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I. INTRODUCTION

A. Context

One major output of the European FP6 ASSERT project [PCD + 10], [START_REF] Honvault | Modelbased engineering approach for system architecture exploration[END_REF] is the TASTE (The ASSERT Set of Tools for Engineering) tool suite. This open-source tool chain is dedicated to the development of embedded real-time systems for the space domain. TASTE addresses the modelling, automatic code generation and deployment of distributed systems composed of heterogeneous software (models or source artifacts) and hardware components. From a collection of models capturing data, interfaces and deployment artifacts, TASTE provides automation of tedious and error-prone validation and integration tasks. TASTE is under continuous development and improvement by ESA and its partners, including ISAE-Supaero.

In parallel, multi-core processors have emerged as good candidates for the space domain. In particular qualified and hardened processors have been developed, such as the dual core processor GR712RC [START_REF] Cobham | GR712RC Dual-Core LEON3-FT SPARC V8 Processor[END_REF], and the quad core processor GR740 [START_REF] Cobham | GR740 Quad Core LEON4 SPARC V8 Processor[END_REF]. On top of these hardware, qualified executive layers, such as RTOS (real-time operating systems) or hypervisors, must be developed. Currently, no such qualified layer is yet available even though several studies are on going, among which we could mention RTEMS [START_REF]RTEMS -Real-Time Executive for Multiprocessor Systems[END_REF], XTRATUM [MRC + 09], pikeOS [START_REF] Sysgo | PikeOS 4.2 -RTOS with Hypervisor-Functionality[END_REF].

B. Moving towards TASTE multi-core

During a one-year project funded by ESA, we evaluated potential extensions of TASTE to support multi-core in some pre-defined configurations. More precisely, we decided to focus on SMP (Symmetric MultiProcessing) and IMA (Integrated Modular Avionics) / TSP (Time and Space Partitioning) configurations. For that, we extended the TASTE environment with fundamental principles and that lead to the definition of design patterns. To validate the approach, we considered two use cases and implemented them first manually on the ZYNQ board [START_REF]Xilinx. Zynq-7000 All Programmable SoC ZC702 Evaluation Kit[END_REF] and the LEON3 processors. Then, we extended TASTE to support these settings, and compared manual and TASTE-autocoded implementations.

Although the project focused on minimal TASTE extensions to support multi-core, the ideas can serve as a general approach for other frameworks as long as they share similar separation of concerns approach between high-level description of components, their combination and finally their deployment on top of an executive and hardware platform. We can mention in particular the Space Component Model [START_REF] Panunzio | A component-based process with separation of concerns for the development of embedded real-time software systems[END_REF] or ECOA [START_REF] Fenn | A pragmatic approach to capturing safety and security relevant information for reusable european component oriented architecture software components[END_REF].

In the following, we present TASTE mono-core, SMP and TSP principles (see section II). In section III, we detail the extensions of TASTE, both in terms of modelling with patterns and of code generation. The experimental part is described in sections IV and V. We end the paper with a related work section and a conclusion.

II. STARTING POINTS

The purpose of the project was to provide some multi-core extensions to TASTE. The targeted TRL was in the 2-3 range due to the duration (1 year) and the allocated effort. In the following, we review the context of the study.

A. TASTE TASTE aims at automating the software development process of space-critical applications. It addresses the following system operational requirements: limited resources (memory, processor); real-time constraints (deadlines); applications of very different natures (control laws, resource management, protocols, fault detection); communication with hardware (sensors, actuators, FPGA); heterogeneous hardware (e.g. processors with different endianness); distribution over several physically independent platforms; may run autonomously for years; may not be physically accessible for maintenance (satellites). Hence, the quality of the generated code, along with the capacity to validate the system early in the design are of prime interest. The TASTE process is shown in Figure 1.

