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Abstract—This article presents the first year results of the PHY-
LOG project that aims at providing a model-based certification
framework for aeronautics systems designers when developing
multi/many-core-based architectures. After a brief reminder of
the certification objectives, we present an overview of the PHYLOG
approach. We then detail two points of the methodology: (1)
a certification oriented meta-model for multi- and many-core
platforms, and (2) an interference prediction method based on
this meta-model. This method is then illustrated on a sub-part
of the many-core Kalray MPPA R©-256.

I. INTRODUCTION

Certification activities consist in providing detailed doc-
umentation and justifications that explain why the develop-
ment of a specific product is trustworthy and fulfills a given
standard’s requirements. Such a comprehensive documentation
not only contains the results, but also the input data, the
hypotheses, the techniques applied, etc. This process is well
covered by the current aeronautics practices. However, for the
next generation of multi/many-core-based architectures, the
means of compliance will evolve due to architecture specifics.

A. Context

The last decade has seen the emergence of multi-core
and many-core architectures, i.e. chips integrating several
cores interconnected by either a shared bus (for multi-core
processors) or a networks on chip (for many-core processors).
Although these architectures may allow a huge gain in terms
of performance, they also face important challenges to their
integration in safety critical environments. As an example, due
to the intensive resource sharing and lack of documentation,
it is very difficult to ensure time predictability [WEE+08],
[WR12], one of the key elements of certification expectation.

In order to tackle multi-core aeronautics certification-related
issues, several projects have been funded. One of the first
was MULCORS [JGBF12] which clearly identified the need
of changing and adapting the current certification standard.
Since then, several attempts at precisely defining such new
standard have been done, such as the Multi-core Certification
Review Item (MCP-CRI) [EAS16], the CAST Position Paper
#32 [CAS14], and the FAA white paper [JMR+16].

B. Objectives

The objective of the article is to explore a model-based
approach, to help both the applicant to answer the MCP-
CRI requirements and the certification authority to assess the
arguments provided by the applicant. Indeed, the standards

mentioned previously describe high level requirements, but no
means with which to ensure them nor ways to demonstrate
the compliance of an integrated system (multi-core processor
+ applicative software). Thus, as is, the proposed approach
does not intend to replace the MCP-CRI, but instead to offer
a methodological framework to assist certitication. This work
was done within the PHYLOG DGAC project and the results
are those of the first year.

In previous works [BBD+16], [Pol16], we proposed a
model-based framework to simplify the certification of aero-
nautics systems, to cope with inflation of documentation, to
improve the coverage of requirements, and to ease the use of
formal methods as means of verification. In PHYLOG, we reuse
and improve those ideas to specifically address multi/many-
core issues.

In the sequel, we present the main objectives exposed by
the new standards (section II). We present, in section III,
an overview of the methodology developed during PHYLOG
project. We then detail two points of the PHYLOG methodol-
ogy: (1) a certification oriented modeling language for MCP
platforms (section IV), and (2) an interference prediction
method based on the formal modeling presented above. A
detailed example on how to apply the modeling language and
the interference prediction method is given in section VI.

II. REMINDER OF CERTIFICATION OBJECTIVES

The Multi-core Certification Review Item (MCP-CRI)
[EAS16], also published as the CAST-32A position paper,
provides a set of guidances for software planning and ver-
ification on multi-core chips, with a particular emphasis on
timing considerations and error handling.

A. Main objectives of MCP-CRI

These guidances are structured in 5 high level objectives.
a) Software planning: According to this objective, the

applicant shall provide a model of the multi-core architecture.
He has to identify the specific processor, the number of active
cores, the software architecture, the dynamic software features,
etc. He also has to argue whether the platform provides robust
partitioning or not. And finally he has to detail the methods
and the tools used for the development and verification of all
the software components hosted on the platform (including
hypervisors and operating systems).



b) Planning and setting resources: The second objective
deals with the final configuration (i.e., the stable configuration
reached after the boot step). The applicant has to detail all the
configuration settings, including the execution frequency of the
activated cores, which of the peripheral devices are activated,
how the caches, memories, and interconnects are configured
and allocated, etc. Consequently, the applicant shall identify
the shared resources and shall describe a usage domain for
each of them (how the resources are shared and how to prevent
resource capabilities from being exceeded). Complementarily,
the applicant shall also argue that the critical configuration
settings are static and are protected against inadvertent changes
at run-time.

c) Interference Channels and resource usage: This is the
main objective. Due to resource sharing, coupling exists at
the platform level, which can cause interferences between the
applications. These interferences can lead to unexpected delays
or loss of data. In order to prevent potential unpredictable
behaviors, the applicant has to identify all the interference
channels in the final configuration, and he has to argue that
they are properly mitigated by adequate means. Afterwards,
the applicant shall argue that the resource demand does not ex-
ceed the resource availability in the final configuration (when
taking into account the resource usage and the mitigation
means).

d) Software verification: Due to interference channels,
the applications hosted by a multi-core platform could suffer
from unexpected delays. The applicant shall thus verify that all
the software components (including the operating systems and
hypervisors) operate correctly and do not miss any deadlines
when running in parallel in the final configuration. The MCP-
CRI distinguishes two cases: (a) either the platform provides
robust partitioning mechanisms, or all the interferences are
properly avoided or mitigated, then the verification and the
timing analysis can be done for each application in isolation;
(b) otherwise, the platform and all its application components
have to be considered in the same verification step. In the latter
case, the applicant is not allowed to proceed incrementally.

e) Error detection and handling: Due to the complexity
of executing in parallel several software components compet-
ing for the same resources, specific errors and failures may
happen (e.g., memory violation). They need to be detected and
handled at run-time. For that purpose, additional mechanisms
may need to be developed and verified. This last objective
requires the applicant to detail the error handling solution
integrated in the platform (including the use of a safety net
external to the multi-core chip), and to argue that all the errors
and failure conditions are properly managed.

