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In this paper, we consider the following viscoelastic coupled wave equation with a delay term:

in a bounded domain. Under appropriate conditions on µ 1 , µ 2 , µ 3 and µ 4 , we prove global existence result by combining the energy method with the Faedo-Galerkin's procedure. In addition , we focus on asymptotic behavior by using an appropriate Lyapunov functional.

Introduction

We omit the space variable x of u(x, t), υ(x, t), u t (x, t) and υ t (x, t) and for simplicity reason denote u(x, t) = u, υ(x, t) = υ, u t (x, t) = u t and υ t (x, t) = υ t , when no confusion arises also the functions considered are all real valued, here u t = du(t)/dt, u tt = d 2 u(t)/dt 2 , υ t = dυ(t)/dt and υ tt = d 2 υ(t)/dt 2 . Our main interest lies in the following system of viscoelastic equations :

                                                                   u tt -Lu - t 0 g 1 (t -σ)Lu(σ)dσ + µ 1 u t (x, t) + τ 2 τ 1 µ 2 (s)u t (x, t -s)ds + f 1 (u, υ) = 0, in Ω × (0, ∞), υ tt -Lυ - t 0 g 2 (t -σ)Lυ(σ)dσ + µ 3 υ t (x, t) + τ 2 τ 1 µ 4 (s)υ t (x, t -s)ds + f 2 (u, υ) = 0, in Ω × (0, ∞),
u(x, t) = 0, υ(x, t) = 0, on ∂Ω × (0, +∞), u(x, 0) = u 0 (x), υ(x, 0) = υ 0 (x), u t (x, 0) = u 1 (x), υ t (x, 0) = υ 1 (x),

x ∈ Ω, u t (x, -t) = φ 0 (x, t), x ∈ Ω, s ∈ (0, τ 2 ), υ t (x, -t) = φ 1 (x, t),

x ∈ Ω, s ∈ (0, τ 2 ),
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Lu = -div(A 1 ∇u) = - N i, j=1 a 1i, j (x) ∂u ∂x i and Lυ = -div(A 2 ∇υ) = - N i, j=1
a 2i, j (x) ∂υ ∂x i .

The matrix A 1 = (a 1i, j (x)), A 2 = (a 2i, j (x)), where a 1i, j , a 2i, j ∈ C 1 (Ω), are symmetric such that for all x ∈ Ω and η = (η 1 , ....η N ) ∈ R N , µ 1 , µ 3 , τ 2 are positive constants, τ 1 is a nonnegative constant with τ 1 < τ 2 , µ 2 , µ 4 : [τ 1 , τ 2 ] → R are a bounded functions, and Ω is a bounded domain in R N , n ∈ N * , with a smooth boundary ∂Ω and g 1 , g 2 : R + → R + , φ i (., .) : R 2 → R i = 1, 2, are given functions which will be specified later and the initial data (u 0 , u 1 , φ 0 ), (υ 0 , υ 1 , φ 1 ) belonging to a suitable space. This problem arises in the theory of viscoelasticity and describes the interaction of two scalar fields (see [START_REF] Segal | The global cauchy problem for relativistic scalar fields with power interactions[END_REF]). We identify some parameters that arise in problem (1) , for example

• x is the space variable along the beam in the bounded domain Ω.

• t denotes the time variable.

• u and υ denote the transverse displacements of waves.

• u t ,υ t represent the damping terms, the damping are produced by processes that dissipate the energy stored in the oscillation.

• f 1 (u, υ), f 2 (u, υ) are a sources terms which describes the interaction of the two waves.

• g 1 (.), g 2 (.) represent the viscoelastic materials are a kind of materials that have the properties of keeping past information (memories) and which are able to be used in the future.

• τ 1 and τ 2 represent the delay terms. The interaction of the two waves via the sources terms implies an exchange of the energy, this later is physically transmitted from one places to another , there is a delay associated with the transmission which denotes by τ 1 and τ 2 .