Step 1: functional architecture The philosophy is to let the user only focus on his functional code, letting him write it in the language of his choice, may it be a modelling language or a low-level implementation language. To achieve this, TASTE relies on the AADL [SAE12] and ASN.1 [asn02] text-based modelling languages that give sufficient power of expression to capture all the essential elements of a system that are required to generate the tasks, communication middleware and glue around the user functional code.

Step 2: internal function code Once a set of carefully selected system properties has been captured using these two languages, the core of the system's sub-components can be developed using C, Ada, SDL, SCADE, Simulink, or VHDL.

Step 3: automatic code generation TASTE tools are responsible for putting everything together, including drivers and communication means and ensuring that the execution at runtime is compliant with the specification of the system real-time constraints. Without any major overhead in the code, TASTE will produce binaries that can be directly executed on several supported targets: native Linux, Real-time Linux (Xenomai), RTEMS, and Ada bare-board targets.

TASTE evolved since 2007, it now supports several input languages for the functional part (SDL, SCADE, Simulink, C, Ada), multiple targets (Linux, FreeRTOS, Xenomai) and enables both massive code generation, but also scheduling analysis, simulation capabilities. These capabilities have been validated through ESA-funded studies, but also by partners.

B. System model

In the sequel, we consider that the platform is a multi-core composed with identical cores. The two targets used during the project were, as already mentioned, the ZYNQ board and the LEON dual-core processor.

Definition 1 (Multi-core): We consider a multi-core processor as a set of cores: P = {P i }, each core being uniquely identified over a contiguous interval from 0 to n -1.

The applications are also restricted per the definition of the Ravenscar computational model [START_REF] Burns | Guide for the use of the ada ravenscar profile in high integrity systems[END_REF] as follows.

Definition 2 (Application): An application is defined as a set of periodic and sporadic tasks app = {τ i = (A i , C i , T i , D i )} where A i is the activation pattern (e.g. periodic, sporadic), C i is the WCET (Worst Case Execution Time), T i is the period for periodic task or minimal inter-arrival time for sporadic task and D i is the deadline. The deadline is equal to the period for periodic tasks and D i ≤ T i for sporadic tasks. A task τ i can be unrolled as a set of jobs denoted τ i,j -the j-th job of τ i .

C. Definitions -reminder

Several programming paradigms exist for developing on a multi-core chip in order to deal with the parallelism. In the study, the partners investigated various strategies to leverage configurations with multiple processing units such as multicore systems or multi-processor systems. We particularly analyzed requirements associated to AMP, SMP and TSP settings, most definitions of which can be found in the book by Hennessy and Patterson [START_REF] Hennessy | Computer Architecture, Fifth Edition: A Quantitative Approach[END_REF].

Asymmetric Multi-processor (AMP). In that case, the CPUs are not treated in the same way and individual processors can be dedicated to specific tasks at design time. Thus, individual functional processes are allocated to a separate core permanently and each core has its own operating system (multiple copies of the same operating system or a different one from core to core).

Symmetric multiprocessing (SMP) supposes some similar access to the shared main memory and all I/O devices from any core. A single operating system instance controls the processors and treats them equally. However, each processor may execute different programs, work on different data and has the capability to access shared common resources.

Time and Space Partitioning (TSP) / Integrated Modular Avionics (IMA) offers portable application software across an assembly of common hardware modules. Space domain refers to time and space partitioning while avionic domain refers to IMA. IMA concepts are partially captured in standards DO-297 [Rad] and ARINC653 [START_REF][END_REF]. In the scope of this paper, we will restrict IMA/TSP to RTOS kernels with time and space isolation capabilities.

In the following, we restrict our paper to the TSP paradigm and the SMP case. Indeed, the space community has defined TSP-based building blocks, such as XTRATUM; as well as RTEMS SMP capabilities. D. Multi-core and SMP/TSP-based RTOS for Space 1) RTEMS/SMP: Real-Time Executive for Multiprocessor Systems (RTEMS) [START_REF]RTEMS -Real-Time Executive for Multiprocessor Systems[END_REF] is an open-source real-time operating system (RTOS) that supports a variety of open standard such as RT-POSIX and BSD sockets. It is used in space flight, medical devices, networking and many more embedded systems across a wide range of processor architectures including ARM, PowerPC, Intel, and SPARC.

