Gerhard Fohler 
  
Gautam Gala 
  
Daniel Gracia Pérez 
  
Claire Pagetti 
  
Daniel Gracia Pérez 
  
  
Evaluation of DREAMS resource management solutions on a mixed-critical demonstrator

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

I. INTRODUCTION

The DREAMS [DRE] (Distributed REal-Time Architecture for Mixed Criticality Systems) FP7 project addresses the design of a cross-domain architecture for executing applications of different criticality levels in networked multi-core embedded systems. The project has terminated in September 2017, after a duration of 4 years. The results cover a large variety of topics that go from architectural designs definition, building blocks development, a tool chain for configuring a DREAMS platform development till three demonstrators.

In this paper, we focus on the DREAMS resource management solution which is in charge of maintaining the applications execution even in the presence of failures. More precisely, we will illustrate the resource management capabilities on an industrial mixed-critical demonstrator developed at Thales.

A. Resource management

A DREAMS platform is composed of several multi-core chips connected through a TTEthernet network. The resource management is composed of local resource managers on each multi-core and a global resource manager that knows at any time the local configurations of each multi-core and is able from that to construct a global view of the overall platform. The resource management aims at supporting two types of failures:

• permanent core failures leading to local and global reconfiguration; • critical applications temporal overload situations when non-critical (also referred to best-effort) applications have a too consuming access to shared resources, leading to adaptation. We have described the initial specification of the DREAMS resource management in [DFG + 16]. Two years later, this specification has been slightly modified and consolidated as shown in Section II for the local resource management and in Section III for the global resource manager. 1 The research leading to these results has received funding from the European FP7-ICT project DREAMS under reference n • 610640.

B. DREAMS industrial mixed-critical demonstrator

The purpose of the DREAMS industrial mixed-critical demonstrator is to show the feasibility of using a DREAMS platform in a safety critical environment. More precisely, the platform is composed of three multi-core chips, two Freescale QorIQ T4240QDS with 12-cores and the DREAMS Harmonized Platform that is based on the Zynq board with 2-cores. Thus, the complexity of the demonstrator is high -for instance the number of potential core failures on a 12-core chip is 4096 -and this platform is a good candidate to show the robustness of the tooling and the fault-tolerant middleware. The demonstrator and some scenarios illustrating the resource management capabilities will be detailed in Section IV.

The main contributions of the paper, in addition to the aforementioned modifications in the specifications, are:

• porting of the DREAMS resource management services on the Freescale QorIQ T4240QDS; • implementation of the resource management communication on the TTEthernet network that now connects Freescale QorIQ T4240QDS and/or DREAMS Harmonized Platform; • experiments and evaluation on the industrial mixedcritical demonstrator. The results show (1) the faulttolerance capacity of a DREAMS platform against failures and the scalability of the approach on a realistic platform, and (2) the efficiency of the adaptation solutions to improve the usage of the system while ensuring the critical applications deadlines.

II. LOCAL RECONFIGURATION AND ADAPTATION

STRATEGIES

In this section, we present the general functioning of the local resource management and we particularly insist on the novelties since the last publication [DFG + 16].

A. Reminder

The DREAMS middleware relies on TSP (time and space partitioning) principles compliant with IMA (Integrated Modular Avionics) [Rad], [START_REF][END_REF] which is the de-facto standard for current aircraft design. TSP is ensured by the XtratuM hypervisor [MRC + 09], which is a technology involved in the project. During DREAMS, an additional layer, named DRAL for DREAMS Abstraction Layer, has been developed by Fentiss and University of Valencia in order to provide specific interface to the application to access the DREAMS services. Among those services, DRAL offers the capability to reconfigure the application ports accessing the TTEthernet network. The actual port configuration is computed offline and depends on the current executed plan.

The fault-tolerant services, referred as the DLRM run-time library, are implemented on top of XtratuM and DRAL. They consist of: (1) MON service which monitors the health of cores and critical applications, (2) LRS service which performs the run-time scheduling based on the configuration set by the LRM, and (3) LRM service which either adopts the initial configuration, or a configuration requested by the GRM, or selects a new configuration from the ones available and reports its current state to the GRM. The different acronyms are explained in Table I All the potential local and global reconfiguration plans are computed off-line by the DREAMS tool-chain. Thus, when a failure occurs, the resource managers simply apply the transition decided off-line.

In the presence of core failures, the LRM is in charge of reconfiguring the multi-core in order to continue executing the local applications. The reconfiguration strategy, in case not all applications could be locally hosted after some failure(s), follows two rules: (1) critical applications are locally reconfigured in priority, and (2) complete applications must be moved, i.e. an application cannot run on two multi-core chips at the same time.