To motivate our work, let us start with the wave equation proposed by [START_REF] Liu | Uniform decay of solutions for a quasilinear system of viscoelastic equations[END_REF]. In absence of delay (µ 2 = µ 4 = 0), the authors in [START_REF] Liu | Uniform decay of solutions for a quasilinear system of viscoelastic equations[END_REF] considered the following coupled system of quasilinear viscoelastic equation in canonical form without delay terms:

                   |u t | ρ u tt -∆u -γ 1 ∆u tt + t 0 g 1 (t -s)∆u(s)ds + f 1 (x, u) = 0, in Ω × (0, +∞), |υ t | ρ υ tt -∆υ -γ 2 ∆υ tt + t 0 g 2 (t -s)∆υ(s)ds + f 2 (x, u) = 0, in Ω × (0, +∞), (2) 
where Ω is a bounded domain in R n (n ≥ 1) with a smooth boundary ∂Ω, γ 1 , γ 2 ≥ 0 are constants and ρ is a real number such that 0 < ρ < 2n (n-2) if n ≥ 3 or ρ > 0 if n = 1, 2. The functions u 0 , u 1 , υ 0 and υ 1 are given initial data. The relaxations functions g 1 and g 2 are continuous functions and f 1 (u, υ), f 2 (u, υ) represent the nonlinear terms. The authors proved the energy decay result using the perturbed energy method. Many authors considered the initial boundary value problem as follows

                   u tt -∆u + t 0 g 1 (t -s)∆u(s)ds + h 1 (u t ) = f 1 (x, u), in Ω × (0, +∞), υ tt -∆υ + t 0 g 2 (t -s)∆υ(s)ds + h 2 (υ t ) = f 2 (x, u), in Ω × (0, +∞), (3) 
When the viscoelastic terms g i (i = 1, 2.) are not taken into account in [START_REF] Liu | Uniform decay of solutions for a quasilinear system of viscoelastic equations[END_REF], Rammaha and Sakatusathian [START_REF] Mohammad | Global existence and blow-up of solution to systems of nonlinear wave equation with degenerate damping and source terms[END_REF] obtained several results related to local and global existence of a weak solution. By using the same technique as in [START_REF] Ono | Global existence, decay, and blow up of solutions for some mildly degenerate nonlinear Kirchhoff string[END_REF], they showed that any weak solution blow-up in finite time with negative initial energy. Later Said-Houari [START_REF] Said-Houari | Global nonexistence of a positive initial energy solutions of a system of nonlinear wave equation with dumping and source terms[END_REF] extended this blow up result to positive initial energy. Conversely, in the presence of the memory term (g i 0 , i = 1, 2.), there are numerous results related to the asymptotic behavior and blow up of solutions of viscoelastic systems. For example, Liang and Gao [START_REF] Liang | Exponential energy decay and blow-up of solution for a system of nonlinear viscoelastic wave equations with strong dumping[END_REF] studied problem (3) with h 1 (u t ) = -∆u t , h 2 (υ t ) = -∆u t . They obtained that, under suitable conditions on the functions g i , f i , i = 1, 2, and certain initial data in the stable set, the decay rate of the energy functions is exponential. On the contrary, for certain initial data in the unstable set, there are solutions with positive initial energy that blow-up in finite time. For h 1 (u t ) = |u t | m-1 u t and h 2 (υ t ) = |υ t | r-1 υ t . Hun and Wang [START_REF] Han | Global existence and blow-up of solutions for a system of nonlinear viscoelastic wave equation with dumping and source[END_REF] established several results related to local existence, global existence and finite time blow-up ( the initial energy E(0) < 0). This latter has been improved by Messaoudi and Said-Houari [START_REF] Messaoudi | Global nonexistence of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms[END_REF] by considering a larger class of initial data for which the initial energy can take positive values, on the other hand, Muhammad I.Mustafa [START_REF] Mustafa | Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations[END_REF] considered the following problem

                   u tt -∆u + t 0 g 1 (t -s)∆u(s)ds + f 1 (υ, u) = 0, in Ω × (0, +∞), υ tt -∆υ + t 0 g 2 (t -s)∆υ(s)ds + f 2 (υ, u) = 0, in Ω × (0, +∞), (4) 
and proved the well-posedness and energy decay result for wider class of relaxation functions. The author in [START_REF] Wu | General decay of solutions for a nonlinear system of viscoelastic wave equations with degenerate damping and source terms[END_REF] have studied the following problem