RTEMS supports AMP through the execution of multiple instances of its kernel. As part of a recent study, Embedded Brains [CHS + 14] provided a set of patch to make RTEMS SMP ready as part of the future RTEMS 4.12 release. The kernel has been significantly reorganized to support multiple cores, add necessary internal synchronization mechanisms to protect its internal data structures and provide SMP drivers. It relies on SMP extensions for RT-POSIX, along with the implementation of specific schedulers for SMP.

As part of this project, we focused on SMP configurations that take into account the affinity of a task, i.e. the core it is attached to. This means that the scheduling is partitioned.

Definition 3 (Configuration -SMP): An SMP configuration defines the affinity of each task, i.e. the core it is allowed to run on. More formally, it is a function map app : app → P, τ i → P i . The scheduling on a core then follows the FIFO per Priority (SCHED FIFO POSIX) according to the Ravenscar rule.

2) XTRATUM hypervisor: XTRATUM is a TSP real-time hypervisor developed by Fentiss, a spin-off from the University of Valencia. In its current version, XTRATUM supports several targets, including ARM, PowerPC and the space dedicated processors LEON3 (GR712RC) and LEON4. XTRATUM is still being developed through various R&D projects (CNES, ESA, Thales Alenia Space and Airbus Defence and Space). XTRATUM is able to host various guest OS (Linux, RTEMS, LithOS) and has support for Ethernet, SpaceWire and 1553 devices as add-ons.

As a TSP kernel XTRATUM has builtin support for spatial and temporal isolation of the software partitions with scheduling capabilities inspired from ARINC 653. Static configuration is made via the XTRATUM Abstraction Layer (XAL). In this work, we consider bare-metal implementation of application.

An application is mapped as a set of partitions and a partition is defined by one or multiple slots, each with a start time and a length. Inside a slot, several tasks can be executed. Both the partitions slots and the schedule of tasks inside a slot are computed off-line, for instance with Xoncrete [BMR + 10] the mapping and scheduling tool provided with XTRATUM. This off-line information is called plan in the XTRATUM terminology.

Definition 4 (Plan): A plan consists of:

• a major frame (MAF), the length of which is denoted MAF length; • a set of slots sl i distributed over the cores and the MAF.

A slot is defined as sl i = ([s i , e i ], n i ) where s i is the start time, e i is the end time and n i is the number of the core where the slot is allocated; • a mapping of the jobs in the slots. Jobs are unrolled on the MAF and we know for all job τ i,j in which slot sl k it belongs to. We know moreover in which order are executed the jobs inside a slot. A partition cannot be shared by two different applications.

XTRATUM and other TSP-based approaches are dedicated to periodic tasks sets. Thus sporadic tasks are either managed locally if the partition has a guest OS or handled as periodic tasks (e.g. periodically called with a condition of start).

III. SMP AND TSP PATTERNS

We detail in this section the patterns developed during the study.

A. Rationale a) TASTE modelling process: We focused on SMP/TSP configurations and/or multi-core systems in a componentbased, model-based approach. Usually, the modeling process is divided in multiple steps, or views.

In the context of TASTE, the Interface View defines the topology of the system. The Interface view lists the interface of the different functional blocks, and interconnects them. It is decorated with properties that indicate the execution pattern of the block: Periodic or Sporadic activation; Protected, and Unprotected concurrent access execution of subprograms. The Deployment View defines the supporting run-time platform, and the binding between the Interface view and these elements. Both views are modeled using AADLv2. Finally, the Data View contains the description of all the messages that are exchanged between functional blocks, using ASN.1.

