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Abstract—Symmetric multiprocessing (SMP) and Time and
Space Partitioning (TSP) are two complementary paradigms for
the design of multi-core-based aerospace systems. They impose
new steps in the development process: capturing complex con-
figuration attributes, analyzing their correctness – in particular
their predictability – while guaranteeing performance. In this
context, model-based techniques provide a well-suited framework
to design, analyze and automatically synthesize those systems.

In this paper, we report on a set of extenstions of TASTE
to support SMP and TSP-based multi-core platforms. We first
present the key architectural elements of these systems and
then detail how these have been integrated as part of the code
generation tool-chain. We then present experiments realized on
two case studies and two hardware targets, both provided with
the RTEMS operating system and XTRATUM hypervisor.

I. INTRODUCTION

A. Context

One major output of the European FP6 ASSERT project
[PCD+10], [JDW12] is the TASTE (The ASSERT Set of Tools
for Engineering) tool suite. This open-source tool chain is
dedicated to the development of embedded real-time systems
for the space domain. TASTE addresses the modelling, auto-
matic code generation and deployment of distributed systems
composed of heterogeneous software (models or source arti-
facts) and hardware components. From a collection of models
capturing data, interfaces and deployment artifacts, TASTE
provides automation of tedious and error-prone validation and
integration tasks. TASTE is under continuous development
and improvement by ESA and its partners, including ISAE-
Supaero.

In parallel, multi-core processors have emerged as good
candidates for the space domain. In particular qualified and
hardened processors have been developed, such as the dual
core processor GR712RC [COB16], and the quad core pro-
cessor GR740 [COB17]. On top of these hardware, qualified
executive layers, such as RTOS (real-time operating systems)
or hypervisors, must be developed. Currently, no such qualified
layer is yet available even though several studies are on going,
among which we could mention RTEMS [OAR17], XTRATUM
[MRC+09], pikeOS [SYS17].

B. Moving towards TASTE multi-core

During a one-year project funded by ESA, we evaluated
potential extensions of TASTE to support multi-core in some

pre-defined configurations. More precisely, we decided to
focus on SMP (Symmetric MultiProcessing) and IMA (Inte-
grated Modular Avionics) / TSP (Time and Space Partitioning)
configurations. For that, we extended the TASTE environment
with fundamental principles and that lead to the definition of
design patterns. To validate the approach, we considered two
use cases and implemented them first manually on the ZYNQ
board [Xil01] and the LEON3 processors. Then, we extended
TASTE to support these settings, and compared manual and
TASTE-autocoded implementations.

Although the project focused on minimal TASTE extensions
to support multi-core, the ideas can serve as a general approach
for other frameworks as long as they share similar separa-
tion of concerns approach between high-level description of
components, their combination and finally their deployment
on top of an executive and hardware platform. We can men-
tion in particular the Space Component Model [PV14] or
ECOA [FCOB14].

In the following, we present TASTE mono-core, SMP and
TSP principles (see section II). In section III, we detail the
extensions of TASTE, both in terms of modelling with patterns
and of code generation. The experimental part is described in
sections IV and V. We end the paper with a related work
section and a conclusion.

II. STARTING POINTS

The purpose of the project was to provide some multi-core
extensions to TASTE. The targeted TRL was in the 2-3 range
due to the duration (1 year) and the allocated effort. In the
following, we review the context of the study.

A. TASTE

TASTE aims at automating the software development pro-
cess of space-critical applications. It addresses the following
system operational requirements: limited resources (memory,
processor); real-time constraints (deadlines); applications of
very different natures (control laws, resource management,
protocols, fault detection); communication with hardware (sen-
sors, actuators, FPGA); heterogeneous hardware (e.g. proces-
sors with different endianness); distribution over several physi-
cally independent platforms; may run autonomously for years;
may not be physically accessible for maintenance (satellites).



Figure 1: TASTE overview.

Hence, the quality of the generated code, along with the
capacity to validate the system early in the design are of prime
interest. The TASTE process is shown in Figure 1.

Step 1: functional architecture The philosophy is to let the
user only focus on his functional code, letting him write it in
the language of his choice, may it be a modelling language or
a low-level implementation language. To achieve this, TASTE
relies on the AADL [SAE12] and ASN.1 [asn02] text-based
modelling languages that give sufficient power of expression to
capture all the essential elements of a system that are required
to generate the tasks, communication middleware and glue
around the user functional code.

