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On a certain local martingale in a
general diffusion setting

Stefan Ankirchner Maike Klein Thomas Kruse
Mikhail Urusov

February 5, 2018

For a one-dimensional continuous strong Markov process Y we present an
explicit construction of a convex function q such that q(Yt)−t, t ≥ 0, is a local
martingale. As an application we deduce some integrability properties of Y
evaluated at stopping times and present a proof of Feller’s test for explosions
based directly on that function q.

1 Setting

Let (Ω,F , (Ft)t≥0, (Py)y∈I , (Yt)t≥0) be a one-dimensional continuous strong Markov pro-
cess in the sense of Section VII.3 in [3]. We assume that the state space is an open,
half-open or closed interval I ⊆ R. We denote by I◦ = (l, r) the interior of I, where
−∞ ≤ l < r ≤ ∞, and we set Ī = [l, r]. Recall that by the definition we have
Py[Y0 = y] = 1 for all y ∈ I.

For every x ∈ Ī we denote the first hitting time of x by Hx = inf{t ≥ 0 : Yt = x}
(where we use the convention inf ∅ = ∞). Moreover, for a < b in Ī we denote by Ha,b

the first exit time of Y from (a, b), i.e. Ha,b = Ha ∧Hb. Throughout we assume that Y
is regular. This means that for every y ∈ I◦ and x ∈ I we have that Py[Hx < ∞] > 0.

Without loss of generality we suppose that the diffusion Y is in natural scale. If Y is
not in natural scale, then there exists a strictly increasing continuous function s : I → R,
the so-called scale function, such that s(Yt), t ≥ 0, is in natural scale. Recall that, for
a, b ∈ I, a < b, y ∈ (a, b), it holds

EyHa,b < ∞, (1)

in particular, Ha,b < ∞, Py-a.s., and

Py(YHa,b
= a) =

b− y

b− a
, Py(YHa,b

= b) =
y − a

b− a
(2)
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(see e.g. Prop. 3.1 and 3.2, Chapter VII in [3]).
Let m be the speed measure of the Markov process Y (see VII.3.7 and VII.3.10 in [3]).

Recall that for all a < b in I◦ we have

0 < m([a, b]) < ∞.

We say that the boundary point l or r is accessible if l ∈ I or r ∈ I, respectively. That is,
an accessible boundary point is attained in finite time with a positive probability when
started in the interior of the state space (recall regularity of Y ). In particular, it follows
from (2) that infinite boundary points are always inaccessible. Throughout we make the
assumption that if a boundary point is accessible, then it is absorbing. In other words,
we do not allow for reflection or killing. As a consequence, the process Y is a Py-local
martingale for all y ∈ I.

We now introduce a function that turns out to be useful for determining integrability
properties and the boundary behavior of Y . Let q : I◦ × Ī → [0,∞] be defined by

q(y, x) =
1

2
m({y})|x− y|+

∫ x

y

m((y, u))du, (3)

where for u < y we set m((y, u)) := −m((u, y)).
Notice that, for y ∈ I◦, the function q(y, ·) is strictly convex on Ī, decreasing on [l, y]

and increasing on [y, r].
Moreover, the definition immediately implies that q is finite on I◦ × I◦. We show

below that q is even finite on I◦ × I (see Lemma 2.3).
Finally, a straightforward calculation shows that for all y, z ∈ I◦ and x ∈ I we have

q(z, x) = q(y, x)− q(y, z)− ∂0q

∂x
(y, z)(x− z), (4)

where ∂0q
∂x

(y, x) = 1
2
(∂

+q
∂x

+ ∂−q
∂x

)(y, x).

2 q(y, Y ) has a linear compensator

In this section we show that the process q(y, Yt)− t is a local martingale up to the time
where Y attains the boundary of I. More precisely:

Theorem 2.1. Let y ∈ I◦. Then the process q(y, Yt)− (t∧Hl,r), t ∈ [0,∞), is a Py-local
martingale starting in zero.

For the proof of Theorem 2.1 we need the following auxiliary results.