There have been some updates in the final implementation. Initially, the LRM computed the new configuration just after the detection of a failure whereas now it takes local reconfiguration decisions at the end of the MaC by collecting all failed cores. MaC stands for MAjor Cycle, which could also be referred in the literature to MAF (Major Frame). This entails that several failures may happen during a MaC and decisions could consider multiple failures. Each core is associated to an LRM. All LRMs run synchronously in parallel and among which one is the master, that is, the one to apply the reconfiguration. To avoid non deterministic decisions, we impose reconfiguration graphs to be symmetric.

Example 1: Let us consider an execution on the DREAMS Harmonized Platform (DHP) [START_REF]DREAMS final integration[END_REF] composed of two ARM cores, shown in Figure 1. The multi-core is in configuration C 1 during the first MaC, where 2 user partitions (P0 on core 0 and P1 on core 1), 2 LRMs (in yellow) and 2 MON (in blue) execute. During the second MaC, core 0 fails and the failure is detected by the MON. The LRM takes a local reconfiguration, that consists in moving to C 2 , at the third MaC and informs the GRM of the current configuration via an update message. The reconfiguration graph is given in Figure 2 left-hand side. We recognize the transition from C 1 to C 2 in case core 0 fails. There is another local decision in case core 1 fails (this ensures completeness) and there is also a global reconfiguration leading to C 4 , where the ARM will host another application in case some core of another multi-core fails. From C 4 , the configurations reached after any core failure are specified. The global reconfiguration C 1 → C 4 execution is drawn in Figure 2 right-hand side. In that case, the GRM sends an order to the LRM to switch to the new configuration. 

C. Deadline overrun: adaptation strategy

In case of an internal deadline violation (i.e. deadline miss after the execution of a job in a slot), the LRM momentaneously interrupts non critical applications to enforce the critical ones to respect their slot deadlines. The adaptation services have not been modified but they have been enriched with predictive QoS algorithms to increase the non-critical applications utilization.

As a reminder of the deadline overrun service, the first MaC of Figure 3 provides a reminder of its operation. The hardware has 4 cores and the configuration 4 applications. On core C0, a critical application with a single slot executes; while the other cores (C1, C2 and C3) host best-effort applications. The deadline overrun service was initally developed in [KPR + 14] and suppose to place statically observation points. Those points are positioned between two successive jobs of an application slot. In the figure, the critical application slot executes a sequence of 5 jobs. During the first MaC the MON detects an internal deadline violation after the execution of the second job (shown as a red circle). In reaction the LRM stops the execution of the non-critical applications running in C1, C2 and C3. Once the critical application slot finishes (i.e., after execution of the fifth job), the LRM resumes the execution of the non-critical applications. Thanks to this mechanism, critial applications always respect their real-time constraints. The QoS enhancements record relevant execution statistics (e.g., when a stop operation was issued, execution time of each job, etc.) and forecast which critical jobs should run in isolation. During the second MaC of Figure 3, the QoS enhancements decided to stop the best-effort applications during the second job of the critical application and resume them just after. This decision has drastically reduced the time non-critical applications are suspended, and effectively enhanced the system utilisation. The QoS enhancements try to improve the system performance, but never override the deadline overrun mechanism operation. This is illustrated in the third MaC, where the QoS mechanism stopped again the best-effort applications during the second job execution but this did not prevent an internal deadline violation at the fourth job. Likewise, if an internal deadline violation occurs during the first job, the best-effort applications will be stopped and the QoS mechanisms will never be activated (e.g. non-critical applications are not resumed after the second job of the critical application slot).

To decide which critical jobs should be done in isolation, the QoS mechanism integrates two heuristics:

1) If a job triggers an internal deadline violation, that job is added to a list of jobs to execute in isolation during the following MaCs. 2) Reset the QoS strategy (i.e. empty the list of jobs to execute in isolation) if new internal deadline violations occur after a fixed number of MaCs without internal deadline violations. In our experiments, we found that reseting the QoS strategy after one MaC without internal deadline violations provided good results. We analyzed other heuristics for programming and resetting QoS actions in [START_REF] Heywood | Scheduling mixed-criticality multi-core systems to maximise resource utilisation[END_REF], but found that the above ones presented the best compromise for our experiments.