Step 2: internal function code Once a set of carefully
selected system properties has been captured using these two
languages, the core of the system’s sub-components can be
developed using C, Ada, SDL, SCADE, Simulink, or VHDL.

Step 3: automatic code generation TASTE tools are re-
sponsible for putting everything together, including drivers and
communication means and ensuring that the execution at run-
time is compliant with the specification of the system real-time
constraints. Without any major overhead in the code, TASTE
will produce binaries that can be directly executed on several
supported targets: native Linux, Real-time Linux (Xenomai),
RTEMS, and Ada bare-board targets.

TASTE evolved since 2007, it now supports several input
languages for the functional part (SDL, SCADE, Simulink,
C, Ada), multiple targets (Linux, FreeRTOS, Xenomai) and
enables both massive code generation, but also scheduling
analysis, simulation capabilities. These capabilities have been

validated through ESA-funded studies, but also by partners.

B. System model
In the sequel, we consider that the platform is a multi-core

composed with identical cores. The two targets used during
the project were, as already mentioned, the ZYNQ board and
the LEON dual-core processor.

Definition 1 (Multi-core): We consider a multi-core proces-
sor as a set of cores: P = {Pi}, each core being uniquely
identified over a contiguous interval from 0 to n− 1.

The applications are also restricted per the definition of the
Ravenscar computational model [BDV04] as follows.

Definition 2 (Application): An application is defined as a set
of periodic and sporadic tasks app = {τi = (Ai, Ci, Ti, Di)}
where Ai is the activation pattern (e.g. periodic, sporadic), Ci

is the WCET (Worst Case Execution Time), Ti is the period
for periodic task or minimal inter-arrival time for sporadic task
and Di is the deadline. The deadline is equal to the period for
periodic tasks and Di ≤ Ti for sporadic tasks. A task τi can
be unrolled as a set of jobs denoted τi,j – the j-th job of τi.

C. Definitions – reminder
Several programming paradigms exist for developing on a

multi-core chip in order to deal with the parallelism. In the
study, the partners investigated various strategies to leverage
configurations with multiple processing units such as multi-
core systems or multi-processor systems. We particularly
analyzed requirements associated to AMP, SMP and TSP
settings, most definitions of which can be found in the book
by Hennessy and Patterson [HP90].



Asymmetric Multi-processor (AMP). In that case, the
CPUs are not treated in the same way and individual proces-
sors can be dedicated to specific tasks at design time. Thus,
individual functional processes are allocated to a separate
core permanently and each core has its own operating system
(multiple copies of the same operating system or a different
one from core to core).

Symmetric multiprocessing (SMP) supposes some similar
access to the shared main memory and all I/O devices from
any core. A single operating system instance controls the
processors and treats them equally. However, each processor
may execute different programs, work on different data and
has the capability to access shared common resources.

Time and Space Partitioning (TSP) / Integrated Modular
Avionics (IMA) offers portable application software across an
assembly of common hardware modules. Space domain refers
to time and space partitioning while avionic domain refers to
IMA. IMA concepts are partially captured in standards DO-
297 [Rad] and ARINC653 [Aer97]. In the scope of this paper,
we will restrict IMA/TSP to RTOS kernels with time and space
isolation capabilities.

In the following, we restrict our paper to the TSP paradigm
and the SMP case. Indeed, the space community has defined
TSP-based building blocks, such as XTRATUM; as well as
RTEMS SMP capabilities.

D. Multi-core and SMP/TSP-based RTOS for Space

1) RTEMS/SMP: Real-Time Executive for Multiprocessor
Systems (RTEMS) [OAR17] is an open-source real-time oper-
ating system (RTOS) that supports a variety of open standard
such as RT-POSIX and BSD sockets. It is used in space flight,
medical devices, networking and many more embedded sys-
tems across a wide range of processor architectures including
ARM, PowerPC, Intel, and SPARC.

RTEMS supports AMP through the execution of multiple
instances of its kernel. As part of a recent study, Embedded
Brains [CHS+14] provided a set of patch to make RTEMS SMP
ready as part of the future RTEMS 4.12 release. The kernel has
been significantly reorganized to support multiple cores, add
necessary internal synchronization mechanisms to protect its
internal data structures and provide SMP drivers. It relies on
SMP extensions for RT-POSIX, along with the implementation
of specific schedulers for SMP.