B. Refinement of the CRI objectives

Previous works have revisited the MCP-CRI certification
objectives, in particular the timing interferences. The au-
thors of [JMR+16] propose more detailed definitions for
interference channels, interference sources, and interference
targets, and they propose a process to reduce the number of

Conf Modeling the final configuration, i.e., modeling the platform,
including the software and the hardware components, the
additional mitigation means, the execution model, etc. The
model shall describe normal and abnormal behaviors

Interf1 Determining the interference channels, i.e., identifying all the
residual interference channels while considering the additional
mitigation means added to avoid or limit conflicts on shared
resources

Interf2 Arguing the interference channels are innocuous, i.e., arguing
that the interference channels identified by objective Interf1
either never happen, have a negligible effect, or are upper-
bounded such that all the deadlines of all the software com-
ponents are still satisfied and no data is lost

Error Arguing errors and failures are managed, i.e., arguing that
abnormal behaviors are properly mitigated by internal means
or by an external safety net, including that the configuration
settings are protected against inadvertent changes at run-time

TABLE I
PHYLOG REFINED CERTIFICATION OBJECTIVES

interferences. The aim of [AAAC17] is to adapt the MCP-
CRI certification objectives to COST MCP architectures. For
that purpose, they group these objectives into three high level
principles:
• Determining the final configuration: determining which

configuration is the final one, and showing that it is
protected against inadvertent changes at run-time;

• Managing interference channels: identifying all the in-
terference channels in the final configuration, defining
the means to either avoid interference by design or to
upper-bound them such that the deadlines of the software
components are satisfied;

• Verifying the use of shared resources: showing that the
software components do not exceed the use of available
resources.

The idea of [AAAC17] is that following these three high
level principles should help answering the MCP-CRI objec-
tives. We also follow this idea. In the PHYLOG approach,
we intend to cover all the MCP-CRI objectives, including the
safety concern. We extend this classification into four high
level objectives, as shown in the table I. Our thesis is that
answering these four objectives in a correct, complete, and
consistent way should ease the providing of certification files
compliant with the MCP-CRI requirements.

III. MODEL-BASED CERTIFICATION APPROACH: OVERVIEW

Following this thesis, the PHYLOG project aims at building
a reference framework for the certification of multi- and
many-core architectures. The goal is to formalize certification
requirements and to provide a way to build coherent and
readable augmentations. According to the classification table
I, the framework and its associated methodology involve 3
steps:

1) a modeling step (answering Conf);
2) an analyzing step (answering Interf1);
3) an argumentation step (answering Interf2 and Error).

A. The modeling step
Providing a complete and consistent description of an

architecture is the first certification issue. A common way



to achieve this goal is to describe the equipment in a tex-
tual manner. However, such method lacks formalization and
verification means. The first idea suggested by PHYLOG is
to follow a formal language-based approach. The proposed
language, called PML (for PHYLOG Modeling Language) shall
offer the capabilities to model the fundamental concepts of
multi/many-core processors involved in the MCP-CRI (e.g.,
shared resources, hardware configuration, interference chan-
nels, mitigation means, etc.). In that sense, it differs from other
architecture languages such as AADL or SySML, for it is not a
design oriented language, but a certification oriented language.
PML is based on 4 concerns (depicted in the MCP-CRI):

1) hardware platform (e.g., cores, MMU, interconnect,
etc.),

2) software platform (e.g., OS, hypervisor, etc.),
3) applicative software,
4) deployment.

To be able to fully support the users – both the industrial
applicant and the certification authority –, we need reasoning
capabilities on this high level language. To this end, PML is
translated to a logical framework, called WEIRD [BBD+16],
that offers the expected reasoning capabilities.

PML, WEIRD, and the PML implementation in WEIRD are
presented in section IV.

B. Interference prediction and interference analysis

As said previously, interferences between applications are
one of the main concerns of the MCP-CRI. The certification
objective Interf1 requires the ability to predict all the possible
interferences in the final configuration, and to show that they
are innocuous with respect to the applications requirements.
This activity is decomposed into two sub-steps: (a) interference
prediction, and (b) interference analysis.

1) Interference prediction: The aim of this first sub-step is
to predict all the “residual” interference channels. By “resid-
ual”, we mean the interference channels which are not avoided
by partitioning means (such as an hypervisor). We consider
three types of interference: (a) hardware interference, i.e.,
conflict when accessing the same hardware component (e.g.,
interconnect, memory, etc.), logical interference, i.e., conflict
when accessing the same logical component (e.g., semaphore,
OS service, driver, etc.), and (c) data interference, i.e., conflict
when reading or writing the same data. To predict those
conflicts, we follow the transaction-driven approach proposed
in [JMR+16]. From a description of the transaction domains,
i.e., the description of the paths followed by transactions
issued by software and hardware components through the
architecture, we compute all the situations where two (or more)
transactions can overlap on the same resource. Such a situation
leads to a potential interference.

One of the benefits of using a formal logical framework
is to be able to compute all these potential interferences
exhaustively and automatically. This point will be detailed in
section V.

2) Interference analysis: Once an interference is predicted,
the interference analysis aims at assessing if the interference
can really happen, and what are its effects with respect
to application requirements. A final configuration is said to
be interference-free if all of the residual interferences are
negligible.

Note that the prediction and the analysis sub-steps shall
be done for both the normal conditions (without any failure),
and the abnormal conditions (hardware failure). The prediction
sub-step can be done automatically by using a constraint pro-
gramming method. However, the second sub-step is discharged
to specific analysis methods that are outside of the PHYLOG
framework.

C. Argumentation

Argumentation is the third key issue required by objectives
Interf2 and Error. When inquiring the certification of a sys-
tem, the inquirer must provide a certification file. According
to [MoD03], this should be “A reasoned, auditable argument
created to support the contention that a defined system will
satisfy the requirements”. The exact nature of the elements
is not detailed, but graphical representation or models are
increasingly becoming part of this certification file. For the
safety aspects, [MoD07] explicitly requires safety cases, from
which our work is inspired.