                   u tt -∆u + t 0 g(t -s)∆u(s)ds + |u| k + |υ| q |u t | m-1 u t = f 1 (υ, u), in Ω × (0, +∞), υ tt -∆υ + t 0 h(t -s)∆υ(s)ds + |u| θ + |υ| ρ |υ t | r-1 υ t = f 2 (υ, u), in Ω × (0, +∞), (5) 
with degenerate damping and source terms in a bounded domain . Under some assumptions on the relaxation functions, degenerate damping and source terms, he obtained the decay rate of the energy function for certain initial data. Time delay is the property of a physical system by which the response to an applied force is delayed in its effect (see [START_REF] Nicaise | Exponential stability of the wave equation with boundary time-varying delay[END_REF]) . whenever material, information or energy is physically transmitted from one place to another , there is a delay associated with the transmission. Time delays so often arise in many physical, chemical, biological , and economical phenomena . It is widely known that delay effects, which arise in many practical problems, source of some instabilities, in this way Datko and Nicaise [START_REF] Nicaise | Stabilization of the wave equation with boundary or internal distributed delay[END_REF][START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Exponential stability of the wave equation with boundary time-varying delay[END_REF] showed that a small delay in a boundary control turns a well-behave hyperbolic system into a wild one which in turn, becomes a source of instability, where they proved that the energy is exponentially stable under the condition

µ 2 < µ 1 .
Motivated by the previous works, in the present paper, it is interesting to analyze the influence of the viscoelastic, damping and delay terms on the solutions to [START_REF] Georgiev | Existence of solutions of the wave equations with nonlinear damping and source terms[END_REF] . Under suitable assumptions on the functions g i (.), f i (., .)(i = 1.2), the initial data and the parameters in the equations, to the best of our knowledge, there is no result concerning coupled system with the presence of delay term and eliptic operator. We establish several results concerning local and global existence, asymptotic stability, boundedness of the solutions to (1). Our paper is organized as follows. In section 2, we present some preliminary results and lemmas. In section 3, the existence result is obtained, Theorem 3.1. Finally in section 4 decay property is derived, Theorem 4.1

Preliminary Results

In this section, we present some material and assumptions for the proof of our results. For a Banach space X, . X denotes the norm of X. For simplicity, we denote . L p (Ω) by . p and . L 2 (Ω) by . 2 we will use embedding H 1 0 (Ω) → L q (Ω) for 2 ≤ q ≤ 2n n-2 , if n ≥ 3 and q ≥ 2, if n = 1, 2; and L r (Ω) → L q (Ω), for q < r. We will use , in this case, the same embedding constant denoted by c s ν q ≤ c s ∇ν 2 , ν q ≤ c s ν r for ν ∈ H 1 0 (Ω). For studying the problem (1) we will need the following assumptions. For the relaxation function g i for i = 1, 2. We assume (A 0 ) :

g 1 (t), g 2 (t): [0, ∞) → [0, ∞) are of class C 2 and satisfying, for s ≥ 0 g 1 (0) = g 10 > 0, 1 - ∞ 0 g 1 (s)ds = l 1 > 0, g 2 (0) = g 20 > 0, 1 - ∞ 0 g 2 (s)ds = l 2 > 0,
and there exist a nonincreasing functions ζ 1 (t) and ζ 1 (t) such that

g 1 (t) ≤ -ζ 1 (t)g 1 (t), g 2 (t) ≤ -ζ 2 (t)g 2 (t), ∀t ≥ 0. (6) 
(A 1 ) : The matrix A 1 = (a 1i, j (x)), A 2 = (a 2i, j (x)), whith a 1i, j , a 2i, j ∈ C 1 (Ω), are symmetric and there exists a constants a 01 , a 02 > 0 such that for all x ∈ Ω and η = (η 1 , ....η N ) ∈ R N we have