As part of this project, we focused on SMP configurations
that take into account the affinity of a task, i.e. the core it is
attached to. This means that the scheduling is partitioned.

Definition 3 (Configuration – SMP): An SMP configuration
defines the affinity of each task, i.e. the core it is allowed to run
on. More formally, it is a function mapapp : app → P, τi 7→
Pi. The scheduling on a core then follows the FIFO per
Priority (SCHED FIFO POSIX) according to the Ravenscar
rule.

2) XTRATUM hypervisor: XTRATUM is a TSP real-time
hypervisor developed by Fentiss, a spin-off from the University
of Valencia. In its current version, XTRATUM supports several
targets, including ARM, PowerPC and the space dedicated

processors LEON3 (GR712RC) and LEON4. XTRATUM is
still being developed through various R&D projects (CNES,
ESA, Thales Alenia Space and Airbus Defence and Space).
XTRATUM is able to host various guest OS (Linux, RTEMS,
LithOS) and has support for Ethernet, SpaceWire and 1553
devices as add-ons.

As a TSP kernel XTRATUM has builtin support for spatial
and temporal isolation of the software partitions with schedul-
ing capabilities inspired from ARINC 653. Static configuration
is made via the XTRATUM Abstraction Layer (XAL). In this
work, we consider bare-metal implementation of application.

An application is mapped as a set of partitions and a
partition is defined by one or multiple slots, each with a start
time and a length. Inside a slot, several tasks can be executed.
Both the partitions slots and the schedule of tasks inside a slot
are computed off-line, for instance with Xoncrete [BMR+10]
the mapping and scheduling tool provided with XTRATUM.
This off-line information is called plan in the XTRATUM
terminology.

Definition 4 (Plan): A plan consists of:
• a major frame (MAF), the length of which is denoted

MAF length;
• a set of slots sli distributed over the cores and the MAF.

A slot is defined as sli = ([si, ei], ni) where si is the
start time, ei is the end time and ni is the number of the
core where the slot is allocated;

• a mapping of the jobs in the slots. Jobs are unrolled on
the MAF and we know for all job τi,j in which slot
slk it belongs to. We know moreover in which order are
executed the jobs inside a slot.

A partition cannot be shared by two different applications.
XTRATUM and other TSP-based approaches are dedicated

to periodic tasks sets. Thus sporadic tasks are either managed
locally if the partition has a guest OS or handled as periodic
tasks (e.g. periodically called with a condition of start).

III. SMP AND TSP PATTERNS

We detail in this section the patterns developed during the
study.

A. Rationale

a) TASTE modelling process: We focused on SMP/TSP
configurations and/or multi-core systems in a component-
based, model-based approach. Usually, the modeling process
is divided in multiple steps, or views.

In the context of TASTE, the Interface View defines the
topology of the system. The Interface view lists the interface
of the different functional blocks, and interconnects them. It
is decorated with properties that indicate the execution pattern
of the block: Periodic or Sporadic activation; Protected, and
Unprotected concurrent access execution of subprograms. The
Deployment View defines the supporting run-time platform,
and the binding between the Interface view and these elements.
Both views are modeled using AADLv2. Finally, the Data
View contains the description of all the messages that are
exchanged between functional blocks, using ASN.1.



From these views, a fourth model is generated: the Concur-
rency View that is plain AADLv2. This model is synthesized
from the architectural parameters from the previous views:
configuration of task and middleware building blocks, deploy-
ment of components on the various nodes and partitions.

b) Capturing SMP and TSP concerns: Configuring those
systems has to preserve the initial separation of concerns found
in TASTE, while extending the designer design space to new
systems. Initially, TASTE only configured abstract applications,
following definition 2.

The definition of extensions to TASTE followed a bottom-
up approach. First, we identified elements to be configured at
the target level. Then, we captured them as modeling patterns
represented in the concurrency view. Finally, these patterns are
abstracted away in the TASTE deployment view.

Definition 5 (Pattern): A pattern is a set of modeling
artifacts and configuration elements combined, along with
legality rules. Legality rules indicate correctness conditions
of a pattern.