The goal of the PHYLOG Argumentation step is to represent
graphically the different means of compliance used to justify
the satisfaction of the requirements. The Argumentation step
organizes the various elements (formal and informal) that
contribute to the justification of the requirements. The argu-
mentation step of PHYLOG is inspired by GSN [KW04]. It is
also inspired by Toulmin works for the underlying principles
[Tou03], and from existing work on assurance cases in the
aeronautical domain [Hol15], [Pol16].

A generic argumentation step relies on the following con-
cepts (figure 1):
• Claim: the property to be justified (will often link to a

requirement),
• Evidence: the facts that will be used to justify the claim

(analysis results, test results, expert knowledge, biblio-
graphical reference. . . ),

• Strategy: combination of different evidences in order to
justify a claim, this is the model counter-part of “Mean
of Compliance”.

• Usage Domain: domain on which the method is usable
• Rationale: justifies the use of the method in this particular

context
Argumentation patterns are then proposed as a partial in-

stance of this generic step, specifying subconcepts, known
entities, and their necessity status depending on the strategy
or strategy family. Argumentation patterns can be of different
natures: generic (for example, “Using a tool” that will make
it mandatory to explicit the usage domain and add a corre-
sponding support to show its respect) or domain specific (like
“Showing that the Worst Case Delay caused by an interconnect
interference is less than X”). An argumentation is then built as



Claim
proprerty

Strategy RationaleUsage
Domain

...Support 1
property

Support N
property

Fig. 1. The generic argumentation step

a chain of argumentation steps: one claim of a level becomes
support for the next one.

D. Certification requirements revisited

Another benefit of the proposed model-based approach is
that the certification objectives table I can be associated to
more precise certification requirements expressed and checked
on the models. These requirements are classified in three
families, each of which is divided in two sub-groups:
• Consistency requirements:

– ConsReq1: the architectural model provided at the
Modeling step shall satisfy consistency rules such
as “all applicative software shall be allocated to
a unique core”, “all hardware resources shall be
described by exactly one normal behavior and at least
one failure behavior”, etc.

– ConsReq2: the argumentation model provided at the
Argumentation step shall satisfy consistency rules,
with respect to the argumentation patterns, such as
“all argumentation steps using the “verification tool”
strategy shall exhibit the usage domain of the tool”,
etc.

• Completeness requirements:
– ComplReq1: the behaviors associated with each

component from the architecture model shall be
validated by a corresponding claim in the argu-
mentation model. For instance, if an interconnect
device is modeled as a set of parallel lines without
interference, this description shall be considered as
an assumption in the modeling step, which shall be
validated by an appropriate justification in the argu-
mentation step. This justification can be supported
either by technical documents from the MCP man-
ufacturer, by experiments, or by expert judgements,
etc.

– ComplReq2: all the residual interference channels
identified by the interference prediction step shall be
associated with a claim in the argumentation model,
arguing that either the interference never happens or
that it has no undesirable effect.

• Correctness requirements:
– CorrReq1: the method used to predict residual in-

terference channels shall be safe, meaning that if an
interference channel could happen, then it must be
predicted.

– CorrReq2: all the interference analysis discharged
to external means shall be safe, meaning that if
the external means claim that the interference never
happens or has no undesirable effect, then it must
always be the case.

The ConsReq1 and ConsReq2 lists given above are not
exhaustive. Those lists may depend on the under consideration
MCP and can be negotiated between the industrial applicant
and the certification authority. Nevertheless, once decided,
the consistency and completeness requirements can be proven
automatically using the WEIRD logical framework.

IV. MCP MODELING

As expressed in the previous section, modeling is the first
key issue. The idea is to gather in an understanding model all
the knowledge about the MCP configuration needed for the
certification purposes. Such an approach provides a way to
“query” and reason about the resulting information base. For
that purpose, we have defined a certification-oriented modeling
langage (called PML) for MCP platforms.

A. PML: main concepts

The aim of the modeling phase is to capture and to formalize
the concepts needed for the certification argumentation, and,
more precisely, the concepts involved in the arguments show-
ing that (i) the interferences due to resource sharing either are
properly mitigated, or have a negligible effect on the behavior
of the software applications.

As suggested by MCP-CRI, PML is organised in 4 chapters:
(1) hardware platform, (2) software platform, (3) applications,
and (4) integration.

Fig. 2. Meta-model of the hardware platform chapter

1) Hardware platform chapter: Figure 2 presents the con-
cepts involved in the hardware platform chapter. A HW
Platform is a tree structure composed of Hardware Platform
Components (noted HWP component for short). Each HWP
component is either a terminal component, or an element
which itself breaks down into sub-elements. For example,
many-core processors are generally composed of processing-
clusters, themselves composed of processing-cores, which
are in turn broken down into data-cache, instruction-cache,
processing-unit, etc. We call Hardware Composite (noted HC)
a HWP component that contains sub-components.

In this hierarchy, the terminal components are of three types:



• Active Hardware (noted AHW). An AHW component is a
hardware component that can issue transactions (such as
memory access). By active, we mean that the component
is able to generate transactions on its own initiative.
Examples of AHW are DPAA (Data Path Acceleration
Architecture), DMA, etc.

• Reactive Hardware (noted RHW). A RHW component
can only transmit transactions issued by active compo-
nents. By reactive, we mean that the component is not
able to issue transactions on its own initiative. Examples
of RHW are interconnect, memory controller, etc.

• Passive Hardware (noted PHW). A PHW component can
not issue nor transmit transactions. It can only be targeted
by transactions. Examples of PHW are memory banks,
cache ways, etc.

Active and passive components correspond to what authors
of [JMR+16] have called initiator and target components.
More precisely, their definition of a smart initiator (i.e., an
initiator with memory) matches the notion of Hardware Com-
posite components explained a few paragraphs below, whereas
the non-smart initiators (i.e., initiators without memory) are
indeed active components.