From these views, a fourth model is generated: the Concurrency View that is plain AADLv2. This model is synthesized from the architectural parameters from the previous views: configuration of task and middleware building blocks, deployment of components on the various nodes and partitions.

b) Capturing SMP and TSP concerns: Configuring those systems has to preserve the initial separation of concerns found in TASTE, while extending the designer design space to new systems. Initially, TASTE only configured abstract applications, following definition 2.

The definition of extensions to TASTE followed a bottomup approach. First, we identified elements to be configured at the target level. Then, we captured them as modeling patterns represented in the concurrency view. Finally, these patterns are abstracted away in the TASTE deployment view.

Definition 5 (Pattern): A pattern is a set of modeling artifacts and configuration elements combined, along with legality rules. Legality rules indicate correctness conditions of a pattern.

In the following, we provide a definition of the patterns, along with the rationale for their AADL/TASTE concurrency view representation.

B. Patterns for SMP c) Definition:

In this study, we focused on RTEMS/SMP configuration to extract the corresponding patterns. RTEMS/SMP builds upon the same configuration mechanisms as RTEMS mono-core: a set of configuration macros sets up the various resources; and an API configures them.

Let us note that RTEMS is a versatile RT-POSIX compliant RTOS. Yet, TASTE is restricting scheduling configuration parameters to those compatible with the Ravenscar profile, as they guarantee scheduling analyzability. Hence, we decided to opt for a multi-core extensions of Ravenscar, as detailed in [START_REF] Zamorano | On real-time partitioned multicore systems[END_REF]. This preserves analyzability capabilities. The key configuration parameters are therefore:

• the cores of a processor following definition 1;

• the configuration following definition 3. A deployed SMP application is therefore a tuple: (app, P, map app ) (see figure 2). Let us note that by construction of this pattern, tasks are mapped to one and only one core. This guarantees determinism of the workload per core at run-time.

Figure 2: SMP pattern d) AADL mapping: Turning this pattern into a valid AADL model requires extensions to AADLv2. We consider a multi-core processor as a regular processor, with multiple processor sub-components, each providing separate execution resources, with one property that uniquely identifies them.

Code 1 (AADL code -SMP definition):

processor implementation POSIX CPU . Cores4 subcomponents Cpu0 : processor a core . i m p l { Core Id => 0 ; } ; Cpu1 : processor a core . i m p l { Core Id => 1 ; } ; Cpu2 : processor a core . i m p l { Core Id => 2 ; } ; Cpu3 : processor a core . i m p l { Core Id => 3 ; } ; end POSIX CPU . Cores4 ;

Threads are bound to a particular core using using standard AADL binding (or allocation) mechanisms.

We note that this modeling pattern is incomplete: one cannot enforce syntactically that identifiers are unique and contiguous; or that all tasks are mapped to a specific core. These checks can be implemented separately, using model constraint languages.

C. Patterns for TSP e) Definition: In this section, we revisit the definition of an application in the context of XTRATUM, from definitions 2 and 4. XTRATUM defines some legality rules to follow:

• An application is made of several plans, they are numbered as a consecutive set of integer values; • plan #0 is dedicated to configuration phase, other plans correspond to operational modes of the systems; • slots inside a plan are numbered using consecutive integer values; • all slots are executed at least once. In addition to strict slot and plan configuration and identification, XTRATUM defines similar constraints on the memory configuration, so as to capture space partitioning: each slot is allocated a separated memory area.

f) AADL mapping: AADL representation for TSP targets relies on prescriptions from the ARINC653 annex [START_REF] Sae As2-C | SAE Architecture Analysis and Design Language (AADL) Annex[END_REF], following ARINC653 concepts of partitions and memory regions (see figure 3). Adapting these patterns to XTRATUM requires little adaptation. We recall here the main steps: The code 3 illustrates partition configuration, leverage AR-INC653 annex of AADLv2: a partition is seen as a virtual processor, providing execution time.