N i, j=1 a 1i, j (x)η j η i ≥ a 01 |η| 2 , N i, j=1 a 2i, j (x)η j η i ≥ a 02 |η| 2 . ( 7 
)
(A 2 ) : We take f 1 (u, υ), f 2 (u, υ) as in [START_REF] Wu | On decay and blow up of solutions for a system of nonlinear wave equations[END_REF] 

f 1 (u, υ) = a|u + υ| p-1 (u + υ) + b|u| p-3 2 |υ| p+1 2 u, (8) 
f 2 (u, υ) = a|u + υ| p-1 (u + υ) + b|υ| p-3 2 |u| p+1 2 υ. (9) 
With a, b > 0. Further, one can easily verify that

u f 1 (u, υ) + υ f 2 (u, υ) = (p + 1)F(u, υ), ∀(u, υ) ∈ R 2 ,
Where

F(u, υ) = 1 (p + 1) a|u + υ| p+1 + 2b|uυ| p+1 2 , f 1 (u, υ) = ∂F ∂u , f 2 (u, υ) = ∂F ∂υ .
Moreover, we suppose that, there exists C > 0, such that

∂ f i ∂u (u, υ) + ∂ f i ∂υ (u, υ) ≤ C |u| p-1 + |υ| p-1 , i = 1, 2 where 1 ≤ p < 6. (A 3 ) : if n = 1, 2; p ≥ 3 if n = 3; p = 3. ( 10 
)
We will use the embedding

H 1 0 (Ω) → L s (Ω) for 2 ≤ s ≤ 2n n-2 if n ≥ 3 or s ≥ 2 if n = 1, 2.
The same embedding constant c s will be used. We assume that:

τ 2 τ 1 |µ 2 (s)|ds < µ 1 , (11) 
τ 2 τ 1 |µ 4 (s)|ds < µ 3 . (12) 
Let's now recall the following lemmas mentioned in ( [START_REF] Wu | On decay and blow up of solutions for a system of nonlinear wave equations[END_REF]).

Lemma 2.1. ( [START_REF] Wu | On decay and blow up of solutions for a system of nonlinear wave equations[END_REF]). Suppose that (10) holds. Then there exists ρ > 0 such that for any (u, υ) ∈ (H 1 0 (Ω)) 2 , we have

u + υ p+1 p+1 + 2 uυ p+1 2 p+1 2 ≤ ρ l 1 ∇u 2 2 + l 2 ∇υ 2 2 p+1 2 .

Lemma 2.2. ([23]

). There exist two positive constants c 0 , and c 1

c 0 |u| p+1 + |υ| p+1 ≤ F(u, υ) ≤ c 1 |u| p+1 + |υ| p+1 , ∀(u, υ) ∈ R 2 .

Global existence

To prove the existence of solutions of problem (1), we introduce the new variables z 1 , z 2 as in [START_REF] Benaissa | Global existence and energy decay of solutions to a viscoelastic wave equation with a delay term in the nonlinear internal feedback[END_REF] 

z 1 (x, k 1 , s, t) = u t (x, t -k 1 s), x ∈ Ω, k 1 ∈ (0, 1), s ∈ (τ 1 , τ 2 ), z 2 (x, k 2 , s, t) = υ t (x, t -k 2 s), x ∈ Ω, k 2 ∈ (0, 1), s ∈ (τ 1 , τ 2 ), which implies that sz 1t (x, k 1 , s, t) + z k 1 (x, k 1 , s, t) = 0, in Ω × (0, 1) × (τ 1 , τ 2 ) × (0, ∞), sz 2t (x, k 2 , s, t) + z k 2 (x, k 2 , s, t) = 0, in Ω × (0, 1) × (τ 1 , τ 2 ) × (0, ∞).
Hence, problem (1) is transformed to

