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Abstract 6 

The global and regional influence of the El Niño-Southern Oscillation (ENSO) phenomenon on 7 

extreme precipitation was analyzed using a global database comprising over 7000 high quality 8 

observation sites. To better quantify possible changes in relatively rare design-relevant precipitation 9 

quantiles (e.g. the 1 in 10 year event), a Bayesian regional extreme value model was used, which 10 

employed the Southern Oscillation Index (SOI) – a measure of ENSO – as a covariate. Regions 11 

found to be influenced by ENSO include parts of North and South America, southern and eastern 12 

Asia, South Africa, Australia and Europe. The season experiencing the greatest ENSO effect varies 13 

regionally, but in most of the ENSO-affected regions the strongest effect happens in boreal winter, 14 

during which time the 10-year precipitation for |SOI|=20 (corresponding to either a strong El Niño 15 

or La Niña episode) can be up to 50% higher or lower than for SOI=0 (a neutral phase).  16 

Importantly, the effect of ENSO on extreme precipitation is asymmetric, with most parts of the 17 

world experiencing a significant effect only for a single ENSO phase. This finding has important 18 

implications on the current understanding of how ENSO influences extreme precipitation, and will 19 

enable a more rigorous theoretical foundation for providing quantitative extreme precipitation 20 

intensity predictions at seasonal timescales. We anticipate that incorporating asymmetric impacts of 21 

ENSO on extreme precipitation will help lead to better-informed climate-adaptive design of flood-22 

sensitive infrastructure.      23 

 24 

Keywords: ENSO, asymmetric relationship, extreme precipitation, Bayesian regional modeling, GEV 25 
distribution, climate-informed model26 

27 
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1 INTRODUCTION  28 

Every year, extreme precipitation results in flooding that leads to loss of life and infrastructure, as 29 

well as economic disruption. Not only are the direct effects of floods felt for many years, but the 30 

indirect effects - including disease, trauma and social dislocation, reduced agricultural production or 31 

loss of manufacturing capacity - can be felt for decades (Ahern et al., 2005). The El Niño-Southern 32 

Oscillation (ENSO) is the single most influential climate phenomenon affecting the variability of 33 

global precipitation extremes (Dai et al., 1997), and understanding the ENSO-extreme precipitation 34 

relationship is therefore critical to predict and manage the impacts of floods at global and regional 35 

scales (Ward et al., 2014a; Ward et al., 2014b). While many previous studies have detected the 36 

ENSO impact on extreme precipitation indices, this study is the first to undertake a global analysis 37 

that quantifies the asymmetric impact of ENSO on “design-relevant” extreme precipitation 38 

quantiles (e.g. the 1 in 10 year event). 39 

 40 

A large number of studies have discussed the relationship between the two ENSO phases (El Niño 41 

and La Niña) and regional average precipitation. Ropelewski and Halpert (1987) provided a global 42 

pattern of the magnitude, phase and duration of ENSO-related precipitation. Dai et al. (1997) and 43 

Dai and Wigley (2000) also examined precipitation over the oceans and described a global pattern 44 

of the effect of ENSO on precipitation. In boreal winter, positive anomalies occur in southwestern 45 

North America during El Niño episodes and northwestern North America during La Niña episodes 46 

(Castello and Shelton, 2004; Meehl et al., 2007). Positive anomalies occur during El Niño episodes 47 

in southeastern South America in austral winter, spring and summer, and northeastern South 48 

America in autumn (Fernandez and Fernandez, 2002; Grimm, 2011; Kayano and Andreoli, 2006). 49 

La Niña enhances the rainfall in South Africa in summer (Kruger, 1999; Vanheerden et al., 1988), 50 
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and significant effects are also found in Asia (Kane, 1999; Kripalani and Kulkarni, 1997; Li and 51 

Ma, 2012; Wu et al., 2003) and Australia (Cai and Cowan, 2009).  52 

 53 

Although many of the early studies of the ENSO-precipitation relationship focus on seasonal and 54 

annual average precipitation, an increasing number of studies have begun to focus on the 55 

relationship between ENSO and extreme precipitation, given its importance in understanding flood 56 

risk. For instance, a significant ENSO influence was found on the frequency of extreme 57 

precipitation in North America (Cayan et al., 1999; Gershunov and Barnett, 1998; Higgins et al., 58 

2011; Jones and Carvalho, 2012; Schubert et al., 2008) and South America (Grimm and Tedeschi, 59 

2009; Pscheidt and Grimm, 2009). This relationship had also been studied in China (Wan et al., 60 

2013) and Australia (Min et al., 2013). At the global scale, Curtis et al. (2007) investigated the 61 

correlation between ENSO and the frequency of estimated precipitation extremes for different 62 

seasons, while Lyon and Barnston (2005) discussed the spatial extent of tropical land precipitation 63 

extremes related to the extreme phases of ENSO. Kenyon and Hegerl (2010) reported on the 64 

response of global extreme precipitation to ENSO. Alexander et al. (2009) studied the global 65 

response of precipitation extremes to global sea surface temperature variability.  66 

 67 

A limitation of many of these studies is that the “extremes” investigated are still relatively frequent 68 

events, and thus not directly meaningful from a flood risk estimation perspective. For example, 69 

Cayan et al. (1999) used the daily precipitation larger than the 90th percentiles (P90), while Lyon 70 

and Barnston (2005) used an index based on monthly precipitation anomalies from a gridded 71 

dataset. In contrast, the design, management and operation of water-related engineering 72 

infrastructure often requires information on rarer “design-relevant” extremes, such as the 1 in 10 73 

year or 1 in 100 year precipitation event (Westra et al., 2014). The rarity of such events makes 74 

detecting an association between extreme rainfall and ENSO difficult, and a framework for 75 
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quantifying such effects is therefore required to assist with the design and operation of engineering 76 

systems that can adapt to ENSO-induced climate variability.  77 

 78 

To move beyond simply detecting the ENSO effect on extreme precipitation indices and instead 79 

focus on estimating ENSO effect on extreme precipitation quantiles that are “design-relevant”, one 80 

needs to account for the specific features of extreme precipitation. Challenges with estimating 81 

extreme precipitation quantiles include: 82 

1. At-site extremes are much more variable than temporally or spatially averaged precipitation. 83 

As a consequence, detecting an ENSO effect is more difficult due to a lower signal-to-noise 84 

ratio, which raises questions on the ability of local methods to detect ENSO effects; 85 

2. Extreme precipitation usually occurs over a small spatial area within a short time. Thus, 86 

spatially smoothed datasets, such as gridded datasets, are not well-adapted. As an illustration, 87 

Mannshardt-Shamseldin et al. (2010) showed that raingauge-based precipitation quantiles 88 

may be two to three times higher than gridded precipitation quantiles. However, the use of 89 

raingauge-based data poses specific difficulties in terms of irregular spatial sampling and 90 

handling of missing data; and 91 

3. Quantifying ENSO effects on extreme precipitation requires use of appropriate probabilistic 92 

models (i.e. extreme value distributions). 93 

 94 

To analyze and predict the impact of climate variability on extreme hydrological variables, several 95 

non-stationary and climate-informed frequency analysis (FA) models have been developed at both 96 

local scale (e.g. Renard et al. (2006b), Kwon et al. (2008), Ouarda and El-Adlouni (2011), 97 