Code 3 (AADL code -deployment):

--P a r t i t i o n s processor implementation leon3 . x t r a t u m p a r t i Similarly to the SMP case, XTRATUM specific constraints on the identification of partitions, and mapping completeness are represented as constraints applied to the model using Resolute [GBC + 14], a constraint language for AADL. Resolute allows one to define constraints a model has to satisfy in terms of logic predicates. As an illustration, the following snippet shows how to check that all virtual processors have a name and an identifier, or that processes are allocated to a memory segment.

Code 4 (TSP constraints -example):

c h e c k a r i n c 6 5 3 v i r t u a l p r o c e s s o r s ( ) <= * * " V i r t u a l Processors are i n p r o c e s so r s " * * f o r a l l ( vp : v i r t u a l p r o c e s s o r Other constraints enforce consistency of TSP parameters and are presented in [START_REF] Hugues | Model-based design and automated validation of arinc653 architectures using the aadl[END_REF]. They check the following constraints:

• Each partition is associated with exactly one memory segment and one partition execution run-time.

• Each node specifies the partitions scheduling policy and executes each partition at least once during each scheduling period. • Each task defines its scheduling characteristics (e.g. dispatch protocol, period, deadline). • All queuing ports or buffers specify the maximum number of data instances they can store.

D. Composing TSP and SMP patterns

The previous patterns can be composed to model a timespace partitioned systems on top of a multi-core system. In this case, we use the following model elements: processors subcomponents as core in a multi-core CPU; virtual processors as logical partition in a TSP system.

Binding (allocation) relations define the association between all model elements. Hence, components are bound to partition, and then logical partition can be bound to a core inside a CPU. This pattern is a natural usage of the previous patterns, and illustrates composition of patterns (see figure 4). 

IV. APPLICATION TO ROSACE

The ROSACE-Research Open-Source Avionics and Control Engineering -has been developed as a collaboration between ONERA, ISAE and Polytech Montréal and its initial specification has been published in [PSG + 14]. Although of modest size, this controller is representative of real avionics applications by introducing typical characteristics such as a data-flow design or complex multi-periodic execution patterns.

The application is composed of 11 functions combining both functional parts as well as a mock up representing the aircraft. They run at different periods and exchange flight parameters and orders.

A. Implementation in XTRATUM

To run the tests, we chose to implement the environment, that is Aircraft, engine and elevator. We chose the base time unit to be in milliseconds. Since the period of some functions is 5ms, there could be at most 5 partition slots during the M AF = 5ms. We compared two XTRATUM implementations. The first one was uni-processor for which we defined 3 partitions (P0, P1 and P2). In the second, we made a dual core schedule with 5 partitions, as shown in figure 6. This initial implementation of ROSACE has been done manually. As a complement, we modeled the system using TASTE-Concurrency View, following the patterns presented previously for the TSP case. This model captures the schedule of the various partitions. From this model, we could generate XTRATUM configuration tables using Ocarina, and check their equivalence. Hence, we assessed that the patterns capture all the necessary information.

B. Implementation in TASTE/ RTEMS

In the following, we detail the equivalent system modeled in TASTE, targeting RTEMS. We revisited the XTRATUM manual implementation to propose an equivalent model to be generated using the TASTE tool-chain.

We have associated a thread to each function and tested several hard-coded schedules. Following ROSACE specifications, each thread is periodic, with a period and dispatch offset that follows an off-line a priori scheduling configuration.

The code 5 shows both a (subset of) mono-core scheduling and the multi-core one done as part of the TASTE-Concurrency View. An interesting feature here is that the multi-core is done as an extension of the mono-core, where we adjust some scheduling parameters like the thread affinity or the dispatch offset 1 1 The model is available from: http://www.openaadl.org/aadlib.html Code 5 (AADL mono-core and multi-core): 

C. Validation

We extended the Ocarina component of TASTE in order to support these patterns, but also to generate XTRATUM, RTEMS and POSIX SMP configuration files to test the completeness of our patterns towards the final target.