D. Development framework

An overview of the DREAMS tool chain is shown in Figure 4, in which we only point out the tools involved in computing the resource management configuration files. The DREAMS platform and applications descriptions are constantly stored in the DREAMS AUTOFOCUS3 tool [START_REF] Kondeva | Seamless model-based development of embedded systems with AF3 phoenix[END_REF]. First, the user must manually describe its inputs. Then several partners-tools are involved to provide the off-line schedules: 1) XCONCRETE [BMR + 10] computes the initial configuration on each multi-core; 2) GREC (developed during the project) computes the local reconfiguration graphs for the multi-core chips and the global reconfiguration graph for the GRM, considering the partition slots computed by XCONCRETE; 3) MCOSF (developed during the project) completes the graphs provided by GREC by generating scheduling tables for transition modes and estimating the flexibility in periodic tasks in order to insert aperiodic tasks; 4) TT-PLAN [START_REF] Steiner | An evaluation of smt-based schedule synthesis for time-triggered multi-hop networks[END_REF] (updated during the project) finally computes a super schedule for the TTEthernet that supports all the possible computed configurations. The generated files are directly used on the targets. RTAW2 is in charge of the interconnection of all tools.

GREC will be detailed in a future paper. Briefly, it is based on a constraint-programming approach and has face some scalability issues due to the size of the industrial mixed-critical demonstrator. Indeed, as explained before, to support multiple failures, local reconfiguration graphs must be symmetric and complete. In particular, there are 4096 potential failures for a Freescale QorIQ T4240QDS. To cope with those scalability challenges, we relied on two strategies: 1) grouping equivalent configurations (in particular for the demonstrator, there are at most 78 configurations on a T4240QDS) and 2) computing the schedule on a study window that is much smaller than the least common multiple of periods, but a solution of which is a solution for the unrolled case.

III. GLOBAL RESOURCE MANAGER -GRM

The GRM is the central component which has comprehensive knowledge about the system, which communicates with all other resource management components and which applies global reconfiguration when necessary.

A. Role of the GRM

The GRM is in charge of three main activities. a) Gathering information from the LRMs: The GRM collects information provided by the LRMs. More precisely, each master LRM sends every MaC an update message which can be of the following 2 types:

• Status Update message means that the LRM did not modify the configuration or has applied a local reconfiguration that maintains the correct functioning of the multi-core. • Global reconfiguration request means that the LRM was unable to reconfigure all applications locally. Thus it is up to the GRM to decide whether a global reconfiguration could accommodate applications which can no longer hosted. Note that when a multi-core has entirely failed, the GRM detects the absence of a message, and also tries to globally reconfigure the system. b) Making global reconfiguration decision: The GRM stores a data base of all off-line pre-computed configurations and transitions, corresponding to the global reconfiguration graph. If a global reconfiguration is required, the GRM searches in the graph if any transition is possible and if yes, selects the next global configuration and identifies all the multi-core chips involved in the reconfiguration. c) Sending orders to LRMs: When a global reconfiguration decision has been taken, the GRM communicates it to all the LRMs involved in the reconfiguration via an order message.

B. Implementation

There were several options for implementing the GRM. One was to implement it as a software component in a separate node, with no other tasks running on it. If this would make the development simpler, it would be a waste of resources. Another choice was to implement the GRM directly in the hardware. But this was evaluated too costly and time intensive. We chose the option to integrate the GRM into an existing nod eand assigning to it an exclusive XtratuM partition. This has the advantages to better use of the available resources and to allow fast communication with the LRMs hosted on the same same node. The drawbacks are the infrastructure development is more complex and the solution lacks of flexibility, as it is constrained by the other concurrent applications. The GRM does not have a large workload but instead matching the system-wide constraints to offline configurations is something that a simple finite state machine can do.

The GRM is implemented in the DREAMS Harmonized Platform and its partition is considered as critical. An example of an overall architecture of the resource managers in case of three multi-core nodes is shown in figure 5.

d) Communication implementation: The GRM communicates with each multi-core of the system. It can only interact with LRMs (more precisely with the current master, which may change over time) via updates and orders channels [GKGP + 16], but not directly with any application. Hence, mono-cast updates messages are required between the GRM and all LRMs on each node. order should be sent to all LRMs as well, so that they can maintain the system state Figure 5: Resource managers mapping individually for fault-tolerance purpose. Since orders must be the same for all LRMs belonging to a single node, again the channel is implemented as a multi-cast between GRM and those LRMs. updates have queuing ports, so that no message from a LRM is missed by the GRM; while orders have sampling ports for LRM to only consider the latest order. The communication channels are also time-triggered (TT) to ensure timely and predictable communication. They are implemented using sampling and queuing ports provided by XtratuM and TTEthernet Virtual Links (TT VLs). More precisely, the properties of the channels are summarized in table II. The updates message (figure 6a) is 64-bit long and consists of three main fields:

• Message: 0 is reserved for reconfiguration based on external input; values 1 to n are reserved for the case of complete node failure, where n is the number of nodes in the system; other message values are assigned by off-line tools.