Tramblay et al. (2012)) and regional scale (e.g. Renard et al. (2006a), Hanel et al. (2009), Aryal et 98 

al. (2009), Lima and Lall (2010b), Shang et al. (2011), Westra and Sisson (2011)). Local analyses 99 

generally lead to large uncertainties that may mask the ENSO effect. Although regional analyses 100 
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may improve the detection power, additional difficulties are induced by the inherent spatial 101 

structure of precipitation. Furthermore, most of the aforementioned regional studies ignore spatial 102 

dependence (an exception being Westra and Sisson (2011)). 103 

 104 

Another limitation of many previous studies that describe the ENSO-precipitation teleconnection is 105 

that they often assumed a symmetric relation (with anomalies during El Niño being the opposite of 106 

those during La Niña (Hoerling et al., 1997)), however this assumption is increasingly being 107 

questioned. Several studies have demonstrated asymmetric associations between ENSO and climate 108 

variables (e.g., pressure and precipitation) (Hannachi, 2001; Hoerling et al., 2001; Hoerling et al., 109 

1997; OrtizBevia et al., 2010; Sardeshmukh et al., 2000). Asymmetry has been reported for the 110 

ENSO effect on regional rainfall for the winter precipitation response in North America by Wu et 111 

al. (2005), and for the spring rainfall in south China and Taiwan by Feng and Li (2011) and Chen et 112 

al. (2008). In Australia, the asymmetric effect of ENSO on extreme precipitation has been described 113 

for southeast Queensland (Cai and van Rensch, 2012; Cai et al., 2010; Sun et al., 2014) and eastern 114 

Australian regions (King et al., 2013). Importantly, Sun et al. (2014) showed that, compared to the 115 

asymmetric ENSO-precipitation model, the assumption of either no ENSO effect or only a 116 

symmetric ENSO-precipitation relationship led to a strong underestimation of extreme precipitation 117 

quantiles in southeast Queensland during La Nina episodes. This has significant practical 118 

implications for the design and management of flood-sensitive engineering infrastructure. Hence, 119 

there is a clear need to develop a global perspective on the form of the extreme ENSO-precipitation 120 

relationship, in particular for extreme precipitation quantiles.  121 

 122 

This study provides the first quantitative assessment of the global asymmetric effect of ENSO on 123 

seasonal “design-relevant” extreme daily precipitation. We extend the study of Sun et al. (2014) to a 124 

new global high quality gauge-based observation dataset (HadEX2) comprising observations at over 125 
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7000 stations (Donat et al., 2013). The same climate-informed Bayesian regional frequency analysis 126 

(RFA) method that was developed in Sun et al (2014) is applied to analyze the at-site extremes 127 

across this larger spatial domain. This method enables detecting and quantifying the effect of 128 

climate variability on extreme precipitation with the consideration of spatial dependence, and can 129 

account for situations where records at each site are of different lengths and contain missing values. 130 

Furthermore, the fact that ENSO effects are regionalized yields more precise estimates of the 131 

ENSO-extreme precipitation relationship compared to at-site analysis, while also providing 132 

sufficient resolution to identify distinct regional features. We apply this regional frequency analysis 133 

approach to geographic regions covering all land areas. The contribution is highlighted from the 134 

perspective of engineering design, which requires considering at-site extremes, rather than spatially 135 

smoothed gridded data sets. This makes the key difference with other studies that analyzed the 136 

relationship between ENSO and extreme precipitation at a large scale. 137 

 138 

This paper is organized as follows. Section 2 presents the dataset and briefly outlines the climate-139 

informed RFA framework applied to extreme precipitation. Section 3 assesses several assumptions 140 

made by the RFA model and justifies its application on the global data set. Section 4 describes the 141 

main results of the analysis, including the ENSO effect on extreme precipitation and the possible 142 

asymmetry of this effect. Practical implications and further improvements are discussed in Section 143 

5. Section 6 summarizes the main findings of the study. 144 

2 DATA AND METHOD 145 

2.1 Data 146 

The Hadley Center Global Climate Extremes Index 2 (HadEX2) dataset (Donat et al., 2013) 147 

comprises the monthly maxima of daily precipitation from 11,588 high quality observation sites 148 
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(Figure 1). The 7037 sites with records longer than 40 years were used, with a median record length 149 

of 60 years. The highest density of gauges is in Europe, the United States and South Africa, and the 150 

lowest density is in Amazonia, most of Africa, central Asia, tropical areas of Asia and central 151 

Australia. Overall, temperate climate areas are much more represented than tropical or subtropical 152 

ones, while polar areas are very scarcely gauged. For each site, we calculated the seasonal maxima 153 

of daily precipitation for December-January-February (DJF), March-April-May (MAM), June-July-154 

August (JJA) and September-October-November (SON).  155 

 156 

The Southern Oscillation Index (SOI) is a measure of the strength of ENSO. The index is calculated 157 

from the monthly mean sea level pressure difference between Tahiti and Darwin. Typically, as 158 

presented in the website of Australian Bureau of Meteorology (BOM) (http://www.bom.gov.au/  159 

climate/glossary/soi.shtml), sustained negative SOI values below about –8 indicate an El Niño event 160 

while sustained positive values above +8 indicate a La Niña event, although for simplicity we refer 161 

to a negative value of the SOI as an El Niño and a positive value as a La Niña. The SOI data (1877-162 

2011) used in this study were obtained from the BOM website, and were seasonally averaged using 163 

the same seasons as for precipitation.  164 

2.2 A regional extreme value model 165 

We apply a climate-informed regional frequency analysis (RFA) method to evaluate the effect of 166 

ENSO on extreme precipitation. This framework includes: (1) A generalised extreme value (GEV) 167 

model for extreme precipitation; (2) GEV parameters dependent on covariates based on indices of 168 

ENSO (SOI); (3) Spatial dependence represented by a Gaussian copula; (4) Bayesian inference 169 

techniques to provide reliable estimates of parameter and predictive uncertainty. Reliable estimates 170 

of parameter uncertainty are essential for models of extremes precipitation because the data lengths 171 

are short and the parameter uncertainty is a significant component of the predictive uncertainty.  172 
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A complete presentation of the method along with comparisons of alternative model formulations is 173 

given by Sun et al. (2014), and the methodology is summarized briefly here. 174 

2.2.1 Probabilistic regional model 175 

The generalized extreme value (GEV) distribution (Fisher and Tippett, 1928) is often used to 176 

describe the distribution of annual or seasonal maxima. The cumulative distribution function (cdf) 177 

of the GEV distribution is: 178 

 

1

( | , , ) exp 1
y

G y


   


              

  (1) 179 

where μ, σ and ξ are the location, scale and shape parameters, respectively. In the following, we call 180 

these three parameters the D-parameters (i.e., distribution parameters). 181 

 182 

For a given region, the observed seasonal maximum at site s and time t is a realization from the 183 

random variable ( , )Y s t . To develop the regional model, a GEV distribution is assumed for all sites 184 

