Stefan Ankirchner 
  
Maike Klein 
  
Thomas Kruse 
  
Mikhail Urusov 
  
On a certain local martingale in a general diffusion setting

On a certain local martingale in a general diffusion setting

Stefan Ankirchner Maike Klein Thomas Kruse Mikhail Urusov February 5, 2018

For a one-dimensional continuous strong Markov process Y we present an explicit construction of a convex function q such that q(Y t )-t, t ≥ 0, is a local martingale. As an application we deduce some integrability properties of Y evaluated at stopping times and present a proof of Feller's test for explosions based directly on that function q.

Setting

Let (Ω, F, (F t ) t≥0 , (P y ) y∈I , (Y t ) t≥0 ) be a one-dimensional continuous strong Markov process in the sense of Section VII. Without loss of generality we suppose that the diffusion Y is in natural scale. If Y is not in natural scale, then there exists a strictly increasing continuous function s : I → R, the so-called scale function, such that s(Y t ), t ≥ 0, is in natural scale. Recall that, for a, b ∈ I, a < b, y ∈ (a, b), it holds

E y H a,b < ∞, (1) 
in particular, H a,b < ∞, P y -a.s., and

P y (Y H a,b = a) = b -y b -a , P y (Y H a,b = b) = y -a b -a (2) 
(see e.g. Prop. 3.1 and 3.2, Chapter VII in [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF]).

Let m be the speed measure of the Markov process Y (see VII.3.7 and VII.3.10 in [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF]). Recall that for all a < b in I • we have

0 < m([a, b]) < ∞.
We say that the boundary point l or r is accessible if l ∈ I or r ∈ I, respectively. That is, an accessible boundary point is attained in finite time with a positive probability when started in the interior of the state space (recall regularity of Y ). In particular, it follows from (2) that infinite boundary points are always inaccessible. Throughout we make the assumption that if a boundary point is accessible, then it is absorbing. In other words, we do not allow for reflection or killing. As a consequence, the process Y is a P y -local martingale for all y ∈ I.

We now introduce a function that turns out to be useful for determining integrability properties and the boundary behavior of Y . Let q :

I • × Ī → [0, ∞] be defined by q(y, x) = 1 2 m({y})|x -y| + x y m((y, u))du, (3) 
where for u < y we set m((y, u)) := -m((u, y)).

Notice that, for y ∈ I • , the function q(y, •) is strictly convex on Ī, decreasing on [l, y] and increasing on [y, r].

Moreover, the definition immediately implies that q is finite on I • × I • . We show below that q is even finite on

I • × I (see Lemma 2.3).
Finally, a straightforward calculation shows that for all y, z ∈ I • and x ∈ I we have q(z, x) = q(y, x) -q(y, z) -

∂ 0 q ∂x (y, z)(x -z), (4) 
where ∂ 0 q ∂x (y, x) = 1 2 ( ∂ + q ∂x + ∂ -q ∂x )(y, x).

2 q(y, Y ) has a linear compensator

In this section we show that the process q(y, Y t ) -t is a local martingale up to the time where Y attains the boundary of I. More precisely:

Theorem 2.1. Let y ∈ I • . Then the process q(y, Y t ) -(t ∧ H l,r ), t ∈ [0, ∞), is a P y -local martingale starting in zero.
For the proof of Theorem 2.1 we need the following auxiliary results. (5)

Proof. Recall that the speed measure m satisfies

E y H a,b = (a,b) (b -x ∨ y)(x ∧ y -a) b -a m(dx) (6) 
(see e.g. Thm 3.6, Chapter VII in [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF]). This implies

E y H a,b = 1 b -a (a,y) (b -y)(x -a)m(dx) + (y,b) (b -x)(y -a)m(dx) + (b -y)(y -a)m({y}) = b -y b -a (a,y) (x -a)m(dx) + (y -a) m({y}) 2 + y -a b -a (y,b) (b -x)m(dx) + (b -y) m({y}) 2 = b -y b -a q(y, a) + y -a b -a q(y, b) =E y q(y, Y H a,b ),
where in the last equality we use ( 1) and ( 2).

Lemma 2.3. q is finite on I • × I.

Proof. Let a, b ∈ I such that a < b and let y ∈ (a, b). Recall that by [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF] we have E y H a,b < ∞. Together with Formulas (5) and ( 2) this entails that if the boundary point l is attained in finite time with a positive probability (in particular, l > -∞), then q(y, l) has to be finite. The same argument applies to the right-hand boundary r.

Notice that Lemma 2.3 garantees that q(y, Y t ) -(t ∧ H l,r ), t ∈ [0, ∞), is a real-valued process. We can now prove the main result of this section.

Proof of Theorem 2.1. Let a, b ∈ I with a < y < b. We first show that q(y, Y t∧H a,b )t ∧ H a,b , t ∈ [0, ∞), is a P y -martingale. For this purpose observe that for all t ∈ [0, ∞) it holds

E y q(y, Y H a,b ) -H a,b |F t = (q(y, Y H a,b ) -H a,b )1 {H a,b ≤t} + E y q(y, Y H a,b ) -H a,b |F t 1 {H a,b >t} . (7) 
On the event {H a,b > t} we have

q(y, Y H a,b ) -H a,b = q(y, Y H a,b ) • θ t -H a,b • θ t -t
, where θ t denotes the shift operator for Y (see Chapter III in [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF]). The Markov property and

(5) imply that on the event {H a,b > t} we have P y -a.s.