In addition to these hardware elements, we introduce a more
specific hardware component whose aim is to virtualize hard-
ware resources (concept Hardware Virtualiser (noted HV)).
Examples of HV component are MMUs, which allow the
virtualisation of memory into memory partitions.

Note that from this classification, the Freescale CoreNet
Coherency Fabric involved in the P40 and T10 families is
considered to be a Hardware Composite component. It is
composed of two elementary components: (1) a crossbar
considered to be a Reactive Hardware component, as it can
only transmit transactions between the cores and the peripheral
components, and (2) a coherency fabric considered to be
an Active Hardware component, as it can initiate coherency
transactions between the caches involved in the cores.

This distinction between active, reactive, and passive com-
ponents will be useful for the interferences computation.
An interference is an event caused by a “collision” or an
“overlap” on the same shared HW component between two
transactions issued by two active components and propagating
through reactive components. The shared component where
the interference occurs can be either active, reactive or passive.

Note that, in order to be as generic as possible, that is, to
be able to address existing or future multi-core and many-core
processors, the meta-model of the HW platform chapter does
not offer business concepts such as “core”, “interconnect”,
etc. Introducing business concepts would lead (1) to a great
number of concepts, and (2) to a lack of genericity. We chose
to capture only abstract concepts from which the concrete
components can be modeled. For instance, as explained previ-
ously, a memory will be described as a Hardware Composite
component, composed of a controller (considered as reactive),
and several banks (considered as passive).

2) Software platform chapter: Figure 3 presents the meta-
model of the software platform chapter. This chapter describes

Fig. 3. Meta-model of the software platform chapter

the software architecture involved for managing the platform.
It does not include applicative software. A software platform
contains software elements (called Platform Software com-
ponent), refined into (1) Configuration Software involved in
the boot phase to configure hardware resources, and (2) Soft-
ware Components involved at run-time. Software components
are either bare components, directly running on hardware
resources, or virtualiser components whose aim is to create
and to manage virtual resources (such as compute partition).

Note that Platform Software and Configuration Software
are abstract classes, meaning that any platform model cannot
contain instances of these classes. Software element involved
in the platform management are only configuration software,
bare software, or virtualiser software.

Examples of Virtualiser software are hypervisors and oper-
ating systems. Examples of bare software include specific soft-
ware such as DPAA controllers. As for hardware components,
a platform software is said active if it can initiate transactions
to hardware elements. Otherwise, it is considered as reactive.
For instance, an hypervisor is an active component: it has is
own data, and it can issue events through the architecture
(e.g., events for scheduling the compute partitions). By the
same reasoning, the DPAA software controller is an active
component. It can issue IO traffic through the interconnect
to the memory. Conversely, a non intrusive trace recorder
which snoops the activity of the platform is considered to be
a reactive software (provided that it has been proved as being
non intrusive).

From an interference point of view, active software running
on a hardware/virtual resources can issue transactions through
the architecture. As such, they can provoke interferences.

Fig. 4. Meta-model of the application chapter

3) Application chapter: Figure 4 presents the concepts
involved in the application chapter. Similarly to the hardware



chapter, the application chapter is a tree structure. It is com-
posed of application components, which are either terminal
elements, or elements which themselves break down into sub-
applications. The objective is to allow description of complex
applications composed of several threads running in several
partitions or on several cores. An application that contains
sub-applications is called an Application Composite.

In this hierarchy, we distinguish three types of terminal
application software:
• Software Application, whose execution is supported by

an operating system.
• Bare Application over Virtual Resource, which runs in

bare mode (i.e., without the support of any operating
system) in a virtual resource (for instance a compute
partition managed by an hypervisor).

• Bare Application over Hardware resource, which runs in
bare mode directly on hardware resources.

Note that the OS personality component refers to OS
developed (or provided) by application providers. Such OS
personalities are not provided at platform level. OS provided
by the platform are described in the software platform chapter
as Platform Bare Component or Software Virtualiser Compo-
nent.

4) Deployment chapter: The last chapter addresses the
configuration of the whole equipment. It describes the Virtual
Resources created and managed by the hardware/software
virtualiser components. It also details on which resources (in-
cluding virtual resources) are hosted the software components
and the application components. And finally, it describes the
transaction paths followed by transactions issued by active
components through the architecture. A transaction domain is
a directed acyclic graph of transaction paths from active to
reactive and passive components.
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Fig. 5. Toy example

5) A toy example: In order to illustrate the concepts intro-
duced above, let us consider the toy example shown in figure 5.
The HW platform involved in this example is composed of two
cores, an interconnect, a memory controller, and two memory
banks. All these elements are considered to be terminal. The
cores, the interconnect, and the controller are reactive, whereas
the memory banks are passive components. Two software
applications (A0 and A1) run on the platform. Each one is
hosted by one core and one bank (cores and banks are not
shared between the two applications). We suppose that A0 and
A1 run in bare mode (there is no platform software). Finally,
we suppose that each application accesses the memory through
a dedicated transaction way (one per application). Each way
is composed of four transactions paths (one for each traversed

component, including the applications). The transaction way
for A0 (resp. A1) is depicted in red (resp. blue) in figure 5.

The PML model of this example is described in listing 1.