• Type: 0 stands for a status update whereas 1 stands for global reconfiguration request; • Mode: is the integer coding the current local configuration. The order channel message (figure 6b) is 64-bit long message and consists of two fields: f) RM initial synchronization: All multi-core start in an initialization configuration C 0 . Once the initialization are done, each LRM sends an update to the GRM. Once all update messages have been received, the GRM broadcasts an order to move to C 1 so that all multi-core start their nominal execution synchronously.

C. Global Reconfiguration time

The GRM can process all available update messages, finds a new global configuration, and sends orders to LRMs involved in the reconfiguration (if applicable) within one instance of its execution (i.e., within in one MaC). Further time needed for global reconfiguration depends on the time needed to receive the update messages by the GRM, and time to receive order message for the LRMs on the nodes involved in the reconfiguration. The time needed for global reconfiguration is bounded, since we consider only TT messages for orders and updates channel. An example for required global reconfiguration time is shown in Section IV-C for an industrial demonstrator.

D. Other features 1) Reconfiguration based on external input:

The GRM also has the capability to reconfigure the entire distributed system based on external input. The external input may only be applied to predetermined GPIO port(s) of a multi-core node. The GRM may read the external input port directly, if it is on the same node as the GRM itself; alternatively, the LRMs can read the external input port, and alert the GRM with an update message. This feature can be useful, for example, to move to a safe-state, or to switch between automatic or manual mode in case of autonomous systems, etc.

2) Secure communication between resource managers: As detailed [KGGP + 16], the resource management middleware has potential breaches that can be exploited by an attacker. Thus attacks like masquerading (e.g. the attacker sends wrong orders to LRMs), and communication attacks (e.g. sniffing traffic to get critical system information) are considered. The counter measures developed in the project are confidentiality to ensure privacy of information, integrity to ensure non corrupted data, authenticity to ensure the origin of data and access control based only on permissions.

The resource management library automatically adds security headers to both the messages to enable authenticity and integrity checks. In addition, the messages are encrypted before being transmitted, and decrypted upon reception by the resource management components using the security library developed. The overheads for the security of resource management vary for each type of communication channel and RM component as described in [GKGP + 16].

IV. INDUSTRIAL MIXED-CRITICAL DEMONSTRATOR

The architecture mixed-critical demonstrator highlights the reconfiguration capabilities of the DREAMS middleware. The demonstrator combines critical applications issued from the industry with non-critical applications using two different multi-core platforms, connected with a wired network.

A. Demonstrator architecture

The demonstrator is composed of three hardware platforms: two Freescale QorIQ T4240QDS (Freescale QorIQ T4240) and a DREAMS Harmonized Platform (DHP). The T4240 is a 12 core multi-core platform. Each core is an instance of the PowerPC e6500 64-bit core and is interconnected through a dedicated NoC. The DREAMS Harmonized Platform [START_REF]DREAMS final integration[END_REF] is an heterogeneous platform based on the Xilinx ZC-706C FPGA platform. It combines a dual-core ARM Cortex A9 processor with three Microblaze cores (not used in the demonstrator) connected through a deterministic NoC developed in the project. In the setup described in the sequel, the NoC and the Microblaze are not used.

The multi-core chips communicate via a TTEthernet network [START_REF] Kopetz | The time-triggered ethernet (TTE) design[END_REF]. The network support is provided by a TT-Tech Lab Switch which combines time-triggered (TT) traffic in addition to the AFDX standard rate-constrained (RC) and best-effort (BE) traffic. The T4240s use a TTTech PCIe card to connect to the network, while the DHP includes the TTTech IP in its FPGA. On the software side, the demonstrator is composed of four applications (APP1-3 are critical and APP4 is best-effort) that communicate with each other as depicted in Figure 7 and an independant best-effort MPEG server [START_REF] Isovic | Quality aware mpeg-2 stream adaptation in resource constrained systems[END_REF]. Each application is single-partition and single-core (i.e., they run using a single core) with multiple periodic and aperiodic tasks. All the communications between those applications going through the network use RC traffic. Because of proprietary issue, we will not described the application themselves.