Lemma 2.2. Let a, b ∈ I with a < b and y ∈ (a, b). Then

EyHa,b = Eyq(y, YHa,b
). (5)
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Proof. Recall that the speed measure m satisfies

EyHa,b =

∫
(a,b)

(b− x ∨ y)(x ∧ y − a)

b− a
m(dx) (6)

(see e.g. Thm 3.6, Chapter VII in [3]). This implies

EyHa,b =
1

b− a

[∫
(a,y)

(b− y)(x− a)m(dx) +

∫
(y,b)

(b− x)(y − a)m(dx) + (b− y)(y − a)m({y})
]

=
b− y

b− a

[∫
(a,y)

(x− a)m(dx) + (y − a)
m({y})

2

]
+

y − a

b− a

[∫
(y,b)

(b− x)m(dx) + (b− y)
m({y})

2

]
=
b− y

b− a
q(y, a) +

y − a

b− a
q(y, b)

=Eyq(y, YHa,b
),

where in the last equality we use (1) and (2).

Lemma 2.3. q is finite on I◦ × I.

Proof. Let a, b ∈ I such that a < b and let y ∈ (a, b). Recall that by (1) we have
EyHa,b < ∞. Together with Formulas (5) and (2) this entails that if the boundary point
l is attained in finite time with a positive probability (in particular, l > −∞), then
q(y, l) has to be finite. The same argument applies to the right-hand boundary r.

Notice that Lemma 2.3 garantees that q(y, Yt)− (t∧Hl,r), t ∈ [0,∞), is a real-valued
process. We can now prove the main result of this section.

Proof of Theorem 2.1. Let a, b ∈ I with a < y < b. We first show that q(y, Yt∧Ha,b
) −

t ∧Ha,b, t ∈ [0,∞), is a Py-martingale. For this purpose observe that for all t ∈ [0,∞)
it holds

Ey

[
q(y, YHa,b

)−Ha,b|Ft

]
= (q(y, YHa,b

)−Ha,b)1{Ha,b≤t} + Ey

[
q(y, YHa,b

)−Ha,b|Ft

]
1{Ha,b>t}.

(7)

On the event {Ha,b > t} we have q(y, YHa,b
)−Ha,b = q(y, YHa,b

) ◦ θt −Ha,b ◦ θt − t, where
θt denotes the shift operator for Y (see Chapter III in [3]). The Markov property and
(5) imply that on the event {Ha,b > t} we have Py-a.s.

Ey

[
q(y, YHa,b

)−Ha,b|Ft

]
=Ez[q(y, YHa,b

)−Ha,b]
∣∣∣
z=Yt

− t

=Ez[q(y, YHa,b
)− q(z, YHa,b

)]
∣∣∣
z=Yt

− t. (8)
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Formula (4) yields for all z ∈ (a, b)

q(y, YHa,b
)− q(z, YHa,b

) = q(y, z) +
∂0q

∂x
(y, z)(YHa,b

− z).

Since Ez[YHa,b
−z] = 0 for all z ∈ (a, b), Equation (8) implies that on the event {Ha,b > t}

we have Py-a.s.

Ey

[
q(y, YHa,b

)−Ha,b|Ft

]
= q(y, Yt)− t.

Together with (7) this yields for all t ∈ [0,∞)

Ey

[
q(y, YHa,b

)−Ha,b|Ft

]
= q(y, Yt∧Ha,b

)− t ∧Ha,b,

which shows that q(y, Yt∧Ha,b
)− t ∧Ha,b, t ∈ [0,∞), is a Py-martingale.

The statement of the lemma follows via a localization argument. If l /∈ I, then choose
a decreasing sequence (ln)n∈N ⊆ I with l1 < y and limn→∞ ln = l. If l ∈ I, set ln = l
for all n ∈ N. Similarly, if r /∈ I, then choose an increasing sequence (rn)n∈N ⊆ I with
r1 > y and limn→∞ rn = r, and if r ∈ I, then set rn = r for all n ∈ N. The sequence
of stopping times inf{t ≥ 0: Xt /∈ [ln, rn]}, n ∈ N, is then a localizing sequence for the
process q(y, Yt)− (t ∧Hl,r), t ∈ [0,∞).