Listing 1. Toy example (in PML)
ToyExampleModel :

HWPlatform
/∗ Hardware components ∗ /

core0 , core1 , i n t e r c o n n e c t , c t r l : R e a c t i v e H a r d w a r e ;
bank0 , bank1 : P a s s i v e H a r d w a r e ;
/∗ P h y s i c a l c o n n e c t i o n s ∗ /
( core0 , i n t e r c o n n e c t ) p h y s i c a l l y C o n n e c t e d ;
( core1 , i n t e r c o n n e c t ) p h y s i c a l l y C o n n e c t e d ;
( i n t e r c o n n e c t , c t r l ) p h y s i c a l l y C o n n e c t e d ;
( c t r l , bank0 ) p h y s i c a l l y C o n n e c t e d ;
( c t r l , bank1 ) p h y s i c a l l y C o n n e c t e d ;

SWPlatform /∗ None ∗ /

A p p l i c a t i o n s
A0 , A1 : B a r e A p p l i c a t i o n O v e r H a r d w a r e ;

Deployment
/∗ S o f t w a r e a l l o c a t i o n ∗ /
A0 hos tedBy c o r e 0 ;
A1 hos tedBy c o r e 1 ;
/∗ T r a n s a c t i o n d e s c r i p t i o n ∗ /
A0 pth , A1 pth , c o r e 0 p t h , c o r e 1 p t h , i n t 0 p t h ,

i n t 1 p t h , c t r l 0 p t h , c t r l 1 p t h ,
bank0 pth , bank1 p th : T r a n s a c t i o n P a t h ;

A0 pth hos tedBy A0
A1 pth hos tedBy A1
c o r e 0 p t h hos tedBy c o r e 0
c o r e 1 p t h hos tedBy c o r e 1
i n t 0 p t h hos tedBy i n t e r c o n n e c t
i n t 1 p t h hos tedBy i n t e r c o n n e c t
c t r l 0 p t h hos tedBy c t r l
c t r l 1 p t h hos tedBy c t r l
bank0 p th hos tedBy bank0
bank1 p th hos tedBy bank1

( A0 pth , c o r e 0 p t h ) l o g i c a l l y C o n n e c t e d ;
( c o r e 0 p t h , i n t 0 p t h ) l o g i c a l l y C o n n e c t e d ;
( i n t 0 p t h , c t r l 0 p t h ) l o g i c a l l y C o n n e c t e d ;
( c t r l 0 p t h , bank0 p th ) l o g i c a l l y C o n n e c t e d ;
( A1 pth , c o r e 1 p t h ) l o g i c a l l y C o n n e c t e d ;
( c o r e 1 p t h , i n t 1 p t h ) l o g i c a l l y C o n n e c t e d ;
( i n t 1 p t h , c t r l 1 p t h ) l o g i c a l l y C o n n e c t e d ;
( c t r l 1 p t h , bank1 p th ) l o g i c a l l y C o n n e c t e d ;

B. Formalisation

Querying and reasoning about the information imply that
this information must be formally modeled. To support this
approach, we relied on WEIRD, a specification language for
expert modeler [BBD+16]. WEIRD provides basic construc-
tions to define concepts, entities, relations between model
elements (with the special case of applications), and functions
(between model elements and primary types as integer or
boolean), as well as a rather rich expression language to
describe some model elements and to query the model for
assessments.

WEIRD also offers a modularity mechanism: WEIRD speci-
fications can be separated into related worlds. When focusing
on meta-modeling, this modularity will be used to separate the
different concerns of a domain specific modeling language. We
will use worlds to differentiate each PML chapter.

The most interesting aspect of WEIRD with respect to our
concern is that the WEIRD semantics are expressed in terms
of propositional logic. They allow the specification of formal



queries as first order formulae, and mathematical reasoning
over both the queries and the model.

In order to illustrate the WEIRD implementation of the PML
chapters, let us first consider the hardware platform chapter.
The implementation of this chapter is a WEIRD world called
“PML-HWPlatform” (partially) shown in listing 2. Each PML
concept is implemented as a WEIRD “concept” (a WEIRD
concept being equivalent to a type with a sub-typing relation
denoted “<:”). Each relation in the PML meta model is then
directly implemented as a relation between the corresponding
concepts in the WEIRD world.

Listing 2. HW platform meta model in WEIRD (partial)
world PML−HWPlatform {

c o n c e p t HardwarePla t formComponent
r e l a t i o n p h y s i c a l l y C o n n e c t e d : HardwarePla t formComponent

x HardwarePla t formComponent

c o n c e p t HardwareComposi te <: HardwarePla t formComponent
r e l a t i o n i s P a r t O f : HardwarePla t formComponent

x HardwareComposi te i s a c o n t a i n e r

c o n c e p t P a s s i v e H a r d w a r e <: HardwarePla t formComponent
c o n c e p t R e a c t i v e H a r d w a r e <: HardwarePla t formComponent
c o n c e p t Ac t iveHardware <: HardwarePla t formComponent
c o n c e p t H a r d w a r e V i r t u a l i s e r <: Ac t iveHardware

}

The translation of the toy example in listing 1 is then
straightforward (cf. listing 3). It is described as a WEIRD
world. It inherits from the PML chapters (relation derives
in listing 3), and introduces the concrete elements of the toy
example as new entities (e.g., core0, core1 and interconnect
are three instances of the ReactiveHardware concepts).

Listing 3. Toy example in WEIRD (extract)
world Toy−Example d e r i v e s PML−HWPlatform , PML−SWPlatform ,

PML−A p p l i c a t i o n s , PML−I n t e g r a t i o n {

e n t i t y core0 , core1 , i n t e r c o n n e c t , c t r l : R e a c t i v e H a r d w a r e
e n t i t y bank0 , bank1 : P a s s i v e H a r d w a r e

known ( core0 , i n t e r c o n n e c t ) i n p h y s i c a l l y C o n n e c t e d
known ( core1 , i n t e r c o n n e c t ) i n p h y s i c a l l y C o n n e c t e d
. . .

e n t i t y A0 , A1 : B a r e A p p l i c a t i o n O v e r H a r d w a r e
known ( A0 , c o r e 0 ) i n hos tedBy
known ( A1 , c o r e 1 ) i n hos tedBy

e n t i t y A0 pth , A1 pth , c o r e 0 p t h , c o r e 1 p t h , i n t 0 p t h ,
i n t 1 p t h , c t r l 0 p t h , c t r l 1 p t h ,
bank0 pth , bank1 p th : T r a n s a c t i o n P a t h

known t r a n s a c t i o n P a t h H o s t e d B y ( A0 pth )= c o r e 0
known t r a n s a c t i o n P a t h H o s t e d B y ( A1 pth )= c o r e 1
. . .

known ( A0 pth , c o r e 0 p t h ) i n l o g i c a l l y C o n n e c t e d
known ( c o r e 0 p t h , i n t 0 p t h ) i n l o g i c a l l y C o n n e c t e d
. . .

