse are inside
the triangle but does not cover the available area.

This definition of conformity covers the most frequent
definitions, in particular those using capability indicators
[4]. Indeed, each of the preceding conformity criteria can be
expressed using the traditional capability indicators [5,6]9
associated with a characteristic (Y, n, R):

6 A given part is actually conformed if these characteristics meet
the tolerance intervals. One-part conformance is therefore a
binary problem modulo the measurement process.
7 The definitions given here in the case of one-dimensional
characteristics for the sake of simplification can be generalized to
the multidimensional case.

8 Recall us that r : [0, 1]! [0, 1] is concave if for any l ∈ [0, 1] and
(x, y)∈ [0, 1]2, r(lx+(1 � l)y)≥ lr(x)+ (1 � l)r(y).
9 These indicators are definedwithout any reference to the form of
the law of Yl even if the coefficient 3 comes from considerations of
the normal law. The capability indexes which are defined by using
their denominator as the length of a fluctuation interval at
99.73%, for example, are not included here because they are too
dependent on the law of Yl, making it difficult to exploit. Usually,
Pp is said to be the potential coefficient of capability, Ppk the
coefficient of performance and Ppm the capability coefficient of
Taguchi.

L. Leblond and M. Pillet: Int. J. Metrol. Qual. Eng. 9, 1 (2018) 3



PpY ¼
IT

6sY
¼

R

3sY
; PpkY ¼

R � jdY j

3sY
; andPpmY

¼
R

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2Y þ d2Y

q ¼
PpYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 9ðPpY � PpkY Þ
2

q ; ð7Þ

For some real objectives Ppobj ≥Ppkobj> 0 and
Ppmobj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
9þ Ppkobj2

q

,10 the writing of the characteristic
conformity (Y, n, R), for each of the preceding conforma-
tions with maximum objectives, takes the following form
(Fig. 3).

Tolerance � conformed atPpkobj if PpkY ≥Ppkobj: ð8Þ

Performance-conformed at (Ppobj, Ppkobj) if
PpkY

Ppkobj
>

PpY
Ppobj

≥ 1: ð9Þ

Inertial � conformed atPpmobj if PpmY ≥Ppmobj: ð10Þ

The surface associated with an inertial objective is a
semi-circle [7–9].

For usual objectives: Ppkobj ¼ 1; Ppobj ¼ 43 ≈ 1; 33 and
Ppmobj ¼

ffiffiffiffi
10
p

3 ≈ 1054.
The usual conformity defined by inequalities PpY ≥

Ppobj and PpkY ≥Ppkobj and corresponding to the trape-
zoidal surface delimited by the triangle and the top of the
rectangle at Figure 3 suffers from the same defect as the
tolerance-conformity, by leaving too much latitude to the
allowed decentring [10].

In the example (Fig. 3), the characteristic is extended
inertial, tolerance-compliant and performance-compliant.
Rectangle and Ellipse are inside the triangle and cover the
available area.

The study of the advantages and disadvantages of
conformities in terms of characteristic acceptability is not
the subject of this paper [11]. However, by way of example,

Fig. 2. Illustration of surfaces defined by conformities for k=3.

Fig. 3. Illustration of surfaces of maximum conformity.

10 These real numbers are chosen objectives and the reason for
their ratings is due to the fact that the conformity criteria are
expressed in a simplified way using the capability indexes.
However, it should not be assumed that these objectives are
capability indexes associated with objective decentralization
concepts and objective standard deviation. These are numbers
chosen to express the compliance criteria outlined.

4 L. Leblond and M. Pillet: Int. J. Metrol. Qual. Eng. 9, 1 (2018)



In the annexes (property 3), we describe a specific property
of the conformity in inertial tolerancing (Inertial-con-
formed) that performance-conformed does not verify.

4 Statistical tolerancing and conformity
principles

The overall problem is defined like this: for any n-uplets of
charactertics ðY iÞi¼1...n with the centered nominals inde-
pendently, YJeu to the centered nominal verifying (1) and
nClearance verifying (3), what are the optimal RJeu which
ensure the principle of conformity?

When the same type of objective is used for YClearance
and Yi, the principle of conformity is said to be “under the
assumption of judgment identity”, which we will assume
later.11

The conformity principle in the worst case results in:

If for any i ¼ 1 . . .n; jY i � nij � Rip:s:

then jY Clearance � nClearancej � RClearancep:s:

As jY Clearance � nClearancej �
Xn

i¼1

jaijjY i � nij, the preceding

condition is verified when the arithmetic tolerancing
formula is used.