B. Demonstrator critical applications

Two sets of scenarios are considered:

• Fault management at local and distributed levels. The goal is to handle the demonstrator setup with as many core failures as possible, while keeping the critical applications functional.

• Mixed-criticality on a multi-core processor: The goal is to assess the robustness and the performance of deadlineoverrun and QoS solutions.

C. Fault management at local and distributed levels

This behaviour of resource management was successfully validated on the target by simulating core failures in the T4240 node. To shorten the executable file generation and the fault injection, we defined reduced scenarios were only 4 cores (Core 0 to 3) were activated on each T4240. The LRMs execute on both nodes synchronously towards the end of each MaC. There are two possiblities to place the GRM which effects the global reconfiguration time as explained in Section IV-C1 and IV-C2. In the initial configuration (MaC 0, Plan 0), all APPi are hosted on a T4240 node and MPEG server is on the DREAMS Harmonized Platform. Core failure is simulated for three out of four cores of the T4240 node, with one core failing at a time (core 3, core 2 and core 1 in MaC 5, MaC 6, MaC 7 respectively) as shown in Table III (In this table, we consider the GRM executes as in Section IV-C2). Every core failure is correctly detected by the LRM via the core-failure MON. As expected, the LRM selects a new configuration from the local reconfiguration graph (Plan 2, Plan 5 and Plan 12 on failure of Core 3, Core 2 and Core 1 respectively), and informs the GRM about the local change. Until the failure of two cores (core 3 and core 2), the LRM is able to find a local configuration that can allocate all four applications. Upon failure of the third core (core 1), LRM can only find a configuration that can host the three critical applications (App1, App2 and App3) on core 0. It informs the GRM about the local change, and requests for a global reconfiguration so as to host the non-critical application, APP4 on another node. The GRM finds a new schedule (Plan 4) for the DREAMS Harmonized Platform that can host APP4 and informs the LRM of the DHP about reconfiguration.

It was observed that overall time needed for global reconfiguration depends on the allocation of the GRM slots with respect to the slots of LRMs.

1) GRM slot occurs directly before the slots of LRMs: In this case, when a LRM instance detects a core failure and requires a global reconfiguration, it sends an update message, which in the worst case, will be received by the GRM instance of the next MaC; this GRM instance will in turn send orders to the instance(s) of the LRM (s) belonging to the upcoming MaC. The LRM (s) belonging to the upcoming MaC will apply the reconfiguration according to the order from the GRM.

Figure 8: Global Reconfiguration Overhead Thus, the reconfiguration time is two MaC after detection of a core failure in the worst case. The advantage here is that resource management communication has to take place less often, hence requiring lesser network bandwidth; but, the disadvantage is that the reconfiguration time is longer.

Similar considerations apply if the GRM is scheduled less than one TT-VL period for update channel after start of the a new MaC.

2) GRM slot occurs at least one TT-VL period for order channel before the LRMs and one TT-VL period for update channel after start of the a new MaC: In this case, when a LRM instance detects a core failure and requires a global reconfiguration, it sends an update message which, in the worst case, will be received by the GRM instance of the same MaC; this GRM instance will in turn send orders to the instance(s) of the LRM (s) belonging to the next MaC. The LRM (s) belonging to the next MaC will apply the reconfiguration according to the order from the GRM. Thus, the reconfiguration time is one MaC after detection of a core failure. The disadvantage here is that resource management communication has to take place more often, hence requiring more network bandwidth; but, the advantage is that the reconfiguration time is shorter. This case can be observed in Table III as well.

3) Resource management overhead: Additionally, runtime extra-partition overhead is introduced by the core-failure MON, the LRM, and the GRM partitions. The LRM behavior and function depends on the setup. In this setup, it requires to exchange messages with the GRM, which will not exist on a single node setup without global reconfiguration. Additionally the LRM in case of a core failure requires to reconfigure the system, which among others require a change of plan from the XtratuM hypervisor which is done through a system call. The MON function is always the same, independently of the setup being distributed or not. The three partitions -for the GRM, LRM and MON require single slot per MaC; but to avoid interferences, during the time window on which these slots are executed, no other slots are allocated in the other cores. 

D. Mixed-criticality evaluation

For the evaluation of the resource management solutions enabling to run simultaneously critical applications we combined the demonstrator applications previously described with non-critical applications stressing the resources on a single platform: a T4240 from which only a cluster with 4 cores is used. For that purpose we created four different deployments. In all the deployments the critical applications of the safety critical demonstrator are run in core 0. The deployments are:

• Isolation: A non-critical application is deployed in each core. The non-critical applications are scheduled to execute on the time windows not being used by the critical applications slots. • Interference: A non-critical application is deployed in each core. The non-critical application in core 0 is scheduled to execute on the time windows not being used by the critical application slots. The non-critical applications in core 1 to 3 exploit the complete MaC, i.e. they are executed at the same time than the critical application slots. Figure 9 depicts the difference between the isolation (Figure 9a) and the interference (Figure 9b) deployments.