In the following, we provide a definition of the patterns,
along with the rationale for their AADL/TASTE concurrency
view representation.

B. Patterns for SMP

c) Definition: In this study, we focused on RTEMS/SMP
configuration to extract the corresponding patterns.
RTEMS/SMP builds upon the same configuration mechanisms
as RTEMS mono-core: a set of configuration macros sets up
the various resources; and an API configures them.

Let us note that RTEMS is a versatile RT-POSIX compliant
RTOS. Yet, TASTE is restricting scheduling configuration
parameters to those compatible with the Ravenscar profile, as
they guarantee scheduling analyzability. Hence, we decided
to opt for a multi-core extensions of Ravenscar, as detailed
in [ZdlP13]. This preserves analyzability capabilities. The key
configuration parameters are therefore:
• the cores of a processor following definition 1;
• the configuration following definition 3.
A deployed SMP application is therefore a tuple:

(app,P,mapapp) (see figure 2). Let us note that by construc-
tion of this pattern, tasks are mapped to one and only one
core. This guarantees determinism of the workload per core
at run-time.

Figure 2: SMP pattern

d) AADL mapping: Turning this pattern into a valid
AADL model requires extensions to AADLv2. We consider
a multi-core processor as a regular processor, with multiple
processor sub-components, each providing separate execution
resources, with one property that uniquely identifies them.

Code 1 (AADL code - SMP definition):
processor implementation POSIX CPU. Cores4
subcomponents

Cpu0 : processor a core . impl { Core Id => 0 ;} ;
Cpu1 : processor a core . impl { Core Id => 1 ;} ;
Cpu2 : processor a core . impl { Core Id => 2 ;} ;
Cpu3 : processor a core . impl { Core Id => 3 ;} ;

end POSIX CPU. Cores4 ;

Threads are bound to a particular core using using standard
AADL binding (or allocation) mechanisms.

We note that this modeling pattern is incomplete: one
cannot enforce syntactically that identifiers are unique and
contiguous; or that all tasks are mapped to a specific core.
These checks can be implemented separately, using model
constraint languages.

C. Patterns for TSP

e) Definition: In this section, we revisit the definition of
an application in the context of XTRATUM, from definitions
2 and 4. XTRATUM defines some legality rules to follow:

• An application is made of several plans, they are num-
bered as a consecutive set of integer values;

• plan #0 is dedicated to configuration phase, other plans
correspond to operational modes of the systems;

• slots inside a plan are numbered using consecutive integer
values;

• all slots are executed at least once.

In addition to strict slot and plan configuration and identifi-
cation, XTRATUM defines similar constraints on the memory
configuration, so as to capture space partitioning: each slot is
allocated a separated memory area.

f) AADL mapping: AADL representation for TSP targets
relies on prescriptions from the ARINC653 annex [AC15],
following ARINC653 concepts of partitions and memory
regions (see figure 3). Adapting these patterns to XTRATUM
requires little adaptation. We recall here the main steps:

Figure 3: SMP pattern

The definition of memory partitions relies on default
AADLv2 properties to define configuration parameters such
as start address and length. Each partition is later attached to
a memory partition using binding relationships.



Code 2 (AADL code - architecture and partition):
package ROSACE: : XtratuM
public

with ARINC653 ;

−− Memory components , rep resen t ing a memory p a r t i t i o n
memory implementation myram . stram
properties

Base Address => 40000000;
Byte Count => 4194304;

end myram . stram ;
−− [ . . . ]

The code 3 illustrates partition configuration, leverage AR-
INC653 annex of AADLv2: a partition is seen as a virtual
processor, providing execution time.

Code 3 (AADL code - deployment):
−− P a r t i t i o n s
processor implementation leon3 . x t r a t u m p a r t i t i o n s

extends leon3 . xt ratum
subcomponents

P0 : v i r t u a l processor x t r a t u m p a r t i t i o n . gener ic
{ ARINC653 : : P a r t i t i o n I d e n t i f i e r => 0;

ARINC653 : : Part i t ion Name => ”P0” ; } ;
[ . . . ]

properties
ARINC653 : : Module Schedule =>

( [ P a r t i t i o n => reference (P0) ; Durat ion => 2 ms;
Per iod ic Process ing Star t => t r ue ; ] ,

[ . . . ]

Similarly to the SMP case, XTRATUM specific constraints
on the identification of partitions, and mapping completeness
are represented as constraints applied to the model using Res-
olute [GBC+14], a constraint language for AADL. Resolute
allows one to define constraints a model has to satisfy in terms
of logic predicates. As an illustration, the following snippet
shows how to check that all virtual processors have a name
and an identifier, or that processes are allocated to a memory
segment.