(Coles et al., 2003; Katz et al., 2002) with D-parameters allowed to vary in both space and time: 185 

 ( , ) ~ ( ( , ), ( , ), ( , ))Y s t GEV s t s t s t     (2) 186 

For each D-parameter, a regression function is used to link the parameter value with the temporally-187 

varying covariate SOI. Following Sun et al. (2014), a piecewise linear regression function for the 188 

location and scale parameters is used to separately evaluate the effect of ENSO during the El Niño 189 

and La Niña phases. We do not assume any ENSO-related regression functions for the shape 190 

parameter since this parameter is difficult to estimate even in a stationary context (Coles, 2001, 191 

p106).  192 

 193 

Because ENSO is a large-scale (global) mode of variability, we reason that the influence of ENSO 194 

on precipitation would be a slowly varying function in space, and have therefore assumed that some 195 
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regression parameters would be constant for all sites within a geographic region (defined in Section 196 

2.2.2). This regional approach results in reduced uncertainty of parameters and predictions relative 197 

to estimating parameters separately at each gauge, as had been demonstrated in a number of 198 

previous studies (e.g., Renard et al. (2006a); Hanel et al. (2009); Westra and Sisson (2011); Sun et 199 

al. (2014)). 200 

 201 

The regression function for each D-parameter is therefore given by: 202 

 
0 1

0 1

( )

( )

ño* ( ); ( ) 0, El Ni
( , )

* ( ); ( ) 0, La Niña

s

loc reg

s

loc reg

SOI t SOI t
s t

SOI t SOI t

 


 





  
 

 

  (3a) 203 

 
0 1

0 1

( )

( )

ño* ( ); ( ) 0, El Ni
( , )

* ( ); ( ) 0, La Niña

s

loc reg

s

loc reg

SOI t SOI t
s t

SOI t SOI t

 


 





  
 

 

  (3b) 204 

 ( , ) regs t    (3c) 205 

We denote 
0 0

( ) ( ) ( )( , )s s s

loc loc loc   and 
1 1 1 1

( , , , , )reg reg reg reg reg reg         as regression parameters that 206 

need to be estimated. ( )s

loc  are site-specific (local) parameters, while reg  are regional parameters 207 

which are common for all sites within the region. The use of piecewise linear regression functions 208 

outlined in Eq. (3), with different linear functions in the El Niño and La Niña phases, enables the 209 

modelling framework to capture and evaluate the asymmetric nature of the ENSO-precipitation 210 

relationship.  211 

 212 

Spatial dependence between data inside a region is described with a Gaussian copula as used in Sun 213 

et al. (2014). The dependence matrix   for the Gaussian copula is: 214 

 1 2( , ) exp( *|| , ||)i j i js s s s      (4) 215 

where || , ||i js s  is the distance between sites si and sj, and 1 2( , )   are two parameters to be 216 

estimated.  217 
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Explicitly representing spatial dependence in this way is important to accurately characterize 218 

uncertainty (e.g.Westra and Sisson (2011)), since nearby gauges often show high levels of statistical 219 

dependence. The Gaussian copula is a member of the elliptical copulas family (which also 220 

comprises the Student copula), which remains applicable to high-dimension models such as here (a 221 

region can comprise up to 16 sites, see next section) (Renard, 2011). More detailed discussions on 222 

the use of the Gaussian copula can be found in Favre et al. (2004); Renard and Lang (2007); Renard 223 

et al. (2013), and details on likelihood function computation can be found in Sun et al. (2014). We 224 

also discuss the limitation of this approach in the discussion Section 5.4. 225 

2.2.2 Defining regions 226 

Regional analyses reduce sampling uncertainty compared to at-site (local) analyses. However, to 227 

obtain the spatial pattern of the ENSO effect, regions should be neither too small nor too large: 228 

small regions may not contain enough sites to precisely estimate the model parameters, while large 229 

regions may not have a consistent association with the SOI. Therefore, we prepared 2592 gridded 230 

regions with a grid size of 5˚ by 5˚ (about 309,000 km2  at the equator and 155,000 km2 at 60˚N), 231 

and applied the regional model described in Section 2.2.1 to each region. Note that this regional 232 

model does not assume that the distribution of extreme precipitation is constant within each region. 233 

It only assumes that the strength of the ENSO effect and the shape parameter are constant. However, 234 

the local parameters 
0 0

( ) ( ) ( )( , )s s s

loc loc loc   enable variability in the GEV distribution within each region, 235 

with the location and scale parameters of the GEV distribution remaining site-specific. 236 

 237 

To keep computation time feasible, we used only some of the available observation sites in a region 238 

(the computational bottleneck being the inversion of the dependence matrix ). Site selection was 239 

achieved by subdividing each region into 16 sub-regions, from which the gauge with the longest 240 

record was selected if there is more than one gauge available (red dots in Figure 2). Therefore, in 241 
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each region, there were at most 16 sites used for regional analysis. We considered a region to 242 

possess enough data to apply the regional model if there were at least three sub-regions with 243 

available gauges. In total, there are 323 regions that meet the requirement of station number and 244 

record length. A justification of this way of defining regions will be described in Section 3.1. 245 

2.2.3 Inference 246 

For each region, we estimated the parameters   in a Bayesian framework using the Markov chain 247 

Monte Carlo (MCMC) method. Relevant formulae can be found in Sun et al. (2014). In the current 248 

study, non-informative priors were used (but see Section 3.1.4 for an evaluation of an informative 249 

prior on the shape parameter). More details about the MCMC sampler are described by Renard et al. 250 

(2006a). To ensure convergence, we ran two chains with different starting points for each region. 251 

The Gelman-Rubin (GR) index (Gelman and Rubin, 1992) was used, and the MCMC sampling was 252 

considered as convergent when the GR value was less than 1.2 for all parameters. Note that the use 253 

of Bayesian inference allows the effect of sampling uncertainty to be quantified for all inferred 254 

quantities. The results are therefore not restricted to point-estimates of quantities such as the ENSO 255 

effect, conditional quantiles, and so on, but also encompass the associated uncertainties.  256 

The Bayesian approach is not the only possible way to estimate parameters and their uncertainties. 257 

Likelihood-based methods (Bayesian or maximum likelihood) are generally favored over moment-258 

based methods when covariates are used in the model as done here: indeed, the inclusion of the 259 

covariates in the likelihood function is quite straightforward, while deriving theoretical moments for 260 

given realizations of the covariates is more challenging. Maximum likelihood estimation techniques 261 

could also be used to estimate parameters and their uncertainty (e.g. using asymptotic Gaussian 262 

approximations or bootstrap, see Frey and Burmaster (1999)). However, we favored the Bayesian 263 

framework because it could be more adapted for future improvements of the statistical model we 264 
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consider (e.g. using region-specific priors, hierarchical modeling, etc.). This will be further 265 

discussed in section 5.4. 266 

2.2.4 The effect of ENSO on precipitation quantiles 267 

The effect of ENSO on precipitation quantiles is presented by calculating the slope of the SOI-268 

quantile relationship. More precisely, for a given exceedance probability 1-α, the associated 269 

quantile q  is computed through the inverse function of Eq. (1): 270 

 q K 





    (5) 271 

where  1 log( )K


    . 272 

By applying Eq. (3) to each D-parameter conditional on a specific SOI value, the quantile q  of site 273 

s becomes: 274 

 0

0

( )