• Deadline overrun: Identical to the interference deployment, but with the deadline overrun adaptation strategy activated. As non-critical applications to stress the memory shared resources four stressing benchmarks are used: write sequential (ws), write random (wr), read sequential (rs) and read random (rr). All the applications access a large array (8MiB) bigger than the cache level 2, and accesses have a step of 64bytes (i.e. the caches cache line size), so each access forces the usage of new cache line. For a run of a deployment all the non-critical applications are the same.

Table V shows the sum of the slots deadlines per application, and the worst and median observed execution time per application when running on each of the deployments with the different stressing benchmarks. All the numbers are shown as the percentage of the application deadline when running in the isolation deployment. To compute the slots deadlines in the isolation deployment, for each slot of an application (i.e. partition) the worst execution time of each task in the slot when running against any of the non-critical applications is added. Note that a task can be used in multiple slots, but only its worst observed execution time is used to compute the deadline. To compute the slots deadlines in the interference deployment, the slots deadlines in the isolation deployment are multiplied by the system slowdown factor. The slowdown factor is computed as the biggest slow down suffered by any critical task in the system, computed as the task worst observed execution time in the interference deployment divided by the worst observed execution time in the isolation deployment. In our scenario the slowdown factor was determined to be 4.036. The slots deadlines when using the resource management solutions (deadline overrun with or without the QoS enhancements) are computed as the sum of the slot tasks worst observed execution time in the isolation deployment, plus the biggest of the slot tasks worst observed execution time minus the execution time of this same task in the isolation deployment.

As can be observed in Table V the usage of the deadline overrun adaptation strategy allows to reduce the deadlines requirements: from +303.6% required in the interference deployment for the three applications to +147.5%, +140.3% and +158.9% respectively for APP1, APP2 and APP3. These tighter deadline requirements would allow to integrate more critical applications. The actual worst and median observed execution times of the critical applications are reduced when using the deadline overrun adaptation strategy, and further reduced when extending it with the QoS enhancements. The most significant gains are realized with the ws as non-critical application on the APP1, with worst and median observed execution times going from 342% and 238.1% without the adaptation solutions to 99.2% and 89.9% when using the deadline overrun adaptation strategy extended with the QoS enhancements.

In some situations, the observed execution time is slightly more important when using the adaptation strategies, as can be observed on APP1 and APP2 critical applications when executing in parallel the rs and rr non-critical applications. However, the slowdown is much smaller than the speedup observed in the other combinations of critical and non-critical applications. Furthermore, the observed execution times in those cases are much smaller than the deadline. In all our experiments, the adaptation strategies were able to keep the slots execution time below the slot deadline.

Table VI shows the performance the non-critical applications were able to extract when using the adaptation strate- Matrix approach [RF07] is an adaptive QoS framework for efficient resource management. Its goal is the efficient transport of streams with acceptable play out quality in a heterogeneous and dynamic environment. It is achieved by real-time resource management methods for decoupled video streaming of heterogeneous devices. The Matrix approach reduces the system representation to the minimum relevant information needed for resource management. It is based on a global abstraction of device states as representation of the system for resource management to decouple device scheduling and system wide resource allocation. This reduces the amount of system state information and decreases overheads for its determination and dissemination

The ACTORS project aims at providing adaptability within a single device, based on abstract service levels of CPU availability and application demands and adaptability. The main components in ACTORS is a resource manager which distribution resources between the applications. It considers the available overall CPU time as a resource. It takes in account both the CPU bandwidth which is available to the applications as well as the granularity at which it is provided.

In Project ACROSS [ACR], a "Trusted Resource Manager" provides possibility to reschedule communication on the NoC.

The reconfiguration decisions are dealt by the Resource Manager. It is also resposible for propagating these decisions to all other components on the local Network on Chip.

Reconfiguration for avionic platform has been proposed in Asaac [START_REF] Asaac | ASAAC final draft of proposed guidelines for system issues -volaume 4 : System configuration and reconfiguration[END_REF] project for military aircrafts; Diana [EJS + 10] and Scarlett [PBB + 12] for the civil domain. Diana's approach was distributed while Scarlett's the reconfiguration was centralized. DREAMS proposes an in-between solution with distributed local reconfiguration and centralized global reconfiguration manager. Compared to those solutions, DREAMS approach is domain-independent and extends the fault model with temporal overload situations.