Code 4 (TSP constraints – example):
check ar inc653 v i r tua l p rocessors ( ) <=
∗∗ ” V i r t u a l Processors are i n processors ” ∗∗
f o r a l l ( vp : v i r t u a l p r o c e s s o r ) . t r ue =>

( exists ( cpu : processor ) . parent ( vp ) = cpu )
and
( has property ( vp , ARINC653 : : P a r t i t i o n I d e n t i f i e r ) )
and
( has property ( vp , ARINC653 : : Part i t ion Name ) )

check arinc653 process memory ( p : process ) <=
∗∗ ” Check ” p ” i s assoc iated wi th a memory ” ∗∗
exists ( segment : memory ) . ( is bound to ( p , segment ) )
and
check arinc653 memory segment ( segment )

Other constraints enforce consistency of TSP parameters
and are presented in [HD17]. They check the following
constraints:

• Each partition is associated with exactly one memory
segment and one partition execution run-time.

• Each node specifies the partitions scheduling policy and
executes each partition at least once during each schedul-
ing period.

• Each task defines its scheduling characteristics (e.g. dis-
patch protocol, period, deadline).

• All queuing ports or buffers specify the maximum number
of data instances they can store.

D. Composing TSP and SMP patterns

The previous patterns can be composed to model a time-
space partitioned systems on top of a multi-core system. In this
case, we use the following model elements: processors sub-
components as core in a multi-core CPU; virtual processors
as logical partition in a TSP system.

Binding (allocation) relations define the association between
all model elements. Hence, components are bound to partition,
and then logical partition can be bound to a core inside a CPU.
This pattern is a natural usage of the previous patterns, and
illustrates composition of patterns (see figure 4).

Figure 4: TSP & SMP patterns

All our contributions have been integrated at the level of
the Concurrency View. The corresponding updates of the upper
view is a future work activity, to be coordinated with ESA and
other TASTE users, for instance in the scope of the H2020
ESROCOS project [AMW+17]. We will illustrate how we
leveraged these in the next section.

IV. APPLICATION TO ROSACE

The ROSACE– Research Open-Source Avionics and Con-
trol Engineering – has been developed as a collaboration
between ONERA, ISAE and Polytech Montréal and its initial
specification has been published in [PSG+14]. Although of
modest size, this controller is representative of real avionics
applications by introducing typical characteristics such as a
data-flow design or complex multi-periodic execution patterns.

The application is composed of 11 functions combining both
functional parts as well as a mock up representing the aircraft.
They run at different periods and exchange flight parameters
and orders.

A. Implementation in XTRATUM

To run the tests, we chose to implement the environment,
that is Aircraft, engine and elevator. We chose the base
time unit to be in milliseconds. Since the period of some
functions is 5ms, there could be at most 5 partition slots
during the MAF = 5ms. We compared two XTRATUM
implementations. The first one was uni-processor for which we
defined 3 partitions (P0, P1 and P2). In the second, we made
a dual core schedule with 5 partitions, as shown in figure 6.
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Figure 5: ROSACE architecture

The partitions communicate via sampling ports in these two
configurations.

P0:aircraft
P1:h filter, az filter

vz filter P2:vz control P0:elevator

P3:q filter, va filter
altitude hold P4:va control P5:engine

Figure 6: ROSACE partition schedule

This initial implementation of ROSACE has been done
manually. As a complement, we modeled the system using
TASTE-Concurrency View, following the patterns presented
previously for the TSP case. This model captures the schedule
of the various partitions. From this model, we could generate
XTRATUM configuration tables using Ocarina, and check their
equivalence. Hence, we assessed that the patterns capture all
the necessary information.

B. Implementation in TASTE/ RTEMS

In the following, we detail the equivalent system modeled
in TASTE, targeting RTEMS. We revisited the XTRATUM
manual implementation to propose an equivalent model to be
generated using the TASTE tool-chain.