On the other hand, there is no smaller value for
RClearance enabling this condition to be satisfied.12
Therefore, without taking any risks, if an assembly of
worst-case parts conformed to the worst case, only the
arithmetic tolerance is optimal. Another advantage of
arithmetic tolerancing is that it is adapted to a set of
conformities including those presented above, without
necessarily being optimal.

Property 1–Conformity principle and arithme-
tic tolerancing.

For C a conformity with concave objective type, if the
characteristics ðY iÞi¼1...n are independent and C-con-
formed, then YClearance is C-conformed for arithmetic
tolerancing RClearance ¼

Xn

i¼1

jaijRi.13

This result shows that the arithmetic tolerancingmakes
a separation between the design specification and the
verification of these manufacturing specifications possible.
In practice, the considered conformities always have
concave types of objective. This concavity aims to

guarantee the second inequality of (6) on the functional
requirement from this same inequality on each of the
elementary characteristics. The demonstrations of this
property are given in annexe 3 for better readability.

Arithmetic tolerancing suffers, however, from a func-
tional incoherence that reflects its severity [12]: centered
and fair characteristics that satisfy the conformity, or not,
can induce conformal clearances for objectives well above
what is required.

Is there a less stringent criterion of conformity than the
worst case for statistical tolerance? The positive answer to
this question, and which is subject to the following
property (shown in the appendix), is a remarkable result.
However, its application is difficult because the choice of a
tolerancing formula and the choice of the criterion and the
objectives of conformity to be used can no longer be
decoupled.

Property 2–Conformity principle and statistical
tolerance.

Are n∈ ℕ*,ððciÞi¼1...n; clear:Þ∈�0; 1½
nþ1 and, Ci ¼ ðki;

ðcir; j
obj
i ÞÞ for any i=1…n and CClear: ¼ ðkClear:; ðcClear:r;

j
obj
Clear:ÞÞ conformities such as g : u→rð

ffiffiffi
u
p
Þ
2 concave.

Is ððliÞi¼1...n; lClear:Þ∈ℝ�þnþ1 checking the following
constraints:

lij
obj
i �

llear:j
obj
Clear:ffiffiffi
n
p and

lici

ki
�

lClear:cClear:

kClear:
:

If the characteristics ðY iÞi¼1...n are independent and Ci-
conformed, then YClear. is CClear.-conformed for:

RClear: ≥ lClear:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

a2i
Ri

li

� �2
v
u
u
t : ð11Þ

This property means that, under a strong constraint on
objectives, for any linear combination of n independent
characteristics, statistical tolerancing (5)14 makes it
possible to verify the principle of conformity for selected
conformities. The assumption of concavity ofg : u r!ð

ffiffiffi
u
p
Þ
2

is verified for rectangular or elliptic but not triangular
conformity. It is because the rectangular or elliptical
conformities impose a control of the decentring that the
situation is very different from that in which the decentring
are only constrained by the limits of the TIs, which is the
case for the tolerance-conformed, for example.

Let us illustrate this in the usual case where Ppobj ≥
Ppkobj> 0 are the conformity objectives for the Yi et
Pp

obj
Clear: ≥Ppk

obj
Clear: > 0 those for YClear.. If YClear. verifies

(1) and nClear. verifies (3),
Pp

obj

Clear:

Ppobj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

a2i R
2
i

s

is the minimum

of RClear:∈ℝ�þ ensuring the following equivalence 15:

11 Using the same types of objectives is not a theoretical but
reasonably practical obligation. It is indeed difficult to manage
distinct types according to the characteristics.
12 If Yi are conformed at the worst case scenario, then � Ri� di

�Ri for any i=1…n. then jdClearj �
Xn

i¼1

jaijRi, which requires
Xn

i¼1

jaijRi � RClear. Indeed, if not, with di= sgn(ai)Ri, we would

have dClear ¼
Xn

i¼1

jaijdi ¼
Xn

i¼1

jaijRi

Xn

i¼1

> RClear, which would

contradict the fact thatYClear is conformed in the worst case.

13 This is an immediate check using inequality
ffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

x2i

s

�
Xn

i¼1

xi

for any ðxiÞi¼1...n∈ℝn.