                                                                                       u tt -Lu + t 0 g 1 (t -σ)Lu(σ)dσ + µ 1 u t (x, t) + τ 2 τ 1 µ 2 (s)z 1 (x, 1, s, t)ds + f 1 (u, υ) = 0, in Ω × (0, ∞), υ tt -Lυ + t 0 g 2 (t -σ)Lυ(σ)dσ + µ 3 υ t (x, t) + τ 2 τ 1 µ 4 (s)z 2 (x, 1, s, t)ds + f 2 (u, υ) = 0, in Ω × (0, ∞), sz 1t (x, k 1 , s, t) + z k 1 (x, k 1 , s, t) = 0, in Ω × (0, 1) × (τ 1 , τ 2 ) × (0, ∞), sz 2t (x, k 2 , s, t) + z k 2 (x, k 2 , s, t) = 0, in Ω × (0, 1) × (τ 1 , τ 2 ) × (0, ∞), z 1 (x, 0, s, t) = u t (x, t), x ∈ Ω, t > 0, s ∈ (τ 1 , τ 2 ), z 2 (x, 0, s, t) = υ t (x, t), x ∈ Ω, t > 0, s ∈ (τ 1 , τ 2 ), z 1 (x, k 1 , s, 0) = φ 0 (x, k 1 s), x ∈ Ω, k 1 ∈ (0, 1), s ∈ (0, τ 2 ), z 2 (x, k 2 , s, 0) = φ 1 (x, k 2 s), x ∈ Ω, k 2 ∈ (0, 1), s ∈ (0, τ 2 ), u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ Ω, υ(x, 0) = υ 0 (x), υ t (x, 0) = υ 1 (x), x ∈ Ω, u(x, t) = 0, υ(x, t) = 0, x ∈ ∂Ω, t ≥ 0. ( 13 
)
Our existence result of problem ( 13) is read as follows

Theorem 3.1. Let (u 0 , υ 0 ) ∈ H 1 0 (Ω) ∩ H 2 (Ω) 2 , (u 1 , υ 1 ) ∈ (H 1 0 (Ω)) 2 and (φ 0 , φ 1 ) ∈ H 1 (Ω × (0, 1) × (τ 1 , τ 2 ) 2
. Satisfying the compatibility conditions

φ 0 = (., 0) = u 1 , φ 1 = (., 0) = υ 1 .
Assume that the hypotheses (A 0 ) -(A 3 ) hold. Then there exists a unique weak solution ((u(t), z 1 (t)), (υ(t), z 2 (t))) of ( 13)

u(t), υ(t) ∈ C [0, T ]; H 1 0 (Ω) ∩ C 1 [0, T ]; L 2 (Ω) , u t (t), υ t (t) ∈ L 2 [0, T ]; H 1 0 (Ω) ∩ L 2 ([0, T ] × Ω) , for T > 0.
Proof: We use Faedo-Galerkin's method to construct approximate solution. Let T > 0 be fixed and denote by V n the space generated by the set {w n , n ∈ N} is a basis of H 2 (Ω) ∩ H 1 0 (Ω), we define also for 1 ≤ j ≤ n, the sequence ϕ j (x, n) as follows ϕ j (x, 0) = w j (x). Then we may extend ϕ j (x, 0) by ϕ j (x, n, s) over L 2 (Ω×[0, 1]×(τ 1 , τ 2 )) and denote Z n to be the space generated by {ϕ 1 ,.... ϕ n }, (n = 1, 2, 3...). We construct approximate solutions (u n (t), z n 1 (t), υ n (t), z n 2 (t)) (n = 1, 2, 3...) in the form

u n (t) = n j=1 u n, j (t)w j (x), z n 1 (t) = n j=1 z 1n, j (t)ϕ j (x, k 1 , s), υ n (t) = n j=1 υ n, j (t)w j (x), z n 2 (t) = n j=1 z 2n, j (t)ϕ j (x, k 2 , s),
where ((u n (t), z n 1 (t)), (υ n (t), z n 2 (t))) are the solutions of the following approximate problem corresponding to (13) then ((u n (t), z n 1 (t)), (υ n (t), z n 2 (t))) verify the following system of ODE's:

u n tt (t), w j Ω + a 1 (u n (t), w j ) + t 0 g 1 (t -s)A 1 ∇u n (s)ds, ∇w j Ω + µ 1 u n t (t), w j Ω + τ 2 τ 1 µ 2 (s)z n 1 (x, 1, s, t)ds, w j Ω + f 1 (u n (t), υ n (t)), w j Ω = 0, (14) 
υ n tt (t), w j Ω + a 2 (υ n (t), w j )