( )( ) *

s

locs

loc

reg

q s K slp SOI  


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 is the slope of the quantile with respect to the SOI. Note that 276 

as the slope slp  only depends on the regional parameters, it is itself regional and hence does not 277 

depend on site s within a given region. 278 

3 MODEL ILLUSTRATION AND VERIFICATION 279 

To assess the validity of the main model assumptions and to verify that the strategy used to define 280 

regions and to select the stations within each region is relevant, we start our analysis by focusing on 281 

a particular region. We consider a region at mid to low latitude with a relatively large geographic 282 
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area to verify whether using sixteen stations is enough to obtain stable estimates. According to the 283 

coverage and availability of the data, we select the region at 32.5N 100W in Southern US (Figure 284 

2). 285 

3.1 Model demonstration for a particular region 286 

3.1.1 Goodness of fit 287 

We applied the regional model described in Eq. (3) to the DJF maximum precipitation of the sixteen 288 

stations shown as red dots in Figure 2. The goodness-of-fit of the time-varying GEV distribution 289 

can be verified through a probability-probability plot (pp-plot). For a given site s, the pp-plot is 290 

obtained by computing the cdfs   ,
1,

ˆ ( , )s t
t n

G y s t


 where t indicates the time step, ,
ˆ

s tG  is the cdf of 291 

the estimated time-varying GEV at time t, and y(s,t) is the corresponding observation. For a good 292 

fit, these cdf values should be realizations from Unif[0,1] distribution, yielding a pp-plot close to 293 

the diagonal (see e.g. Renard et al. (2013) and Sun et al. (2014) for more details). Figure S1 (a) 294 

shows a good fit for most stations. To further verify the goodness-of-fit, a Kolmogorov-Smirnov 295 

test (KS-test) at 0.05 level was used to test the distribution of the cdf values for all sixteen stations 296 

against a Unif[0,1] distribution. No significant departure from uniformity was detected, indicating  297 

that the model provides an acceptable fit to the observations. 298 

3.1.2 Gaussian copula and exponential dependence-distance model 299 

With the Gaussian copula, the spatial dependence is described through Gaussian-transformed data, 300 

where the observation is firstly transformed to a probability by applying the cumulative density 301 

function of the marginal GEV distribution, followed by the application of the quantile function of 302 

standard Gaussian distribution to obtain the Gaussian-transformed data (see Renard et al. (2013) for 303 

the details of data transformation). The empirical dependence of two stations is described by the 304 
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Pearson correlation coefficient of the Gaussian-transformed data. Figure S1(b) shows the 305 

dependence-distance relationship for the Gaussian-transformed data.  306 

 307 

The pairwise Pearson correlations of the observed data show that for the distance of 300 km, the 308 

correlation is about 0.4, which corresponds to a rather large decorrelation distance, suggesting that 309 

the daily extreme precipitation in this region is created by large-scale atmospheric systems. If this 310 

correlation is ignored, the information content of the data will be over-estimated and the uncertainty 311 

will be under-estimated. The red lines in Figure S1(b) show that the exponential model (Eq.(4)) 312 

gives a reasonable approximation of the shape of the dependence-distance relationship. The 313 

assumption that the dependence between stations is explained by inter-station distance alone may 314 

require further enhancements in some regions (e.g. in mountainous/coastal areas, elevation/distance 315 

from coast may also be important) – this is discussed in Section 5.4. However, incorporating some 316 

form of spatial dependence still constitutes an improvement over the standard approach that ignores 317 

spatial dependence.  318 

3.1.3 Stations selection 319 

This section assesses whether using 16 stations provides sufficient data to precisely estimate the 320 

parameters of the regional model. To this end, we sort the 16 stations in descending order according 321 

to their record length, and run the same regional model by using between one to sixteen stations, 322 

and compare the posterior distribution of the regional parameters (
1reg 
,

1reg 
 and  ) using box 323 

plots. Figure S2 shows that when the number of stations is less than three, the posteriors 324 

distributions have low precision (large uncertainties). As the number of stations increases, the 325 

precision increases (smaller uncertainties), which highlights the advantage of regional analysis 326 

compared with local (single station) analysis on providing more precise estimates. When the 327 

number of stations is larger than ten, the posterior distributions stabilize, with the boxplots showing 328 
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very little change both in terms of location and width. This stabilization of the posterior distribution 329 

highlights the advantage of modelling spatial dependence: indeed, if the spatial dependence was 330 

ignored, each new station would be considered as bringing a similar amount of information, and the 331 

estimation uncertainty would mistakenly continue to decrease when the number of stations 332 

increases.  333 

 334 

The analysis outlined above was repeated for 1-2 regions in each continent using all available data 335 

from those regions, and the results were consistent (not shown). Overall, this highlights two key 336 

points: (1) a minimum of approximately three stations is required; and (2) the additional 337 

information gain from including more than ten stations in the analysis is fairly limited. Given that 338 

the computation burden increases with the number of stations (due to inversion of the covariance 339 

matrix), a maximum of sixteen stations was chosen for the remaining analysis of this study. 340 

3.1.4 GEV shape parameter 341 

As the shape parameter is usually difficult to estimate, some expert prior can be used for this 342 

parameter. For example, Martins and Stedinger (2000) proposed a Gamma(6,9) distribution 343 

(referred to henceforth as the ‘MS prior’) as a general-purpose prior  for the shape parameter in a 344 

hydrological context. In this study, we also investigate the impact of this prior distribution by 345 

comparing estimates obtained with the MS prior and with a non-informative prior (last two boxes of 346 

Figure S2). The difference between these two estimates is very small, suggesting that the MS prior 347 

does not exert any noticeable leverage on the inference. The MS prior was originally introduced in a 348 

local analysis, and in that case expert prior information can markedly improve the estimation. 349 

However, in a regional analysis, the MS prior adds less additional information, because the 350 

information provided by several stations dominates that provided by the expert prior. We therefore 351 

retain the use of non-informative priors when applying the model to the complete dataset. 352 
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3.2 Verification of the inference for all regions 353 

The analysis exemplified in section 3.1 has to be repeated for more than 300 regions, but it is not 354 

feasible to manually scrutinize all regions with such a high level of detail. This section therefore 355 

describes indicators aimed at verifying that the inference results remain reasonable on the whole 356 

dataset. 357 

 358 

Over the 323 regions meeting the data requirement, we first excluded the dry regions with mostly 359 

zero values for seasonal maximum precipitation. Then, we estimated the model parameters (Eq.(3)) 360 

in all remaining regions (see Table 1). Goodness-of-fit was assessed with a KS test (0.05 level) 361 

applied on each site. Since the test is repeated for all stations within a given region, we expect to 362 

reject the “good-fit” assumption in a percentage of sites close to the error level of the test. It is 363 

therefore necessary to assess significance at the regional scale, i.e. to determine which sites show a 364 

poor fit, knowing that the local tests have been repeated over all sites of the region. To this end, we 365 

used the false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995). Given a regional 366 

significance level, we calculated the FDR probability for each region based on the p values of local 367 

tests. A region is considered to have a “poor-fit” if the p value of any local test is smaller than the 368 