}

C. Certification requirements revisited (again)

As said previously, one of the benefits of using a formal log-
ical framework is to allow formal verification of certification
requirements. In order to illustrate this ability, let us consider
two examples of consistency requirements:
• CR1: “there is no empty composite component”

• CR2: “any hardware composite component is not part of
itself ”

CR1 and CR2 are quantified requirements. They can be
formalized as WEIRD assertions, as shown in listing 4.

Listing 4. Toy example in WEIRD
a s s e r t CR11 = f o r a l l e n t i t y h : HardwareComposi te

| e x i s t s e n t i t y r : : HardwarePla t formComponent
| ( r , h ) i n i s P a r t O f

a s s e r t CR12 = f o r a l l e n t i t y a : A p p l i c a t i o n C o m p o s i t e
| e x i s t s e n t i t y b : : A p p l i c a t i o n
| ( b , a ) i n i s P a r t O f

a s s e r t CR2 = f o r a l l e n t i t y h : HardwareComposi te
| n o t ( h , h ) i n ˆ i s P a r t O f

CR1 is decomposed in two sub-requirements, one related to
hardware composite components, and the second one related
to application composite components. CR11 assumes that for
any hardware composite component h, there exists at least one
component r (terminal or not) related to h with the relation
isPartOf, meaning that r is a sub-component of h.

CR2 is more interesting. Indeed, it uses the transitive closure
of the relation isPartOf (noted ˆisPartOf ). CR2 means that
for any hardware composite component, (h, h) is not in the
transitive closure of isPartOf. In other words, any h is not
sub-component of itself nor of any sub-component of itself.

WEIRD being a logical language, such requirements are
checked with an automatic solver.

V. INTERFERENCE PREDICTION

Interference prediction is a second key issue when dealing
with MCP certification. Let us call “potential interferences” the
interferences predicted by the prediction activity, and “actual
interferences” the interferences that actually occur in the
platform. For a given MCP, let us call IP the set of “potential
interferences” and IA the set of “actual interferences”. The
prediction activity must be:
• correct, meaning that IA ⊂ IP (assuming that the plat-

form model is correct, at least all the actual interferences
are predicted),

• as accurate as possible, i.e., the number of potential
interferences which are not actual interferences must be
as small as possible.

A way to answer the correctness issue is to identify a
tight (in order to answer the accuracy requirement) sufficient
condition for deciding if a configuration may lead to an
interference.

A. What is interference?

As defined in [JMR+16], an interference is the disruption of
the behavior of an active element A due to the activity of active
elements B1. . .Bn. This disruption is caused by an unexpected
behavior of a resource R used by A. The unexpected behavior
can be a change of the state of R (e.g., the resource was
available and it becomes unavailable, or its value is changed,
etc.). The effect of the disruption can be a delay in the activity
of A, or a modification of its outputs.

Let us make three remarks:



1) First, note that interferences are not necessarily related
to software applications. Any active element can suffer
from interferences.

2) Second, an interference involves n + 1 active com-
ponents, and at least one resource: the victim of the
interference (A), the n components which have caused
the interference (B1. . .Bn), and the resource where the
interference occurs (R).

3) Third, this definition is not limited to “simultaneous
collision” between transactions. Indeed, interferences
can occur in scenarios without “collisions”. For instance
when an application B modifies the content of a shared
cache by loading its own data and removing data from
another application A. When, later, A will try to read
its data, it will have to load the data from the memory,
that will lengthen its execution time. In such cases, we
talk about “delayed collision”.

Following these remarks, let us propose the following
condition:

Interference condition: let A and B be two active com-
ponents, let tA and tB two transactions issued by A and B
respectively. Let a1, a2. . . , an the resources crossed by tA,
and let b1, b2. . . , bm the resources crossed by tB . ai and
bj can be concrete hardware resources or virtual resources (a
memory partition for instance). Then, we state that a potential
interference may occur between A and B if ∃i, j such that ai
and bj are hosted by the same hardware resource.

Note that this condition does not mention time. It covers in-
terferences due to “simultaneous collisions” and interferences
due to “delayed collisions”. One can thus observe that if A can
interfere on R with B1, and A can also interfere with B2 on
R, then A can potentially interfere with both B1 and B2 on R.
That means that if we are able to predict binomial interferences
(i.e., interference involving two active components on one
resource), then we can predict any n-nomial interference (i.e.,
interference involving n active components on one resource)
by overlapping binomial interferences.

This shows that it is sufficient to compute binomial inter-
ferences by using the interference condition above.

B. Potential interference computation using WEIRD

Having a sufficient condition to infer potential interferences,
the next step is to infer them from a PML model.

To achieve this, we use the facts system of the WEIRD
logical framework. A “fact” is an expression of the form:
for (typed) variables such that the “selection expression”
holds, add “knowledge” to the model. A fact system can be
used to encode rules that automatically complete a model.
A simple example is a fact encoding that a binary relation
r is symmetric by adding the symmetrical case every time a
couple is inserted in r by the user. For instance, to encode
that the relation physicallyConnected of the PML hardware
platform meta-model is symmetric, we add the following fact
to the WEIRD implementation:
fact any (e1, e2) in physicallyConnected | true =⇒
(e2, e1) in physicallyConnected.

Similarly, we encode the interference condition with the two
WEIRD facts shown in listing 5. The first fact infers knowledge
used by the second fact. It says:

• for any two different transaction paths ta1
and tb1 ,

• if ta1
and tb1 are active (i.e., issued by active compo-

nents),
• and if there exist two transaction paths ta and tb respec-

tively reachable from ta1 and tb1 (reachability is encoded
by the transitive closure of ˆlogicallyConnected),

• and if ta and tb are collocated (i.e., hosted by the same
component),

• then WEIRD infers the following new knowledge:
(ta1 , ta, tb, tb1 ) is a potential binomial interference, which
can potentially occur on the resource shared by ta and
tb.