We have associated a thread to each function and tested sev-
eral hard-coded schedules. Following ROSACE specifications,
each thread is periodic, with a period and dispatch offset that
follows an off-line a priori scheduling configuration.

The code 5 shows both a (subset of) mono-core scheduling
and the multi-core one done as part of the TASTE-Concurrency
View. An interesting feature here is that the multi-core is
done as an extension of the mono-core, where we adjust some
scheduling parameters like the thread affinity or the dispatch
offset1

1The model is available from: http://www.openaadl.org/aadlib.html

Code 5 (AADL mono-core and multi-core):

thread Aircraf t Dynamics T
−− [ . . ]

properties
Dispatch Protoco l => Per iod i c ;
Per iod => 5 ms; −− 200 Hz

end Aircraf t Dynamics T ;

system implementation ROSACE POSIX. Monocore
properties −−

Dispatch Of fse t => 200 us applies to Software . H f i l t e r ;
D ispatch Of fse t => 300 us applies to Software . A z f i l t e r ;

−− [ . . ]
end ROSACE POSIX. Monocore ;

system implementation ROSACE POSIX. Mu l t i co re extends
ROSACE POSIX. Monocore

subcomponents
Hardware : r e f i n e d to processor

ROSACE: : Hardware : : POSIX CPU. Cores4 ;

properties
Actual Processor Binding => ( reference ( Hardware . Cpu1 ) )

applies to Software . A i rc ra f t Dynamics ;

−− [ . . ]

C. Validation

We extended the Ocarina component of TASTE in order
to support these patterns, but also to generate XTRATUM,
RTEMS and POSIX SMP configuration files to test the com-
pleteness of our patterns towards the final target.

In addition to support these patterns, we defined verification
policies to ensure the validity of the configuration and deploy-
ment. For instance, they ensure that each function is bound to
a CPU, partition or core; it is scheduled or that the definition
of memory areas or schedule are sound.

As an additional validation step, we ran the code made
manually and the one generated for the RTEMS/SMP and
XTRATUM targets. The logs were compliant with the ROSACE
checker, that checks the generated traces.

V. APPLICATION TO GCU CASE STUDY

The second case study is extracted from the French national
project Spacify [ABB+10]. More precisely, we rely on the
CNES case study detailed in [Spa10] that models the Payload
Data Management System (GCU – Gestionnaire de Charge
Utile in French) of a satellite. The system’s mission is to apply
commands from the ground to switch to a given mode and
to confirm to the ground that requests have been correctly
applied.

ground Instr 1 Instr 2 Instr 3

CC Mission

Figure 7: GCU architecture

Figure 7 shows the overall architecture. The GCU system
is composed of CC (control / command module) and Mission.
The GCU is connected via an embedded bus to three on board
instruments (I1, I2 and I3) and via telemetry to the ground
platform (ground).

http://www.openaadl.org/aadlib.html


A. End-to-end behaviors

Compared to ROSACE, this use case is purely event triggered
(thus composed of sporadic tasks) since the ground triggers the
GCU by requests to activate or de-activate on-board instru-
ments and to make some measurements. As a consequence,
validating an implementation does not consist, as in ROSACE,
to fulfill the tasks periods but to satisfy end-to-end responses
to distribute and reply to ground requests.

CC is in charge of routing and formatting all the messages
in the GCU.

standby

wait i

mode 0 mode 1

downgraded

Figure 8: GCU mission architecture

Mission is in charge of activating or de-activating the instru-
ments according to the ground requests and is implemented
as an automaton as shown in figure 8. There are two types
of arrows: plain when representing a request from the ground
and dashed when a local decision is taken.

Initially the automaton is in standby. When the ground
asks to move to mode i, it transits through wait i to start
the according Instrument. If the start-up fails, the automaton
moves to downgraded, otherwise to the asked mode i. At any
time, the ground can request to move to the other mode, to
downgraded or to reset to standby.