FDR probability. A more detailed description of the FDR procedure in the hydro-climate context is 369 

given by Ventura et al. (2004) and Renard et al. (2008). Table 1 shows that the goodness of fit is 370 

acceptable in more than 99% of the regions for a regional significance level of 0.05. 371 

 372 

To check the performance of the Gaussian copula in modelling spatial correlation, we can verify 373 

whether it provides a better estimation of joint probabilities of exceedances than an equivalent 374 

model that ignores spatial dependence. We therefore compute the probability of a station pair 375 

jointly exceeding the 75th percentile of the at-site historical seasonal maximum daily precipitation 376 

among the stations in a region. We repeatedly calculated this probability for all effective station 377 
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pairs (defined as a pair with their inter-site distance smaller than 200 km and with at least 20 378 

common years without missing values) with both models over all regions. Figure S3 shows the 379 

scatterplot of this probability and it indicates that the exceedance probability calculated by the 380 

Gaussian copula model is mostly consistent with the empirical probability, while the model 381 

ignoring the spatial dependence tends to under-estimate the joint exceedance probability when it 382 

becomes large. Therefore, the Gaussian copula model has a better performance than the model 383 

ignoring spatial dependence. 384 

4 RESULTS 385 

In this section, we first describe the results of the parameter inference (Section 4.1). Section 4.2 386 

then describes the effect of ENSO on precipitation quantiles. Section 4.3 discusses the seasonal 387 

effect of ENSO and Section 4.4 presents the asymmetric effect of ENSO. 388 

4.1 Regional parameter estimates 389 

In the piecewise linear model proposed in Eq.(3), slope regression parameters 
1reg  and 

1reg   390 

(
1reg  and 

1reg  ) characterize the effect of El Niño (La Niña) on the location and scale parameters. If 391 

the effect is significant, the posterior distribution of 
1reg   and/or 

1reg   (
1reg   and/or

1reg  ) should be 392 

significantly different to zero. 393 

 394 

Figure 3 illustrates significance and intensity for 
1reg 
(El Niño) and 

1reg 
 (La Niña) for each region 395 

during DJF. The location parameter increases during a El Niño phase in central and southern North 396 

America, southeast South America, southeast China and northern Europe, and decreases in western 397 

North America and northern Southeast Asia, and more weakly in South Africa. Conversely, the 398 

location parameter increases during a La Niña phase in central North America, northern Southeast 399 
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Asia, South Africa, Australia and northern Europe, and decreases in southern North America and 400 

the northern India subcontinent. 401 

 402 

This global pattern for both phases is consistent with the results of Kenyon and Hegerl (2010) for 403 

their November to April season. However, since their study was based on at-site (local) analysis, the 404 

significance of the ENSO effect in their results was lower. Our result is also consistent with the 405 

ENSO-precipitation teleconnection identified in several regional studies: North America (Castello 406 

and Shelton, 2004; Cayan et al., 1999); South America (Grimm and Tedeschi, 2009); eastern China 407 

(Wu et al., 2003); and Australia (Cai et al., 2010; King et al., 2013). 408 

 409 

The effect of ENSO on the scale parameter (Figure 4) is also significant in many places, although 410 

less than for the location parameter. This important result suggests that ENSO not only shifts the 411 

distribution of extremes, but also modifies its variability. In general, for the areas where the effect 412 

of ENSO is strong on the location parameter, a similar effect is found on the scale parameter (e.g. 413 

southeast China and southeast South America during El Niño; and northern Southeast Asia and 414 

Australia during La Niña).  415 

 416 

According to the spatial pattern of the ENSO effect and the availability of data, nineteen areas are 417 

defined (Figure 1), with areas 1-4 in Central and North America (Group I), 5-8 in Europe (Group II), 418 

9-13 in Asia (Group III), and 14-19 covering the Southern Hemisphere (Group IV). Table 2 419 

summarizes the results discussed above for DJF, and also for the three other seasons whose results 420 

are not reported in full detail here. It indicates that DJF is the season with the strongest ENSO 421 

effect. More detailed results on the seasonality of ENSO effects will be discussed in Section 4.3. 422 
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4.2 The effect of ENSO on precipitation quantiles 423 

A more impact-oriented picture of the effect of ENSO on extreme precipitation can be obtained by 424 

expressing it in terms of quantiles rather than in terms of location and scale parameters, as this 425 

quantity provides direct information on the likely implications of ENSO on hydrologic hazard. We 426 

now show the percentage change in 1 in 10 year DJF precipitation during a strong El Niño or La 427 

Niña phase and a neutral phase. The 1 in 10 year precipitation intensity (0.9 quantile) is computed 428 

from Eq. (6) with α equal to 0.1, which requires the use of local regression parameters (
0

( )s

loc  and 429 

0

( )s

loc ). Consequently, the estimates from the regional model in terms of quantile change cannot be 430 

shown at the scale of regions, but instead has to be shown for all sites. Moreover, note that we can 431 

derive the full posterior distribution of this percentage change by propagating all MCMC-generated 432 

parameters through Eq. (6). 433 

 434 

Figure 5 illustrates the percentage change for 1 in 10 year precipitation during DJF between an 435 

extreme ENSO event (|SOI| = 20) and a neutral phase (SOI = 0). The percentage changes in Figure 436 

5 correspond to the posterior median. Red (blue) indicates that extreme El Niño/La Niña increases 437 

(decreases) the 1 in 10 year precipitation intensity. During a strong El Niño event, the 1 in 10 year 438 

precipitation can increase by 20% to 50% in southern North America and southeast China, about 439 

40% in southeast South America, and 10% to 20% in central North America. A decrease of 10% 440 

can be observed in western North America and 10% to 20% in northern Southeast Asia. 441 

 442 

During a strong La Niña episode, the 1 in 10 year precipitation increases (relative to neutral 443 

conditions) by about 80% in southwest Western Australia, 40% in eastern Australia, 20% in 444 

southern Australia and northeast China, 10% in northern Southeast Asia, central North America and 445 

northern Europe, and 10% to 40% (from east to west) in South Africa. However, the intensity of the 446 
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1 in 10 year precipitation decreases in southern North America (about 50% in Mexico) and northern 447 

India (about 20%). Further investigation on the 80% increase in southwest Western Australia 448 

reveals that DJF is not the main precipitation season, thus the absolute increase in annual maximum 449 

precipitation is actually not large. However, a 40% increase in eastern Australia will correspond to 450 

much larger absolute increases in extreme precipitation, which may lead to societally important 451 

events such as the Queensland flood in 2010-2011 (Cai and van Rensch, 2012).   452 

4.3 Seasonality of the effect of ENSO on extreme precipitations 453 

The results shown in Figure 5 can be further summarized to get an overview of the ENSO effect for 454 

all four seasons. This is achieved as follows: the percentage changes shown in Figure 5 for 455 

individual stations are summarized as boxplots for each of the 19 areas defined in Figure 1 and for 456 

each season. This yields the synthetic representation shown in Figure 6. Note that in this figure, 457 

boxplots represent the range of quantile changes from individual gauges within each area. However, 458 

the sampling uncertainty in quantile change estimates is ignored in this representation. 459 