3 Integrability properties and Feller’s test

The local martingale property of q(y, Yt)− (t ∧Hl,r) allows to derive some integrability
properties of Y . We first show that Y is integrable at integrable stopping times.

Proposition 3.1. Let y ∈ I◦. For any stopping time τ satisfying Ey[τ ] < ∞ we have
Ey|Yτ | < ∞.

Let us remark that Lemma 1 in [2] is a similar result for deterministic times.

Proof. Let τ be a stopping time with Ey[τ ] < ∞. We can assume that τ ≤ Hl,r (else
replace τ by τ ∧ Hl,r). The stopped process Zt = q(y, Yt∧τ ) − t ∧ τ , t ≥ 0, is also a
local martingale. Let (τn) be a localizing sequence for (Zt). Then Ey[q(y, Yt∧τ∧τn)] =
Ey[t∧τ∧τn]. By applying Fatou’s lemma to the left-hand side and monotone convergence
to the right-hand side we obtain

Ey[q(y, Yτ )] ≤ Ey[τ ]. (9)

Since q(y, ·) is strictly convex on I, decreasing on (l, y) and increasing on (y, r), there
exists a constant C ∈ (0,∞) such that

|x− y| ≤ C(1 + q(y, x)), for all x ∈ I. (10)

Combining (9) and (10) entails

Ey|Yτ | ≤ |y|+ Ey|Yτ − y| ≤ |y|+ C(1 + Ey(q(y, Yτ )) < ∞.
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Proposition 3.2. Let y ∈ I◦ and T ∈ [0,∞). Assume that the following two implica-
tions hold true:

(i) if l = −∞, then m
(
(−∞, y)

)
= ∞;

(ii) if r = ∞, then m
(
(y,∞)

)
= ∞.

Then the family of random variables

{Yτ : τ stopping time with Ey[τ ] ≤ T}

is uniformly integrable under Py.

Proof. Assumption (i) (resp. (ii)) means that limx→−∞ q(y, x)/|x| = ∞ (resp.
limx→∞ q(y, x)/x = ∞) whenever l = −∞ (resp. r = ∞). The statement now follows
from Estimate (9) and de la Vallée-Poussin’s theorem.

We next recall a result known as Feller’s test for explosions.

Theorem 3.3. For any y ∈ I◦ the following equivalences hold true:

l is accessible ⇐⇒ q(y, l) < ∞, (11)

r is accessible ⇐⇒ q(y, r) < ∞. (12)

In contrast to the classical approach (see e.g. Thm 5.29, Chapter 5 in [1] or Thm 52.1,
Chapter V in [4] for the proofs in the SDE setting), we do not construct an appropriate
solution of the related Sturm-Liouville problem in the proof, but rather work directly
with the function q.

Proof. Notice that the implications from the left-hand side to the right-hand side follow
from Lemma 2.3.

We now prove via contradiction that q(y, r) < ∞ entails that r is accessible. If r = ∞,
then q(y, r) = ∞. So, suppose that r < ∞, q(y, r) < ∞ and that r is not accessible.
Choose a, b ∈ I such that l < a < y < b < r. By Lemma 2.2 we have

Ey[Ha,b] = Ey

[
q
(
y, YHa,b

)]
=

b− y

b− a
q(y, a) +

y − a

b− a
q(y, b). (13)

By letting b converge to r from below, we obtain

Ey[Ha] = Ey[Ha,r] = lim
b↑r

Ey[Ha,b] = lim
b↑r

{
b− y

b− a
q(y, a) +

y − a

b− a
q(y, b)

}
=

r − y

r − a
q(y, a) +

y − a

r − a
q(y, r) < ∞.

In particular, Ha < ∞, Py-a.s. This further entails that the stopped process Y Ha is a
bounded Py-local martingale, and hence a uniformly integrable martingale converging in
L1(Py). The limit, however, is the constant a, which contradicts the L1(Py) convergence.
Thus we have shown that q(y, r) < ∞ implies that r is accessible.

In a similar way one can show that q(y, l) < ∞ entails that l is accessible.
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