Listing 5. Interference condition in WEIRD (partial)
/ / F a c t I n t e r f e r e n c e 1
f a c t any e n t i t i e s

t a 1 : : T r a n s a c t i o n P a t h ,
t a : : T r a n s a c t i o n P a t h ,
t b : : T r a n s a c t i o n P a t h ,
t b 1 : : T r a n s a c t i o n P a t h
| ( I s T r a n s a c t i o n P a t h A c t i v e ( t a 1 )

and I s T r a n s a c t i o n P a t h A c t i v e ( t b 1 )
and t a 1 != t b 1
and ( ( t a , t b ) i n T r a n s a c t i o n P a t h C o l l o c a t e d ) )
and ( ( ta1 , t a ) i n ˆ l o g i c a l l y C o n n e c t e d )
and ( ( tb1 , t b ) i n ˆ l o g i c a l l y C o n n e c t e d )
==> ( t a1 , t a , tb , t b 1 ) i n t r a n s a c t i o n I n t e r f e r e n c e

/ / F a c t I n t e r f e r e n c e 2
f a c t any e n t i t i e s

t a 1 : : T r a n s a c t i o n P a t h ,
t a : : T r a n s a c t i o n P a t h ,
t b : : T r a n s a c t i o n P a t h ,
t b 1 : : T r a n s a c t i o n P a t h
| ( ( t a1 , t a , tb , t b 1 ) i n t r a n s a c t i o n I n t e r f e r e n c e

==> ( t r a n s a c t i o n P a t h H o s t e d B y ( t a 1 ) ,
t r a n s a c t i o n P a t h H o s t e d B y ( t a ) ,
t r a n s a c t i o n P a t h H o s t e d B y ( t b 1 ) )

i n r e s o u r c e I n t e r f e r e n c e

Then, the second fact encodes the interference predicate at
resource level: if (ta1

, ta, tb, tb1 ) is a potential binomial inter-
ference between transactions, then (a1, r, a2) is the resulting
potential interference at resource level, where a1 (resp. a2) is
the resource which hosts the path ta1

(resp. tb1), and r is the
shared resource which hosts both ta and tb.

C. Application to the toy example

Let us consider the toy example once more. Applied on this
example, the previous facts produce the new knowledge:

[Facts] -- Fact Interference1 added knowledge:
((A0_pth, int0_pth, int1_pth, A1_pth)
in transactionInterference)

((A0_pth, ctrl0_pth, ctrl1_pth, A1_pth)
in transactionInterference)

[Facts] -- Fact Interference2 added knowledge:
((A0, interconnect, A1) in resourceInterference)
((A0, ctrl, A1) in resourceInterference)

As expected, two interferences are predicted between A0
and A1: the first one on the interconnect, and the second one
on the controller.



VI. CASE-STUDY

As a more complex case-study than the toy example dis-
cussed in the previous section, let us consider the many-core
processor Kalray MPPA R©-256 [Kal12] (see also [Per17] for
a clear and detailed presentation of the Kalray MPPA R©-256
architecture).

A. Kalray MPPA R©-256

The Kalray MPPA R©-256 is a many-core processor featuring
288 cores on a single chip. It is organized in 16 compute
clusters and 4 I/O clusters serving as interfaces for managing
communications with out-of-chip components and hosting the
global memory of the processor. All the clusters are connected
on a dual NoC (Network on Chip) enabling point-to-point
communications (one NoC for data communication (D-NoC),
and a second one for control messages (C-NoC)). In this case-
study, we only consider one compute cluster connected to the
D-NoC. A compute cluster features: (1) 16 cores, (2) one
additional core denoted as Resource Manager (RM) in charge
of managing the cluster’s local resources, (3) one DMA unit
to manage data transfer from and to the dual NoC, (4) a
shared memory organised in 16 independent banks, (5) a full-
duplex access point to the NoC (NoC Router), and (6) a Debut
and Support Unit (DSU). The DMA unit is divided in two
parts: a sending part (DMATx) and a receiving part (DMARx).
Similarly, the NoC Router is composed in two parts: the first
one connected to the D-NoC, and the second one connected to
the C-NoC. Each part is composed of two FIFOs (one output
FIFO to the D-NoC, and one input FIFO from the NoC).

D
M
ATx	

D
M
A
Rx	

RM
	 D

M
A 

output-fifo	

input-fifo	

D-NoC Router 

D-NoC 

PE1	

PE2	

PE3	

PE4	

Bank5	

Bank6	

Bank7	

Bank8	

Bank1	

Bank2	

Bank3	

Bank4	

SRAM 

Fig. 6. Architecture of compute clusters in the Kalray MPPA R©-256 (restricted
to 4 PEs and 8 Banks)

In this case-study, we only consider a restricted version of
the MPPA compute cluster composed of 4 PEs, 8 Banks, 1
RM, 1 DMA and 1 D-NoC Router as depicted in Figure 6.
As such, a compute cluster can be seen as a quad-core pro-
cessor. However, conversely to classic multi-core processors,
transactions between HW elements (PEs, DMA and RM) and
the shared memory are supported by a hierarchical arbitrer, as
depicted in Figure 7. For each Banki (i = 1 . . . 8), transactions
to the bank are interleaved as follows:
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Fig. 7. Hierarchical SRAM arbitrer of Kalray MPPA R©-256

• PEs accesses are arbitrated in a Round-Robin fashion.
• RM and DMATx accesses are arbitrated in Round-Robin.
• The two resulting transactions (from PEs and from RM

or DMATx) are then arbitrated in Round-Robin.
• Finaly, the resulting transactions from this last Round-

Robin arbitrer is interleaved with memory requests from
DMARx. However, contrary to the previous arbitration
policies, requests from DMARx are treated with full
priority over other memory accesses.