Consequently, the boxplots should not be interpreted in terms of assessing the statistical 460 

significance of quantile changes. However, as a reminder of this sampling variability, we highlight 461 

in bold the seasons with moderate or strong ENSO effect as given by Table 2. If the box does not 462 

encompass the zero value, it means that ENSO has potential effects over the area, however it still 463 

needs to be confirmed through Table 2. Sometimes the box contains the zero value but the effect of 464 

ENSO for that season is moderate or strong; this means that significant ENSO effects are only 465 

detected in a sub-area rather than the whole area. Table 3 qualitatively summarizes the main areas 466 

and seasons affected by ENSO with the consideration of both Table 2 and Figure 6. 467 

 468 

In general, DJF is the season with the strongest ENSO effect, and JJA is the season with the 469 

weakest effect for both phases. For the El Niño phase, positive effects are mainly found in central 470 

Author-produced version of the article published in Journal of Hydrology (2015), vol. 530, p. 51–65 
The original publication is available at http://www.sciencedirect.com/  doi : 10.1016/j.jhydrol.2015.09.016 

©. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ 



22 

 

and southern North America, southeast and northeast China, and southeast South America during 471 

DJF and surrounding seasons, while negative effects are mainly found in southern and eastern 472 

Australia during SON. For the La Niña phase, positive effects are mainly found in western Pacific 473 

areas (eastern Asia and Australia) in DJF and surrounding seasons. However, La Niña effects are 474 

not very consistent in eastern Pacific areas: positive effects are found in central and western North 475 

America in SON, and negative effects are found in southern North America and southeast South 476 

America, but in different seasons. 477 

 478 

It is not surprising that the strongest ENSO effects are found in the Pacific areas, especially in the 479 

tropical zone. However, to a lesser extent, ENSO also affects northern Europe during DJF for both 480 

phases, and the eastern Mediterranean during SON for El Niño. The Indian subcontinent is also 481 

affected during the La Niña phase, with the northern and southern parts having different effects in 482 

different seasons.  483 

4.4 Asymmetric behavior of ENSO on extreme precipitations 484 

The use of a different linear function in the El Niño and La Niña phases enables the modelling 485 

framework to capture and evaluate the asymmetric impact of the ENSO-precipitation relationship.  486 

It provides the flexibility to assess at each site whether each ENSO phase can have a positive, 487 

negative or no effect on extreme precipitation. If the parameters quantifying the ENSO effect on the 488 

location and/or scale parameters are the same in each phase (i.e. 
1 1reg reg    and/or 

1 1reg reg   ), 489 

this is a symmetric relationship (often assumed in previous studies) and corresponds to observing 490 

opposite effects in the two phases (e.g. precipitation decreases during El Niño but increases during 491 

La Niña) (see Figure 7(a)). Conversely, asymmetric behavior corresponds to having non-opposite 492 

effects during El Niño and La Niña. The parameters governing the ENSO effect on the location 493 

and/or scale parameters are hence different in each phase (i.e. 
1 1reg reg    and/or 

1 1reg reg   ). 494 
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There are two ‘types’ of asymmetric behavior: (i) One-phase: no effect for one phase and a strong 495 

effect for the other phase. Figure 7(b) shows an example of having strong positive effect during La 496 

Niña, but no effect during El Niño. (ii) Two-phase: strong, but non-opposite ENSO effects during 497 

both El Niño and La Niña phases. Figure 7(c) shows an example of having strong positive effect 498 

during both El Niño and La Niña. 499 

 500 

The last column of Table 3 summarizes the asymmetric nature of the ENSO-extreme precipitation 501 

relationship during the season with the strongest effect. In most areas, precipitation is only affected 502 

during one phase of ENSO, which corresponds to an asymmetric behavior. Two-phase asymmetric 503 

behavior is found in central and western North America, northeast China and northern Europe, 504 

where the 10-year precipitation is increased during both strong El Niño and La Niña events (relative 505 

to a neutral phase SOI=0). Symmetric behavior is found in southern US during DJF, southern and 506 

eastern Australia during SON, and northern Southeast Asia during DJF and SON, where effects of 507 

opposite sign are found during two phases.  508 

5 DISCUSSION 509 

5.1 Practical implications 510 

In the perspective of engineering design and operations, knowledge of how the extreme events 511 

change based on ENSO can enable planners to prepare strategies for early response based on ENSO 512 

forecast. At a large scale, this information is more important for government officers and policy 513 

designers to evaluate in advance the population and potential economic losses associated with the 514 

projected flood risk, and to prepare mitigation measures.  515 

 516 
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The results of this study have significant practical implications because they provide quantitative 517 

estimates of the percentage change in extreme daily precipitation intensity for a unit change in the 518 

SOI. Given that ENSO forecasts show some skill at monthly to seasonal lead times (e.g. Jin et al. 519 

(2008)), it is possible to use this information to provide quantitative seasonal forecasts of extreme 520 

precipitation. From an engineering standpoint, this provides opportunities to improve the 521 

management of water resource risks: for instance, dam operation could use the forecasted ENSO 522 

state to optimize hydroelectricity production while enforcing appropriate precautionary measures to 523 

mitigate flood risk (see e.g. Lima and Lall (2010a)). Another key outcome of this study is the 524 

identification of regions with an asymmetric ENSO-precipitation relationship (Table 3 and Figure 525 

6). It is possible that current approaches to estimate extreme precipitation quantiles in these regions 526 

(which either ignore ENSO or use the symmetric assumption) under-estimate extreme precipitation 527 

quantiles. This has practical implications for the design and management of flood-sensitive 528 

infrastructure in these regions. 529 

5.2 Changes in ENSO teleconnections  530 

For the more distant future, an important question in terms of ENSO is how the evolution of such an 531 

influential global process will affect extreme precipitation in a future climate. Several challenges 532 

need to be met to address this issue. Firstly, GCM simulations suggest the possible occurrence of 533 

“super-ENSO” events (Latif et al., 2013) in the future, which may require extrapolating from the 534 

regional model used in this study well beyond the range of observed SOI values. Whether or not the 535 

“piecewise linear” relationship used in this model can be extrapolated to very high SOI values is an 536 

open question. Secondly, the ability of GCMs to describe the frequency characteristics (e.g. 537 

Johnson et al. (2011) ) and the physical mechanisms governing the development of ENSO events 538 

remains limited, as discussed, for example, by Bellenger et al. (2013). Note that an interesting 539 

potential application of our statistical model would be to apply it to both GCM outputs and 540 
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observations to assess the ability of GCMs to reproduce the ENSO-extreme precipitation 541 

teleconnection and better understand the physical drivers of the asymmetric ENSO-precipitation 542 

relationship. This would help evaluate whether projections of future ENSO events can be reliably 543 

used to deduce the evolution of extreme precipitation in a future climate. 544 

5.3 Reliability of the definition of a region 545 

An important contribution of this study is the use of a regional statistical model. Indeed, given the 546 

available record length and the large local variability of extreme precipitation, a precise 547 

quantification of the ENSO effect on extreme precipitation is difficult to achieve without 548 

regionalization. The price to pay is the requirement to define homogenous regions. In this study, we 549 

defined the regions as grid cells, i.e. according to latitude and longitude only. By repeatedly 550 

applying the regional model over geographic regions covering all land areas with available data, the 551 

approach has proved a good compromise for the ‘bias-variance’ trade-off. In other words, compared 552 

with at-site analysis, the uncertainties are much smaller; compared with global analysis, regional 553 

features can still be highlighted.  554 

 555 

It is important to note that for the purposes of the current study only the shape parameter and the 556 