E y q(y, Y H a,b ) -H a,b |F t =E z [q(y, Y H a,b ) -H a,b ] z=Yt -t =E z [q(y, Y H a,b ) -q(z, Y H a,b )] z=Yt -t. (8) 
Formula ( 4) yields for all z ∈ (a, b) 8) implies that on the event {H a,b > t} we have P y -a.s.

q(y, Y H a,b ) -q(z, Y H a,b ) = q(y, z) + ∂ 0 q ∂x (y, z)(Y H a,b -z). Since E z [Y H a,b -z] = 0 for all z ∈ (a, b), Equation (
E y q(y, Y H a,b ) -H a,b |F t = q(y, Y t ) -t.
Together with (7) this yields for all t ∈ [0, ∞)

E y q(y, Y H a,b ) -H a,b |F t = q(y, Y t∧H a,b ) -t ∧ H a,b , which shows that q(y, Y t∧H a,b ) -t ∧ H a,b , t ∈ [0, ∞), is a P y -martingale.
The statement of the lemma follows via a localization argument. If l / ∈ I, then choose a decreasing sequence (l n ) n∈N ⊆ I with l 1 < y and lim n→∞ l n = l. If l ∈ I, set l n = l for all n ∈ N. Similarly, if r / ∈ I, then choose an increasing sequence (r n ) n∈N ⊆ I with r 1 > y and lim n→∞ r n = r, and if r ∈ I, then set r n = r for all n ∈ N. The sequence of stopping times inf{t ≥ 0 : X t / ∈ [l n , r n ]}, n ∈ N, is then a localizing sequence for the process q(y, Y t ) -(t ∧ H l,r ), t ∈ [0, ∞).

Integrability properties and Feller's test

The local martingale property of q(y, Y t ) -(t ∧ H l,r ) allows to derive some integrability properties of Y . We first show that Y is integrable at integrable stopping times. Let us remark that Lemma 1 in [START_REF] Kotani | On a condition that one-dimensional diffusion processes are martingales[END_REF] is a similar result for deterministic times.

Proof. Let τ be a stopping time with E y [τ ] < ∞. We can assume that τ ≤ H l,r (else replace τ by τ ∧ H l,r ). The stopped process Z t = q(y, Y t∧τ ) -t ∧ τ , t ≥ 0, is also a local martingale. Let (τ n ) be a localizing sequence for (Z t ). Then E y [q(y, Y t∧τ ∧τn )] = E y [t∧τ ∧τ n ]. By applying Fatou's lemma to the left-hand side and monotone convergence to the right-hand side we obtain

E y [q(y, Y τ )] ≤ E y [τ ]. (9) 
Since q(y, •) is strictly convex on I, decreasing on (l, y) and increasing on (y, r), there exists a constant C ∈ (0, ∞) such that |x -y| ≤ C(1 + q(y, x)), for all x ∈ I. 

  3 in [3]. We assume that the state space is an open, half-open or closed interval I ⊆ R. We denote by I • = (l, r) the interior of I, where -∞ ≤ l < r ≤ ∞, and we set Ī = [l, r]. Recall that by the definition we have P y [Y 0 = y] = 1 for all y ∈ I. For every x ∈ Ī we denote the first hitting time of x by H x = inf{t ≥ 0 : Y t = x} (where we use the convention inf ∅ = ∞). Moreover, for a < b in Ī we denote by H a,b the first exit time of Y from (a, b), i.e. H a,b = H a ∧ H b . Throughout we assume that Y is regular. This means that for every y ∈ I • and x ∈ I we have that P y [H x < ∞] > 0.

Lemma 2 . 2 .

 22 Let a, b ∈ I with a < b and y ∈ (a, b). ThenE y H a,b = E y q(y, Y H a,b ).

Proposition 3 . 1 .

 31 Let y ∈ I • . For any stopping time τ satisfying E y [τ ] < ∞ we have E y |Y τ | < ∞.

  and (10) entailsE y |Y τ | ≤ |y| + E y |Y τ -y| ≤ |y| + C(1 + E y (q(y, Y τ )) < ∞.

 

Proposition 3.2. Let y ∈ I • and T ∈ [0, ∞). Assume that the following two implications hold true:

Then the family of random variables

Proof. Assumption (i) (resp. (ii)) means that lim x→-∞ q(y, x)/|x| = ∞ (resp. lim x→∞ q(y, x)/x = ∞) whenever l = -∞ (resp. r = ∞). The statement now follows from Estimate (9) and de la Vallée-Poussin's theorem.

We next recall a result known as Feller's test for explosions. Theorem 3.3. For any y ∈ I • the following equivalences hold true:

In contrast to the classical approach (see e.g. Thm 5.29, Chapter 5 in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF] or Thm 52.1, Chapter V in [START_REF] Rogers | Diffusions, Markov processes, and martingales[END_REF] for the proofs in the SDE setting), we do not construct an appropriate solution of the related Sturm-Liouville problem in the proof, but rather work directly with the function q.

Proof. Notice that the implications from the left-hand side to the right-hand side follow from Lemma 2.3.

We now prove via contradiction that q(y, r) < ∞ entails that r is accessible. If r = ∞, then q(y, r) = ∞. So, suppose that r < ∞, q(y, r) < ∞ and that r is not accessible. Choose a, b ∈ I such that l < a < y < b < r. By Lemma 2.2 we have

By letting b converge to r from below, we obtain

In particular, H a < ∞, P y -a.s. This further entails that the stopped process Y Ha is a bounded P y -local martingale, and hence a uniformly integrable martingale converging in L 1 (P y ). The limit, however, is the constant a, which contradicts the L 1 (P y ) convergence. Thus we have shown that q(y, r) < ∞ implies that r is accessible.

In a similar way one can show that q(y, l) < ∞ entails that l is accessible.