We identified three scenarios of end-to-end behaviours that
any implementation must comply with. The scenario 1, shown
in figure 9, is composed of three steps.

ground CC mission I1 I2
mode 0

mode 0
start1start2

on1

on2

mode 0
mode 0

measure I1
measure I1

data
data

wait i

ON ON

mode 0

Figure 9: Scenario 1

First, the ground requests the platform to reach the con-
figuration of mode 0 where I1 and I2 must be activated.
The second step is the switching of the platform from its
current mode to the mode 0. In the scenario, the platform is

supposed in standby, meaning all instruments are OFF. The
component CC transfers the request to mission which tries to
start the instruments. The orders to the instrument go through
CC and in the scenario, the instruments do not encounter any
problem and turn on. They inform mission of their status and
the latter can now reach mode 0. The ground receives the
current configuration of the platform and can now ask for data
measured by I1 or I2.

The scenario 2 consists in moving from mode 0 to mode 1.
Thus, first the instruments I1 and I2 are turned off. Instrument
I3 is activated and the ground makes some measurements.

The scenario 3 considers the request of switching from
mode 1 to mode 0 but ends in Downgraded. Indeed, I2 never
starts and a timer in waiti detects the failure.

B. Implementation in XTRATUM

Again, we implemented the system with a base clock at
1ms and included the environment behaviour, that is the
instruments I1, I2 and I3, as well as the ground. We have
implemented all components of the architecture in XTRATUM
and compared several periods / MAF choices. Such a choice
has an impact on the response time of the system.

Since no temporal constraints were specified, we made some
arbitrary choices on the schedule, periods and MAF. The com-
munication between partitions is ensured via sampling ports.
Contrary to ROSACE, a message must not be consumed twice.
We compared several single core and dual-core scheduling,
such as v1 and v2 of figure 10.

P0:mission P1:CC, ground P2:I1, I2, I3v1

P0:mission P1:CC, ground P2:I1, I2, I3 P1:CC, groundv2

40 80 120 160

Figure 10: GCU partition schedule

These two scheduling illustrate clearly the impact of the
schedule order on the response time. If we compute the
response time of scenario 1 to reach mode 0 from standby,
it will be 400ms for v1 and 280ms for v2 as illustrated in
figure 11.

P1 P2 P0 P1 P2 P0 P1 P2 P0 P1

mode 0 start i ON mode 0
mode 0

v1

P1 P0 P1 P2 P1 P0 P1v2

Figure 11: Response time of scenario 1 in v1 and v2

If v2 seems better, it only applies for this response time.
If we compute the response time of scenario 1 to measure a
data, that is from a request by the ground to the reception of
a data, it will be 200ms for v1 and 240ms for v2.



C. Implementation in TASTE/ RTEMS

We followed the same approach as for ROSACE, and built
an equivalent model for TASTE/ RTEMS that lead to correct
code generation using the TASTE tool-chain.

We have defined each component as a POSIX thread and
assessed several scheduling. Since RTEMS does not have
time-partitioning, we could implement the system as one
monolithic application, using the same philosophy as for
ROSACE: defining both a mono-core and a multi-core schedule,
and leveraging event port communications to run on top of
RTEMS. This approach makes it possible to have a complete
event-driven implementation. This reduces the global end-to-
end latency, at the expense of the loss of TSP safety/security
features supported by XTRATUM.

D. Experiments

We run the three scenarios defined in section V-A, with
various scheduling and on the two targets. The results were
compliant with the expected behaviour with variation in the
end-to-end delays as explained before.

Since this case study is event-driven, we note that extra-care
should be done to reduce latency in the system. This would
call for extra-optimizations steps that were outside the scope
of the study.

VI. RELATED WORK

In this paper, we explored the extensions of a domain-
specific critical modeling notation to support multi-core ap-
plications. Our approach tries to minimize the impact of these
extensions on the overall engineering process. Similar options
have been taken in other domains.

In [UO15], the authors introduce the notion of “virtual
ECU” as a way to modularize access to multi-core CPUs for
the automotive domain. The proposed approach relies on an
AMP-like paradigm: each virtual ECU embeds a lightweight
instance of the AutoSAR OS. Our approach relies on a
different paradigm, driven by the technological capabilities of
the target RTOS instead of the hardware capabilities.

In [LSSH15], we have proposed patterns to describe multi-
core systems in SysML, with the objective to perform system
optimization. The patterns cover various kinds of multi-core
hardware platforms, but did not address the configuration of
the target OS.