ENSO effect parameters are regional. Other parameters are site-specific, which provides the 557 

flexibility to account for between-site differences within the region. However, the definition of 558 

homogeneous regions adopted in this paper might remain unduly simplistic for some geographical 559 

areas. In mountainous areas, in particular, orographic influences can lead to substantial differences 560 

in precipitation patterns across small spatial areas. For example, because of the Andes Mountains, 561 

precipitation within the grid cells defined across Chile and Argentina may be caused by very 562 

different circulation patterns, which are not affected in the same way by ENSO. Thus, assuming the 563 

same effect of ENSO in these regions is questionable. A possible solution is to redefine regions by 564 
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subdividing the grid cells into smaller grids. However, the number of available observation sites 565 

might be too low for a meaningful regional analysis. A better outcome might be achieved if the 566 

homogeneous regions were based on climate or physiographic variables, or the data characteristics 567 

(Bernard et al., 2013; Sun et al., 2015), as opposed to the simple regular grid adopted here. 568 

However this requires an understanding of the key driving factors that can lead to precipitation 569 

variability in a given area, which are likely to be complex and spatially heterogeneous, and will 570 

probably differ depending on the region being analyzed. 571 

5.4 Potential extensions of the statistical model 572 

In addition to improving the definition of regions, several avenues can be identified to extend the 573 

statistical model itself. In this discussion, we focus on improving prior specification, using 574 

hierarchical models and refining the treatment of spatial dependence. 575 

The Bayesian approach has a long history in frequency analysis of both extreme precipitation and 576 

floods (e.g. Kuczera, 1999; Vicens et al., 1975; Wood and Rodríguez-Iturbe, 1975a,b). One of its 577 

key strengths is the ability to augment the information in the data with additional prior information. 578 

For instance, O'Hagan et al. (2006) and Denham and Mengersen (2007) describe general techniques 579 

to elicit expert knowledge in the form of a prior distribution, while Viglione et al. (2013) discuss the 580 

importance of prior information for flood frequency analysis. In this paper, we used non-581 

informative priors and therefore did not take advantage of this strength of Bayesian estimation. We 582 

trialed the use of the general-purpose Martin and Stedinger’s prior for the shape parameter (see 583 

Section 3.1.4) but it did not bring any noticeable information beyond that already contained in the 584 

regional dataset. Further development of appropriate region specific priors by careful investigation 585 

of each region’s characteristics (e.g. climate and topography) may improve the parameter estimation, 586 

in particular for regions with scarce observations.   587 
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An additional avenue to improve the statistical model is to add some hierarchical component(s) to 588 

the model, which can be done naturally in a Bayesian framework. In particular, the current model 589 

cannot be used for estimation at ungauged sites due to the existence of local parameters, whose 590 

values are site-specific. This could be remedied by using a regression approach to link the values of 591 

local parameters with site characteristics such as elevation and distance to sea. A hierarchical 592 

modeling approach could then be used to include this regression model, as described by e.g. Cooley 593 

et al. (2005) and Renard (2011). Alternatively, the flexibility of the model could be enhanced by 594 

allowing ENSO effects to vary in space, but in a smooth way. This can also be achieved with a 595 

hierarchical component that would constrain the spatial variations of ENSO effects to follow a 596 

chosen spatial hyper-distribution. 597 

Finally, the treatment of spatial dependence could also be refined in at least two ways. The first is to 598 

refine the dependence-distance relationship of Eq.(4), by moving beyond the Euclidean distance to 599 

explain spatial dependence. In particular, orographic effects are likely to play an important role in 600 

some regions, and they could be included in the spatial dependence model (see for instance 601 

Blanchet and Davison (2011) in the context of a snow depth variable). A second way is to replace 602 

the Gaussian copula with another model of spatial dependence. For instance, the Student copula 603 

(another member of the Elliptical copula family) could be used to account for asymptotic 604 

dependence. Alternative approaches include pair-copula models (Gräler and Pebesma, 2011) or 605 

max-stable models (e.g. Westra and Sisson (2011) and Ribatet et al. (2012)). We stress however 606 

that the data selection procedure adopted in this paper limits the amount of spatial dependence: the 607 

selection of a single site for each of the 16 sub-regions within a region (see section 2.2.2 and Figure 608 

2) avoids the selection of many close, highly-dependent pairs of sites. In this context, a Gaussian 609 

copula may be sufficient as a first-order approximation to capture the dependence observed in the 610 

data. In other contexts (e.g. more highly-dependent pairs of sites, or necessity to extrapolate the 611 
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dependence structure well beyond observed levels), a finer treatment of spatial dependence may be 612 

required.  613 

5.5 Impact of other large scale modes of climate variability 614 

Besides ENSO, other large scale modes of climate variability could also affect regional extreme 615 

precipitation. For instance, the Indian Ocean Dipole (IOD) affects the precipitation in northern 616 

Southeast Asia and Australia, and the North Atlantic Oscillation influences precipitation in North 617 

America and Europe. Research also indicates that in many regions, precipitation is influenced by 618 

the combined effect of distinct large scale modes (e.g., Keim and Verdon-Kidd (2009); the IOD and 619 

ENSO both influence precipitation in Australia.) However, the ways in which the two modes 620 

combine to influence extreme precipitation at the global scale requires further investigation. 621 

 622 

The current study was a purely statistical analysis of the effect of ENSO on extreme precipitation, 623 

and does not provide any indication on the physical mechanisms governing such climate-624 

precipitation teleconnections. If such a physical mechanism could be understood, it might lead to a 625 

more physically-based regression model structure (rather than the piecewise linear model adopted in 626 

this study) to provide a better evaluation of the ENSO effect on extreme precipitation. 627 

6 CONCLUSIONS 628 

We applied a climate-informed regional frequency analysis framework to describe the global 629 

pattern of the effect of ENSO on extreme precipitation, focusing particularly on extreme quantiles. 630 

The ENSO effects over many regions are quantified along with associated uncertainties. This study 631 

goes beyond merely studying the relationship between ENSO and “extreme” precipitation indices, 632 

and is extended to more ‘design-relevant’ extreme events (e.g. 1 in 10 year precipitation). The 633 
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technique of regionalizing the ENSO effects significantly strengthens our ability to quantify such 634 

effects. 635 

 636 

Keeping in mind the limitation of the HadEx2 data set (whose uneven spatial sampling favors 637 

temperate climates), we draw the following conclusions from the analyses carried out in this 638 

paper:(i) ENSO significantly affects extreme precipitation across large parts of the world, which are 639 

not limited to Pacific areas; (ii) the ENSO effect varies substantially by season, but DJF is in 640 

general the season with the strongest ENSO effect, with the greatest changes, up to 50% higher or 641 

lower, in the 1 in 10 year precipitation quantiles between a strong El Niño/La Niña event (|SOI=20|) 642 

and a neutral phase (SOI=0); and (iii) the relationship is asymmetric. In most places, extreme 643 

precipitation is significantly influenced during only one phase. Two-phase asymmetry (with strong 644 

but non-opposite effects during El Niño and La Niña) is also found in several areas, e.g. central 645 