14 For any i=1…n, li=1, lClear ¼
6
h
.

15 This is a consequence of the situation where the offsets and
standard deviations of Yi are at the limits. Property ensures the
reciprocity with the conformity of the maximum performance.
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Performance-Conformity principle (under the
assumption of judgment identity):

If for any i ¼ 1 . . .n
jdij

Ri
� 1 �

Ppkobj

Ppobj
and

si

Ri
�

1

3Ppobj

then
jdClear:j

RClear:
� 1 �

Ppk
obj
Clear:

Pp
obj
Clear:

and
sClear:

RClear:

�
1

3Pp
obj
Clear:

: ð12Þ

Constraint of realization:

Ppobj � Ppkobj �
1
ffiffiffi
n
p ðPp

obj
Clear: � Ppk

obj
Clear:Þ: ð13Þ

By allowing intelligently controlled risks on all Yi,
statistical tolerancing can be used without impairing the
quality of the functional requirement. However, the
difficulty of exploiting this result is related to the
dependence of the constraint of production on the number
of characteristics n. It therefore requires setting objectives
according to the least favourable situation for character-
istics belonging to several linear relationships.

5 Conclusions

The problem in using statistical tolerancing lies in the
control of the decentring of the characteristics at the time
of their production. This is where using a statistical
tolerance reaches its limits and is the only reason that
obliges the designer to always preferentially examine the
acceptability of a clearance with arithmetic tolerancing.
For the latter, there is no taking of risk because if each
characteristic is tolerant-compliant (lowest condition) then
the clearance will necessarily be tolerant-compliant. This is
no longer assured as soon as the tolerance of the functional
requirement is calculated by a quadratic method.

However, statistical tolerancing could reduce the
functional inconsistency of arithmetic tolerancing if, for
example, performance-compliance was rigorously used
with targets that were severe enough to maintain low
decentring. This does not, however, prevent the use of a
statistical tolerance without a mind-set: it allows the
designer to widen the tolerances of the links for an
acceptable clearance, which satisfies the manufacturer in
terms of feasibility. Everyone seems satisfied, except that
the question should be asked: who pays for the uncontrolled
risks? Firstly, the company that manages the crises does so
at great expense, but also the customer through chronic
dissatisfaction that costs them very dearly. In other words,
everyone! Suffice to say that the prospects offered by the
regular reflections on industrial efficiency open the doors to
an information management that remains to be agile.

We have shown in this paper that statistical tolerancing
must be used in conjunction with a specific definition of
conformity that we have defined. In addition, we have
shown the importance of the concave objective types to
satisfy the principle of conformity using statistical
tolerancing.

Appendices
Mathematical development
Property 2 – Conformity principle and statistical
tolerancing

Are n∈ ℕ*,ððciÞi¼1...n; clear:Þ∈�0; 1½
nþ1 and, Ci ¼ ðki;

ðcir; j
obj
i ÞÞ for any i=1…n and CClear: ¼ ðkClear:;

ðcClear:r; j
obj
Clear:ÞÞ conformities such as g : u→rð

ffiffiffi
u
p
Þ
2 con-

cave.
Is ððliÞi¼1...n; lClear:Þ∈ℝ�þnþ1 checking the following

constraints:

lij
obj
i �

lClear:j
obj
Clear:ffiffiffi
n
p and

lici

ki
�

lClear:cClear:

kClear:
:

If the characteristics ðY iÞi¼1...n are independent and Ci-
conformed, then YClear. is CClear.-conformed for:

RClear: ≥ lClear:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

a2i
Ri

li

� �2
v
u
u
t :

A � If for any i=1…n, jdij < j
obj
i Ri then

jdClear:j < j
obj
Clear:RClear:. This is a consequence of the first

constraint and the inequality
ffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

x2i

s

�
Xn

i¼1

xi. Indeed:

jdClear:j �
Xn

i¼1

jaijjdij <
ffiffiffi
n
p

lClear:j
obj
Clear:

1

n

Xn

i¼1

jaij
Ri

li

 !

�
ffiffiffi
n
p

lClear:j
obj
Clear:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1

a2i
Ri

li

� �2
v
u
u
t :

B � If for any i=1…n, si �
Rici
ki

r jdij

j
obj
i

Ri

� �

then

sClear: �
RClear:cClear:

kClear:
r jdClear:j

j
obj

Clear:
RClear:

� �

.

For bi ¼
jaij

Ri
liffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1
a2
i

Ri
li

� �2
r ≥ 0, we have

Xn

i¼1

b2i ¼ 1 and

bi ≥ lClear:

RClear:
jaij

Ri

li
≥

ffiffiffi
n
p

j
obj
i

j
obj
Jeu

RClear:

jaijRi.
Using the g definition, the second constraint and the

inequality onRJeu:

s2Clear: �
Xn

i¼1

lici

ki

� �2

a2i
Ri

li

� �2

r
jdij

j
obj
i Ri

 ! !2

�
RClear:cClear:

kClear:

� �2

Xn

i¼1

a2i
Ri
li

� �

Xn

i¼1

a2i
Ri
li

� �2

Xn

i¼1

bi

jdij

j
obj
i Ri

 !2
0

@

1

A

�
RClear:cClear:

kClear:

� �2

g
jdij

j
obj
i Ri

 !2
0

@

1

A
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By concavity of g then using its decreasing and the
inequality between arithmetic mean and quadratic

1
n

Xn

i¼1

xi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Xn

i¼1

x2i

s !