In addition to support these patterns, we defined verification policies to ensure the validity of the configuration and deployment. For instance, they ensure that each function is bound to a CPU, partition or core; it is scheduled or that the definition of memory areas or schedule are sound.

As an additional validation step, we ran the code made manually and the one generated for the RTEMS/SMP and XTRATUM targets. The logs were compliant with the ROSACE checker, that checks the generated traces.

V. APPLICATION TO GCU CASE STUDY

The second case study is extracted from the French national project Spacify [ABB + 10]. More precisely, we rely on the CNES case study detailed in [START_REF]Etude de cas CNES : Modélisation Synoptic de la partie Commande / Contrôle du GCU[END_REF] that models the Payload Data Management System (GCU -Gestionnaire de Charge Utile in French) of a satellite. The system's mission is to apply commands from the ground to switch to a given mode and to confirm to the ground that requests have been correctly applied. Figure 7 shows the overall architecture. The GCU system is composed of CC (control / command module) and Mission. The GCU is connected via an embedded bus to three on board instruments (I1, I2 and I3) and via telemetry to the ground platform (ground).

A. End-to-end behaviors

Compared to ROSACE, this use case is purely event triggered (thus composed of sporadic tasks) since the ground triggers the GCU by requests to activate or de-activate on-board instruments and to make some measurements. As a consequence, validating an implementation does not consist, as in ROSACE, to fulfill the tasks periods but to satisfy end-to-end responses to distribute and reply to ground requests.

CC is in charge of routing and formatting all the messages in the GCU. Mission is in charge of activating or de-activating the instruments according to the ground requests and is implemented as an automaton as shown in figure 8. There are two types of arrows: plain when representing a request from the ground and dashed when a local decision is taken.

Initially the automaton is in standby. When the ground asks to move to mode i, it transits through wait i to start the according Instrument. If the start-up fails, the automaton moves to downgraded, otherwise to the asked mode i. At any time, the ground can request to move to the other mode, to downgraded or to reset to standby.

We identified three scenarios of end-to-end behaviours that any implementation must comply with. The scenario 1, shown in figure 9, is composed of three steps. First, the ground requests the platform to reach the configuration of mode 0 where I1 and I2 must be activated. The second step is the switching of the platform from its current mode to the mode 0. In the scenario, the platform is supposed in standby, meaning all instruments are OFF. The component CC transfers the request to mission which tries to start the instruments. The orders to the instrument go through CC and in the scenario, the instruments do not encounter any problem and turn on. They inform mission of their status and the latter can now reach mode 0. The ground receives the current configuration of the platform and can now ask for data measured by I1 or I2.

The scenario 2 consists in moving from mode 0 to mode 1. Thus, first the instruments I1 and I2 are turned off. Instrument I3 is activated and the ground makes some measurements.

The scenario 3 considers the request of switching from mode 1 to mode 0 but ends in Downgraded. Indeed, I2 never starts and a timer in waiti detects the failure.

B. Implementation in XTRATUM

Again, we implemented the system with a base clock at 1ms and included the environment behaviour, that is the instruments I1, I2 and I3, as well as the ground. We have implemented all components of the architecture in XTRATUM and compared several periods / MAF choices. Such a choice has an impact on the response time of the system.

Since no temporal constraints were specified, we made some arbitrary choices on the schedule, periods and MAF. The communication between partitions is ensured via sampling ports. Contrary to ROSACE, a message must not be consumed twice. We compared several single core and dual-core scheduling, such as v1 and v2 of figure 10. If v2 seems better, it only applies for this response time. If we compute the response time of scenario 1 to measure a data, that is from a request by the ground to the reception of a data, it will be 200ms for v1 and 240ms for v2.

C. Implementation in TASTE/ RTEMS

We followed the same approach as for ROSACE, and built an equivalent model for TASTE/ RTEMS that lead to correct code generation using the TASTE tool-chain.