North America and northeast China. In contrast, a symmetric behavior is only found in southern US 646 

during DJF, southern and eastern Australia during SON, and northern Southeast Asia during DJF 647 

and SON.   648 
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 911 

Table 1: Summary of goodness-of-fit for all regions. “#” means “number of”.  912 

Season # regions meeting 

data requirements 

# regions with mostly zero 

values for seasonal 

maximum precipitation 

# regions where 

goodness of fit is good 

# regions where 

goodness of fit is poor 

DJF 323 12 309 2 

MAM 323 13 309 1 

JJA 323 21 301 1 

SON 323 4 319 0 
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Table 2: Qualitative summary of the effects of ENSO on the location and scale parameters. Arrows denote areas with remarkable effect 

of ENSO where a significant effect is found in many continuous regions within the area. ‘’ denotes a negative effect and ‘’ denotes a 

positive effect on the location parameter. Single arrow describes a moderate effect, while double arrow describes a strong effect for the 

absolute slope value larger than 0.2. The underlined arrows describe that same effect of ENSO is also detected on the scale parameter. 

 
Group Order Area ENSO effect on location and scale parameters 

   DJF MAM JJA SON 

   El Niño La Niña El Niño La Niña El Niño La Niña El Niño La Niña 

I 1 Western North America         

2 Central North America         

3 Eastern North America         

4 Southern North America         

II 5 Northern Europe         

6 British Isles         

7 Central Europe         

8 Mediterranean         

III 9 Northern Indian subcontinent         

10 Southern Indian subcontinent         

11 Northeast China         

12 Southeast China         

13 Northern Southeast Asia         
IV 14 Southeast South America         

15 South Africa         

16 Southwest Western Australia         

17 Southern Australia         

18 Eastern Australia         

19 New Zealand         
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Table 3: Qualitative summary of the effect of ENSO on quantiles. “” denotes the seasons in which El Niño/La Niña has a positive effect, 

while “” denotes a negative effect. The seasons are sorted in descending order according to strength of the effect of ENSO. If the effect 

the ENSO is not strong over the whole area, sub-area with strong effect is specified in the parentheses. 

  Group Area El Niño La Niña Asymmetry 

Most 
affected 
regions 

I Central North America SON,DJF SON,DJF Asymmetric, 2 phases 
 Southern North America DJF MAM,DJF (southern US) Symmetric 

III Northeast China DJF,MAM DJF,MAM Asymmetric, 2 phases 
 Southeast China DJF / Asymmetric, 1 phase 
 Northern Southeast Asia DJF,SON DJF,MAM,SON,  JJA Symmetric 

IV Southeast South America DJF,MAM SON Asymmetric, 1 phase 
 South Africa / DJF,MAM Asymmetric, 1 phase 
 Southwest Western Australia / DJF,MAM Asymmetric, 1 phase 
 

Southern Australia SON,JJA MAM,JJA,SON 
Asymmetric, 1 phase (MAM); Symmetric 
(SON,JJA) 

 
Eastern Australia JJA, SON DJF,SON 

Asymmetric, 1 phase (DJF, JJA); Symmetric 
(SON) 

Other 
affected 
regions 

I Western North America SON,MAM  DJF SON Asymmetric, 2 phases 

II Northern Europe DJF DJF Asymmetric, 2 phases  

 Mediterranean SON (eastern part) / Asymmetric, 1 phase 

III Northern Indian subcontinent / SON,MAM,  DJF Asymmetric, 1 phase 

 Southern Indian subcontinent / JJA Asymmetric, 1 phase 
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Figure 1: Location of high quality observation sites with more than 40 years of record (red 913 

dots) from HadEX2 dataset. Results of this study will be summarized for the nineteen areas 914 

represented by black boxes.  915 
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Figure 2: Schematic of observation site selection for each grid cell. 916 
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Figure 3: Slope of the location parameter with respect to SOI during El Niño (
1reg 
) and La 917 

Niña (
1reg 
) phases for DJF season. Small grey dots denote cells with too few data stations to 918 

perform a regional analysis. Dots with red (blue) outlines denote significantly positive 919 

(negative) slopes, while dots with grey outlines denote non-significant slopes. Dots with yellow 920 

outlines denote the dry regions with frequent zero precipitation during DJF. 921 
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Figure 4: Same as Figure 3, but for scale parameters 
1reg 
(El Niño) and 

1reg 
(La Niña). 922 
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Figure 5: Percentage change for the intensity of 1 in 10 year precipitation relative to SOI=0 923 

for individual gauge locations for DJF season. Grey dots denote cells with too little station 924 

data to perform a regional analysis. Red (blue) dots denote an increase (decrease) in the 925 

intensity of a 1 in 10 year precipitation event for strong El Niño/La Niña phases compared 926 

with a neutral phase. Yellow dots denote the dry regions with frequent zero precipitations 927 

during DJF. 928 
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Figure 6: The effect of El Niño and La Niña on the 1 in 10 year precipitations for different seasons. Samples for the boxplot are the 929 

percentage change median of the precipitation calculated at each station within the areas shown in Figure 1. The season with moderate 930 

or strong effect of ENSO as given by Table 2 is highlighted in bold. (A high resolution figure is available online). 931 
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Figure 7: Conceptual diagram of the types of symmetry/asymmetry in the relationship 932 

between ENSO and extreme precipitation. (a) Symmetric relationship: opposite effects in the 933 

two phases; (b) One phase asymmetric relationship: no effect for one phase and a strong 934 

effect for the other phase; (c) Two phase asymmetric relationship: strong, but non-opposite 935 

ENSO effect during both the El Niño and La Niña phases.  936 
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S 1: (a) Goodness-of-fit PP-plot of all sixteen stations. (b) Dependence-distance relationship of 937 

the Gaussian transformed data. The black dots are the empirical pairwise correlations and 938 

red lines are the estimation from the exponential model (Eq.(4)) with 90% credibility interval. 939 
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S 2: posterior distribution of the regional parameters
1reg 
,

1reg 
 and  . The first sixteen boxes 940 

are the estimation with non-informative priors using from one to sixteen stations. The last box 941 

is the estimation using all sixteen stations with Martins and Stedinger’ (MS) Gamma(6,9) 942 

prior for the shape parameter. 943 

944 
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 945 

S 3: Scatterplot of the probability of a station pair exceeding the 75th percentile of the at-site 946 

historical seasonal maximum daily precipitation among the stations in a region. (a) Empirical 947 

probability vs. Theoretical probability calculated by the Gaussian copula model; (b) 948 

Empirical probability vs. Theoretical probability calculated by the model ignoring spatial 949 

dependence. The dashed red line is the fit of a cubic smoothing spline. 950 
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