:

s2Clear: �
RClear:cClear:

kClear:

� �2

g
Xn

i¼1

bi

jdij

j
obj
i Ri

 !2
0

@

1

A

�
RClear:cClear:

kClear:

� �2

g
1
ffiffiffi
n
p

Xn

i¼1

bi

jdij

j
obj
i Ri

 !2
0

@

1

A:

Finally, by definition of g and decay of:

s2Clear �
RClear:cClear

kClear

� �2

r2
1
ffiffiffi
n
p

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffi

nj
obj
i

q

j
obj
JeuRJeu

jaijRi
jdij

j
obj
i Ri

0

@

1

A

2

�
RClear:cClear

kClear

� �2

r2
jdClear:j

j
obj
Clear:RClear:

 !

Below, we present the coherence property of the
inertial-conformity.

Definition 2 – Characteristic conditionally conformed.

For (Y, n, R) a characteristic, a Y’s process EðY =MÞ ¼
M (Y,M) admits a joint law,EðY =MÞ ¼M and Y � Mffiffiffiffiffiffiffiffiffiffiffiffiffi

V ðY =MÞ
p is

independent of M. The notation Y/M will mean Y
conditionally to M process of Y.

Is C ¼ ðk; ðr; jobjr ÞÞ a conformity. Y/M is C-conformed
if:

M∈Bðv; jobjr RÞp:s:

and∀x∈Bðn; jobjr RÞsY =MðxÞ �
R

k
r
jdY =MðxÞj

jobjr R

 !

; ð15Þ

with, for all real x: dY =MðxÞ ¼ EðY =M ¼ xÞ � n and
sY =MðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ðY =M ¼ xÞ

p
.

A conformity C is said to be coherent if for any
characteristic(Y, n, R) and M a Y’s process, if Y/M is
C-conformed then Y is C -conformed. It reflects the facts
that the mixing of conforming production batches remains
conformed.

The consistency of a conformity is not verified in
general (if Y/M is C-conformed, mY ¼ EðY Þ ¼ EðE
ðY =MÞÞ ¼ EðMÞ∈Bðn; jobjr RÞ (since M∈Bðn; jobjr RÞ p:s:)

but sY =MðmY Þ �
R
k
r
jdY =M ðmY Þj

j
obj
r R

� �
does not generally impose

sY �
R
k
r jdY j

j
obj
r R

� �
.

The following lemma is used for the demonstration of
the coherence property below.
Lemma – The types of concave lenses.
Is r : [0, 1]!ℝ a continuous application. The following

assertions are equivalent:

1.r is decreasing concave.
2. For any v.a.r. U∈ [� 1, 1] p . s. E(r(|U|))� r(E(U)).
1⇒ 2: By inequality of Jensen,16 as r is concave,

E(r(|U|))� r(E(|U|)). Furthermore r is decreasing and
|E(U)|�E(U).

2⇒ 1: We pose g= r � || : [� 1, 1]!ℝ. For any continu-
ous f : [0, 1]! [� 1, 1] and uniformU on [0, 1], f(U)∈ [ � 1, 1]
p . s. and by assumption:

Eðg � fðUÞÞ ¼ ∫
1

0

gðfðtÞÞdt � g ∫
1

0

fðtÞdt

 !

¼ gðEðfðUÞÞ: ð19Þ

Are ða; bÞ∈ � 1;1½ �2; a < b; l∈½ 0; 1�; e∈½0;minðl; 1 � lÞ�
andfe : ½0; 1� ½

!
a; b� defined by:

fe is continuous and ∫
1

0

feðtÞdt ¼ lbþ ð1 � lÞa. Further-
more:

∫
1

0

gðfeðtÞÞdt ¼ ðl � eÞgðbÞ þ ð1 � l � eÞgðaÞ þ ∫
lþe

l� e

gðfeðtÞÞdt:

But g is continuous on the compact [a, b] because r is
continuous, it thus reaches a minimum m∈ ℝ and

∫
lþe

l� e

gðfeðtÞÞdt≥ 2em. Consequently, according to (19):

lgðbÞ þ ð1 � lÞgðaÞ � 2e
gðaÞ þ gðbÞ

2
� m

� �

� gðlbþ ð1 � lÞaÞ:

This inequality being true for any e∈�0;minðl; 1 � lÞ½,
we deduce, by definition, that g= r � || is concave on [ � 1,
1]. r is therefore concave. Moreover it is decreasing on [0, 1]
since for any (l, n)∈ [0, 1]2:

rðnÞ ¼ 1 � l 2gð� nÞ þ 1 � 1� l
2

�
ÞgðnÞ � g � 1� l

2

�
nþ

1 � 1� l
2

� �
nÞ ¼ rðlnÞ.