As a consequence, requests from PEs, RM or DMATx are
systematically stalled while the DMA writes input data to the
memory. This is done to avoid congestion at the entry point
of the cluster.

From a global point a view, the scheme depicted in Figure 7
is replicated for each bank as shown in Figure 8. That means
that two different masters (among PEs, the RM and the two
DMA parts) can access two different banks in parallel, without
suffering from interferences.
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Fig. 8. Intra cluster communication architecture

Note that, in addition to communication through shared
memory, the master elements of a compute cluster (PEs, RM,
DMA) can also interact by sending events:
• PEs and RM can send events to each other to achieve a

synchronisation barrier;
• PEs can send events to DMATx and DMARx in order to

configure the Tx and Rx channels.

B. Modeling

To model a Kalray MPPA R©-256 compute cluster, we follow
the same approach previously shown for the toy example



in section IV-A5. Each HW component (PE, RM, DMATx,
DMARx, FIFO, Bank, Arbitrer, etc.) becomes a WEIRD entity.
The full WEIRD model contains 51 hardware components,
90 physical connections between hardware components, 196
transaction paths, and 206 logical connections between trans-
action paths1.

C. Interference prediction

We have studied two compute cluster configurations: a
“full” configuration, and a “final configuration.

a) “Full” configuration: In the first experiment, we
consider a “full” configuration, i.e., a configuration in which
all transactions are allowed between the masters elements
(PEs, RM, and DMA) and the shared memory. Event sending
between PEs, the RM and the DMA is also fully allowed. The
interference prediction method computes a set of 876 potential
interferences. Let us call IFull this set. The computation of
IFull took about 37 minutes using about 6Go memory on a
2.3 Ghz Core i7 processor with 16Go memory.

Interferences of IFull are mainly due to: (1) collisions inside
each hierarchical arbitrer between transactions from PEs, the
RM, and the DMATx, (2) collisions inside each master element
between the own activity of the master element and events
sent by other master elements, and (3) collisions inside each
bank of the shared memory. As expected, input transactions
from the D-NoC do not suffer from any interference when
crossing the hierarchical arbitrers to the banks. The prediction
method takes into account the fact that packets from the
DMARx have full priority over other packets (from PEs, RM,
DMATx). However, IFull contains 44 interferences in which
input transactions are potentially victim of disruptions due to
other transactions. These interferences occur:
• at the entry of each bank; despite the fact that DMARx

requests have a higher priority than other request, they
have to wait before entering the bank if the memory is
serving another request arrived just before it (from PEs,
the RM or DMATx); in that case, the DMARx requests
could be delayed by at most by one memory transaction
from another master.

• in the DMARx component, each time a PE sends an event
to DMARx (for instance to access the Rx registers).
b) “Final” configuration: In the second experiment, we

consider a “final” configuration, representative of an embedded
application, in which:
• each PE is associated with two private banks (PE1 with

bank1 and bank2, PE2 with bank3 and bank4, etc.) as
suggested in [Per17] (configuration achieved by appro-
priate MMU settings);

• only the RM is allowed to send events to the PEs;
• DMARx is only allowed to write input data in (and then

to access) bank1, bank3, bank5 and bank7;
• and DMATx is only allowed to read output data from

(and then to access) bank2, bank4, bank6 and bank8.

1The full model is available at: http://w3.onera.fr/phylog

The interference prediction method returns a set IFinal of 51
potential interferences. The computation of IFinal took about
35 minutes using about 6Go memory.

As expected, IFinal ⊂ IFull. IFinal is the set of the remaining
interferences not avoided by the “final” configuration and
that must be addressed by the certification argumentation.
As expected in this configuration, DMARx no longer suffers
from disruptions due to events sent by PEs. However, input
transactions from the D-NoC still suffer from 4 interferences
(input-fifo, banki,PEi) ∈ IFinal i = 1 . . . 4 (one interference at
the entry of each bank with the PE “owner” of the bank).

VII. DISCUSSION AND CONCLUSION

The aim of the approach presented above is to automatically
generate of the list of interferences that can potentially occur
in a multi-core equipment. According to the MCP-CRI, each
one of those interferences is a key certification issue. It has
to be addressed by a dedicated argumentation showing that
the interference never happens or has a negligible effect on
the behavior of the applications hosted by the equipment.
For instance, let us consider again the Kalray MPPA R©-256
case-study developed in the previous section. The set IFinal

returned by the prediction interference analysis contains 51 po-
tential interferences. The certification files should thus contain
51 argumentation trees, one for each potential interference.

However, the approach still suffer from several limits.
Combinatorial explosion. The first limit to overcome is

the combinatorial explosion encountered when computing the
intersection of the transaction ways. For instance, to consider
a real Kalray MPPA R©-256 cluster composed of 16 PEs and
16 banks. This would exceed the capacity of the WEIRD tool
suite. To overcome this limitation, future work will include the
study of a more efficient implementation of the interference
prediction analysis.

Taking into account the real time behavior of the trans-
actions. A second perspective for future work is to consider
the temporal behavior of the transactions. For example, let us
consider again the “final” configuration of the Kalray MPPA R©-
256 case-study. In this configuration, the input transactions
from the D-NoC suffer from interferences at the entry of
the banks. Let us now suppose that DMARx is temporally
interleaved with each PEi on banki (as defined by the time
triggered execution model proposed in [Per17]). By con-
figuration, PEi and DMARx can both access banki during
non overlapping periodic time intervals. As a result, the 4
interferences (between input-fifo and PEi on banki) actually
never happens. Taking into account the real-time behavior of
the transactions thus leads to a more accurate interference
prediction.

Taking into account the faulty behavior of the transactions.
The third perspective for future work on the approach pre-
sented in this article is thus to pay attention to the effect
of component failures on the identified interferences. To do
so, we will take inspiration from the Model-Based Safety
Assessment (MBSA) approach [BP17].

http://w3.onera.fr/phylog
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