In [NPPV14], the authors propose to describe multi-core
systems using MARTE, with the objective to perform code
generation, taking into account the MCAPI programming
interface for multi-core. As opposed to our approach, the
patch taken here follows a top-down approach, starting from
MARTE concepts (such as schedulable resources) and later
performing model transformation to match MCAPI concepts.
In our approach, we followed a bottom-up approach, eliciting
updates to be performed on TASTE concepts to support both
TSP and SMP RTOS.

During the DREAMS project [DRE13] (2013-2017), a tool-
chain [BDM+17] has been developed to generate configu-
ration files. The methodology starts from the modelling in

AUTOFOCUS 3 that has been extended to take into account
the DREAMS platform specifics. The configuration files are
dedicated to KVM and XTRATUM hypervisors that are the
basics of the DREAMS middleware.

In our approach, featuring SMP and TSP extends the
definition of the hardware platform or OS, and adjusts the
binding (or allocation mechanism) to these new elements. This
approach makes it possible to reconfigure a mono-core system
as a multi-core one as shown in section IV-B; or as a TSP one
as demonstrated as part of the ROSACE case study.

VII. CONCLUSION

Multi-core CPUs for embedded systems, in particular space
critical systems, are now in most roadmaps for deployment.
Starting from hardware elements, and preliminary support
in RTOS, the key issues became the correct engineering of
systems leveraging these new capabilities.

In this paper, we have presented our approach to bring to
designers the configuration space of both SMP and TSP RTOS,
and how to combine them through patterns. We then illustrated
how to refine these patterns for the RTEMS and XTRATUM
OS, and the ESA TASTE modeling tool-chain. The driving
objective is to ensure that moving from a regular mono-core
to a multi-core and/or SMP deployment can be done with
minimal model adaptations.

We illustrate how we could capture the configuration space
of two representative software for avionics and space domains,
and generate back the software architecture, demonstrating no
loss of power of expression. This works illustrated require-
ments to automate or at least support the optimization process
of the deployment to reduce end-to-end latency.

Future work will consolidate the editors necessary to capture
the new configuration space at higher-level of abstraction. This
will be tested as part of the H2020 ESROCOS project, along
with other TRP initiative driven by ESA.
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Pérez. Dreams toolchain: Model-driven engineering of mixed-
criticality systems. In Proceedings of 20th International Con-
ference on Model Driven Engineering Languages and Systems
(Models’17), 2017.



[BDV04] Alan Burns, Brian Dobbing, and Tullio Vardanega. Guide for
the use of the ada ravenscar profile in high integrity systems.
Ada Lett., XXIV(2):1–74, June 2004.

[BMR+10] Vicent Brocal, Miguel Masmano, Ismael Ripoll, Alfons Crespo,
Patricia Balbastre, and Jean-Jacques Metge. Xoncrete. In
Proceedings of the 5th Conference on Embedded Real Time
Software and Systems (ERTS’10), 2010. http://www.fentiss.com/
documents/xoncrete overview.pdf.

[CHS+14] Daniel Cederman, Daniel Hellström, Joel Sherrill, Gedare
Bloom, Mathieu Patte, and Marco Zulianello. RTEMS SMP
for LEON3/LEON4 Multi-Processor Devices. In Data Systems
In Aerospace, Warsaw, Poland, June 2014.

[COB16] COBHAM. GR712RC Dual-Core LEON3-FT SPARC V8 Pro-
cessor, 2016. http://www.gaisler.com/doc/gr712rc-datasheet.pdf.

[COB17] COBHAM. GR740 Quad Core LEON4 SPARC V8 Processor,
2017. http://www.gaisler.com/doc/gr740/GR740-UM-DS.pdf.

[DRE13] DREAMS consortium. DREAMS: Distributed REal-time Archi-
tecture for Mixed Criticality Systems. http://dreams-project.eu,
2013.

[FCOB14] J. Fenn, T. Cornilleau, Y. Oakshott, and A. Britto. A pragmatic
approach to capturing safety and security relevant information
for reusable european component oriented architecture software
components. In 9th IET International Conference on System
Safety and Cyber Security (2014), pages 1–6, Oct 2014.

[GBC+14] Andrew Gacek, John Backes, Darren Cofer, Konrad Slind,
and Mike Whalen. Resolute: an assurance case language for
architecture models. In Proceedings of the 2014 ACM SIGAda
annual conference on High integrity language technology, pages
19–28. ACM, 2014.
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