Resource management in DREAMS is a promising target for attackers as it deals with critical system information. This poses an increased risk of malicious attacks on the system. Syed et al [START_REF] Abbas | Online admission of non-preemptive aperiodic mixed-critical tasks in hierarchic schedules[END_REF] present a intra-partition local resource scheduler (LRS) for DREAMS resource management. The LRS allows admission of non-preemptive aperiodic tasks in hierarchic time-triggered systems at run-time while preventing bandwidth loss issue caused by creating bandwidth reservation for aperiodic tasks.

VI. CONCLUSION

We have presented the DREAMS resource management services that were successfully applied on an industrial mixedcritical demonstrator. In the future, we will work on reducing the current limitations of the resource management:

1) GRM is supposed fail-safe. The GRM only makes global reconfiguration decisions when necessary, but it is not required for the continuous operation of the system. Therefore, in case of GRM failure, the overall system dependability is not compromised as the system will still keep on executing; just no new global reconfigurations will be possible. 2) extend the fault model. For instance, how to support the erroneous behaviour of the DLRM? 3) partners of DREAMS worked on the certification aspects [LMB + 16] of the DREAMS platform, without the resource management. How could we extend their work to certify our executive layer? 

Figure 1 :

 1 Figure 1: DHP execution in case of permanent core failure.

Figure 2 :

 2 Figure 2: Local reconfiguration graph. The technical specifications of the local resource managers are given in [DFG + 16]. Briefly, each MON updates every MaC an alive Boolean in a memory area that is shared with the LRMs. All LRMs can then know at the end of the MaC which cores have failed and also which LRM will be the master of the next MaC.

Figure 3 :

 3 Figure 3: Adaption strategy with QoS enhancements Figure 3 also highlights how the QoS extensions improve the system utilization compared to the deadline overrun service solely (i.e. reduce the red area on cores C1, C2 and C3).The QoS enhancements record relevant execution statistics (e.g., when a stop operation was issued, execution time of each job, etc.) and forecast which critical jobs should run in isolation. During the second MaC of Figure3, the QoS enhancements decided to stop the best-effort applications during the second job of the critical application and resume them just after. This decision has drastically reduced the time non-critical applications are suspended, and effectively enhanced the system utilisation. The QoS enhancements try to improve the system performance, but never override the deadline overrun mechanism operation. This is illustrated in the third MaC, where the QoS mechanism stopped again the best-effort applications during the second job execution but this did not prevent an internal deadline violation at the fourth job. Likewise, if an internal deadline violation occurs during the first job, the best-effort applications will be stopped and the QoS mechanisms will never be activated (e.g. non-critical applications are not resumed after the second job of the critical application slot).To decide which critical jobs should be done in isolation, the QoS mechanism integrates two heuristics:1) If a job triggers an internal deadline violation, that job is added to a list of jobs to execute in isolation during the following MaCs. 2) Reset the QoS strategy (i.e. empty the list of jobs to execute in isolation) if new internal deadline violations occur after a fixed number of MaCs without internal deadline violations. In our experiments, we found that reseting the QoS strategy after one MaC without internal deadline violations provided good results. We analyzed other heuristics for programming and resetting QoS actions in[START_REF] Heywood | Scheduling mixed-criticality multi-core systems to maximise resource utilisation[END_REF], but found that the above ones presented the best compromise for our experiments.

Figure 4 :

 4 Figure 4: Extract of DREAMS toolchain.

•

  Imm: Immediate reconfiguration (1) or reconfiguration at end of MAC • Mode: New configuration for the LRM. e) Global reconfiguration graph implementation: The number of states in a global reconfiguration graph is the Cartesian product of the number of states in each local reconfiguration graph, meaning that the graph has a huge number of

Figure 6 :

 6 Figure 6: RM Communication Message Formats

Figure 7 :

 7 Figure 7: Demonstrator applications communication.

•

  QoS: Identical to the interference deployment, but with the deadline overrun adaptation strategy with the QoS enhancements activated.

Figure 9 :

 9 Figure 9: MAF schedule for isolation and interference deployments (critical applications in green, non-critical applications in blue)

  Koller et al. [KGGP + 16] analyze the DREAMS resource management with security point of view, and present the possible attack vectors and counter measures. In [GKGP + 16], authors present an overhead assessment for the resource management security and communication library developed in [KGGP + 16].