We have defined each component as a POSIX thread and assessed several scheduling. Since RTEMS does not have time-partitioning, we could implement the system as one monolithic application, using the same philosophy as for ROSACE: defining both a mono-core and a multi-core schedule, and leveraging event port communications to run on top of RTEMS. This approach makes it possible to have a complete event-driven implementation. This reduces the global end-toend latency, at the expense of the loss of TSP safety/security features supported by XTRATUM.

D. Experiments

We run the three scenarios defined in section V-A, with various scheduling and on the two targets. The results were compliant with the expected behaviour with variation in the end-to-end delays as explained before.

Since this case study is event-driven, we note that extra-care should be done to reduce latency in the system. This would call for extra-optimizations steps that were outside the scope of the study.

VI. RELATED WORK

In this paper, we explored the extensions of a domainspecific critical modeling notation to support multi-core applications. Our approach tries to minimize the impact of these extensions on the overall engineering process. Similar options have been taken in other domains.

In [START_REF] Urbina | Multi-core architecture for autosar based on virtual electronic control units[END_REF], the authors introduce the notion of "virtual ECU" as a way to modularize access to multi-core CPUs for the automotive domain. The proposed approach relies on an AMP-like paradigm: each virtual ECU embeds a lightweight instance of the AutoSAR OS. Our approach relies on a different paradigm, driven by the technological capabilities of the target RTOS instead of the hardware capabilities.

In [START_REF] Leserf | Multi Domain optimization with SysML modeling[END_REF], we have proposed patterns to describe multicore systems in SysML, with the objective to perform system optimization. The patterns cover various kinds of multi-core hardware platforms, but did not address the configuration of the target OS.

In [START_REF] Nicolas | Automatic deployment of component-based embedded systems from uml/marte models using mcapi[END_REF], the authors propose to describe multi-core systems using MARTE, with the objective to perform code generation, taking into account the MCAPI programming interface for multi-core. As opposed to our approach, the patch taken here follows a top-down approach, starting from MARTE concepts (such as schedulable resources) and later performing model transformation to match MCAPI concepts. In our approach, we followed a bottom-up approach, eliciting updates to be performed on TASTE concepts to support both TSP and SMP RTOS.

During the DREAMS project [START_REF]DREAMS: Distributed REal-time Architecture for Mixed Criticality Systems[END_REF] (2013-2017), a toolchain [BDM + 17] has been developed to generate configuration files. The methodology starts from the modelling in AUTOFOCUS 3 that has been extended to take into account the DREAMS platform specifics. The configuration files are dedicated to KVM and XTRATUM hypervisors that are the basics of the DREAMS middleware.

In our approach, featuring SMP and TSP extends the definition of the hardware platform or OS, and adjusts the binding (or allocation mechanism) to these new elements. This approach makes it possible to reconfigure a mono-core system as a multi-core one as shown in section IV-B; or as a TSP one as demonstrated as part of the ROSACE case study. VII. CONCLUSION Multi-core CPUs for embedded systems, in particular space critical systems, are now in most roadmaps for deployment. Starting from hardware elements, and preliminary support in RTOS, the key issues became the correct engineering of systems leveraging these new capabilities.

In this paper, we have presented our approach to bring to designers the configuration space of both SMP and TSP RTOS, and how to combine them through patterns. We then illustrated how to refine these patterns for the RTEMS and XTRATUM OS, and the ESA TASTE modeling tool-chain. The driving objective is to ensure that moving from a regular mono-core to a multi-core and/or SMP deployment can be done with minimal model adaptations.

We illustrate how we could capture the configuration space of two representative software for avionics and space domains, and generate back the software architecture, demonstrating no loss of power of expression. This works illustrated requirements to automate or at least support the optimization process of the deployment to reduce end-to-end latency.

Future work will consolidate the editors necessary to capture the new configuration space at higher-level of abstraction. This will be tested as part of the H2020 ESROCOS project, along with other TRP initiative driven by ESA.
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