Note that if r(0)> 0 and r(1)≥ 0, the concavity of r
ensures that it is strictly positive on [0,1[.

Property 3 – Characterization of a conformity
coherency.

Are k∈ℝ�þ and r : ½0; 1�→½0; 1� a continuous application such
as 0 < rð0Þ � kffiffiffiffiffiffiffiffi

1þk2
p .

The following assertions are equivalent:
1.C ¼ ðk; ðr; jobjr ÞÞ is a coherent conformity.
2. Is exists continuous concave decreasing f : [0, 1]! ]0,

1] as f(0)= 1, jobjr ¼

ffiffiffiffiffiffiffi
fð1Þ
p

rð0Þ

k
� 1 and for any u∈ [0, 1]

rðuÞ ¼ rð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðuÞ � fð1Þu2

p
.

1⇒ 2: Are U∈ [ � 1, 1] p . s., n ∈ ℝ, R∈ℝ�þ . We pose:

M ¼ nþ jobjr RU∈Bðn; jobjr RÞ p:s: and ∀x∈Bðn; jobjr RÞsðxÞ

¼
R

k
r
jx � nj

jobjr R

 !

:

16 https://fr.wikipedia.org/wiki/Inégalité_de_Jensen.
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There is then a characteristic (Y, n, R) of M process
Mas: V ðY =MÞ ¼ s2ðMÞ. By definition, Y/M is C-con-
formed and then, by coherence of C, Y is C -conformed,
that is, noting that d2Y þ s2Y ¼ Eðd2Y =M þ s2Y =MÞ:

E ðM � nÞ
2
þ

R2

k2
r2
jM � nj

jobjr R

 ! !

� ðmY � nÞ
2
þ

R2

k2
r2
jmY � nj

jobjr R

 !

Then, Eððjobjr kUÞ2 þ r2ðjUjÞÞ � ðjobjr kEðUÞÞ2 þ r2

ðjEðUÞjÞ and the lemma ensures that the application g :

u∈½0; 1� →ðjobjr kuÞ2 þ r2ðuÞ∈ℝ�þ is concave decreasing.
Especially: ðjobjr kÞ2ð1 � u2Þ � r2ðuÞ � r2ð0Þ because

r(1)= 0.
Also, there are l ∈ [0, 1] as jobjr ¼

lrð0Þ
k
� 1 and

f : u∈½0; 1�
gðuÞ

r2ð0Þ

���!

∈�0; 1� checks 2.
2⇒ 1: As for any u∈ [0, 1] f(1)u2� f(1)� f(u)� f (0) the

application r verifies: rð0Þ
ffiffiffiffiffiffiffiffiffi
fð1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � u2
p

� rðuÞ ¼

rð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðuÞ � fð1Þu2

p
� rð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � fð1Þu2

p
.

C ¼ ðk; ðr; jobjr ÞÞ is a conformity. Indeed, r : [0, 1]! [0, 1]
is strictly positive on [0,1[, r(1)= 0, jobjr ∈ℝ�þ, r is decreasing
because f is decreasing and for any u∈ [0, 1] rðuÞ þ jobjr

u � rð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � fð1Þu2

p
þ

ffiffiffiffiffiffiffi
fð1Þ
p

k u

� �

� 1 because rð0Þ �
kffiffiffiffiffiffiffiffi
1þk2
p .

Finally, for a characteristic (Y, n, R)M process asY/M
is C-conformed, EðMÞ ¼ mY ∈Bðn; jobjr RÞ and:

d2Y þ s2Y ¼ Eðd2Y =M þ s2Y =MÞ �
R2r2ð0Þ

k2
E f

jM � nj

jobjr R

 ! !

� ðmY � nÞ
2
þ

R2

k2
r2
jmY � nj

jobjr R

 !

:

(The first inequality is a consequence of Y/M C-
conformed and the second is an application of the
inequality of Jensen with f concave decreasing).

Therefore, Y is C-conformed and C is coherent.
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