  .

	Acronym	Signification
	DHP	DREAMS Harmonized Platform
	DLRM	Distributed Local Resource Management library
	DRAL	DREAMS Abstraction Layer
	GRM	Global Resource Management
	LRM	Local Resource Management
	LRS	Local Resource Scheduler
	MaC	MAjor Cycle
	MON	MONitoring
	TSP	time and space partitioning

Table I: Table of acronyms B. Core failure: reconfiguration strategy

Table II :

 II Resource Management Communication Channels

	Channel	Source	Dest	Port type	Type	TT
	Orders	GRM	LRM	Sampling	multi-cast	Yes
	Updates	LRM	GRM	Queuing	mono-cast	Yes

Table IV :

 IV Table IV shows the worst execution time observed for each of the DREAMS Local Resource Management slots in this scenario. DLRM extra-partition overhead

		DHP		T4240
	MON	LRM	GRM	MON LRM
	80 µs	1.9 ms 1.5 ms	20 µs	900 µs

Table VI :

 VI Non-critical applications performance extracted when using the resource management adaptation strategies gies, compared to the performance extracted by the same applications when executing in the interference deployment.Measurements in Table VI are computed asperf as -perf iso perf if -perf iso (1)where perf iso , perf if , and perf as are the number of interations performed by the non-critical applications for a fixed number of MaCs respectively in the isolation, interference without adaptation strategies, and interference with adaptation strategies (deadline overrun with and without QoS extensions) deployments. As can be observed, the deadline overrun adaptation strategy is able to extract at least 87% of the noncritical applications performance in our experiments, and it is further improved to at least 90% with the usage of the QoS enhancements.

	V. RELATED WORKS
	The resource management of DREAMS is based on in-
	sights from Matrix approaches [RF07], ACTORS [BBE + 11],
	Diana [EJS + 10] and Scarlett [PBB + 12].

Table III :

 III Resource Management Fault Tolerance Example

	MaC		DHP			T4240		Comment			
		Plan Core1 Core2 Plan Core1 Core2 Core3 Core4				
	0	0		0					Initialization		
	1-4	1		1					Nominal plan		
	5	1		1					T4240 Core failure detected-Local reconfiguration
									(New plan from next MaC); Update sent to GRM
	6	1		2					T4240 Core failure detected-Local reconfiguration
									(New plan from next MaC); Update sent to GRM
	7	1		5					T4240 Core failure detected-Local reconfiguration
									(New plan from next MaC); Failed to host App4.
									Reconfiguration Request sent to GRM
	8	1		12				GRM received reconfiguration request; New plan
									found; Sent order to involved LRMs. DHP -global
									reconfiguration		
	9	4		12				DHP -new plan as a result of GRM order
			Isolation			Interference		Deadline Overrun	Quality of Service
		Dl	Wt	Med	Dl	Wt	Med	Dl	Wt	Med	Dl	Wt	Med
	APP1											
	ws		85.6% 79.7%		342% 238.1%		104.1% 99.6%		99.2%	89.9%
	wr rs	100%	86% 79.7% 97.6% 96.6%	403.6%	175.1% 165.2% 104.1% 102.8%	247.5%	96.7% 107.2% 106% 90.4%	247.5%	93.6% 106.8% 105.6% 87.5%
	rr		97.7% 96.7%		104.5% 103.5%		107.2% 106.1%		106.9% 105.6%
	APP2											
	ws		39.6% 37.9%		79.2%	69.1%		75.3%	68.5%		71.3%	58.1%
	wr rs	100%	39.8% 37.9% 51% 50.9%	403.6%	58.7% 55.3%	55.9% 54.8%	240.3%	58.5% 58.5%	55.6% 57.9%	240.3%	57.4% 59.4%	50.4% 57.7%
	rr		51.1% 50.9%		55.2%	54.9%		58.2%	57.9%		59.6%	57.6%
	APP3											
	ws		93.6% 93%		152.2% 139.9%		98.5%	97.3%		97.7%	95.1%
	wr rs	100%	93.7% 93% 97.2% 97.1%	403.6%	113% 111.9% 102.1% 102%	258.9%	98.3% 98.7%	95.5% 98.3%	258.9%	96.6% 98.6%	94.9% 98.3%
	rr		97.1% 97.1%		102.5% 102.2%		98.4%	98.3%		98.6%	98.2%

Table V :

 V Deadlines and execution times of critical application in mixed-critical demonstrator with and without the DREAMS resource management adaptation strategies

http://www.realtimeatwork.com/