+ t 0 g 2 (t -s)A 2 ∇υ n (s)ds, ∇w j Ω + µ 3 υ n t (t), w j Ω + τ 2 τ 1 µ 4 (s)z n 2 (x, 1, s, t)ds, w j Ω + f 2 (u n (t), υ n (t)), w j Ω = 0, (15) 
for j = 1.....n. More specifically

u n (0) = n j=1 u n, j (0)w j , υ n (0) = n j=1 υ n, j (0)w j , u n t (0) = n j=1 u n, j (0)w j , υ n t (0) = n j=1 υ n, j (0)w j , (16) 
where u n, j (0) = u 0 , w j , υ n, j (0) = υ 0 , w j , u n, j t (0) = u 1 , w j , υ n, j t (0) = υ 1 , w j , j = 1, ...., n. Obviously, u n (0) → u 0 , υ n (0) → υ 0 strongly in

H 1 0 (Ω), u n t (0) → u 1 , υ n t (0) → υ 1 strongly in L 2 (Ω) as n → ∞. sz n 1t (x, k 1 , s, t) + z n k 1 (x, k 1 , s, t), ϕ j Ω = 0, ( 17 
)
sz n 2t (x, k 2 , s, t) + z n k 2 (x, k 2 , s, t), ϕ j Ω = 0, (18) 
z n 1 (0) = z n 1 → φ 0 , z n 2 (0) = z n 2 → φ 1 in L 2 (Ω × (0, 1) × (τ 1 , τ 2 )) . (19) 
For j = 1.....n. Where

a 1 (ψ(t), φ(t)) = N i, j=1 Ω a 1i, j (x) ∂ψ(t) ∂x j ∂φ(t) ∂x i dx = Ω A 1 ∇ψ(t)φ(t)dx, a 2 (ψ(t), φ(t)) = N i, j=1 Ω a 2i, j (x) ∂ψ(t) ∂x j ∂φ(t) ∂x i dx = Ω A 2 ∇ψ(t)φ(t)dx.
By using hypothesis (A 1 ), we verify that the bilinear forms a 1 (., .), a 2 (., .) : H 1 0 (Ω) × H 1 0 (Ω) → R are symmetric and continuous. On the other hand, from [START_REF] Liang | Exponential energy decay and blow-up of solution for a system of nonlinear viscoelastic wave equations with strong dumping[END_REF] and for ζ = ∇ψ. We get

a 1 (ψ(t), ψ(t)) ≥ a 01 Ω N i, j=1 ∂ψ ∂x i 2 dx = a 01 ∇ψ(t) 2 2 , (20) 
a 2 (ψ(t), ψ(t)) ≥ a 02 Ω N i, j=1 ∂ψ ∂x i 2 dx = a 02 ∇ψ(t) 2 2 . ( 21 
)
Which implies that a 1 (., .), a 2 (., .) are coercive. We will utilize a standard compactness argument for the limiting procedure and for this end, it suffices to derive some a priori estimates for (u

n (t), z n 1 (t), υ n (t), z n 2 (t)) with n ∈ N. Estimate 1.
Multiplying equation ( 14) by u n, j (t) and equation ( 15) by υ n, j (t), and summing with respect to j, we obtain 1 2

d dt u n t (t) 2 2 + υ n t (t) 2 2 + a 1 (u n (t), u n t (t)) + a 2 (υ n (t), υ n t (t)) + Ω F(u n (t), υ n (t))dx + Ω τ 2 τ 1 µ 2 (s)z n 1 (x, 1, s, t)u n t (x, t)dsdx + Ω τ 2 τ 1 µ 4 (s)z n 2 (x, 1, s, t)υ n t (x, t)dsdx - t 0 g 1 (t -σ) Ω A 1 ∇u n (σ)∇u n t (t)dxdσ + µ 1 u n t (t) 2 2 + µ 2 υ n t (t) 2 2 - t 0 g 2 (t -σ) Ω A 2 ∇υ n (σ)∇υ n t (t)dxdσ = 0. ( 22 
)
Note that

a 1 (u n (t), u n t (t)) = 1 2 d dt a 1 (u n (t), u n (t)), (23) 
a 2 (υ n (t), υ n t (t)) = 1 2 d dt a 2 (υ n (t), υ n (t)). ( 24 
)
Following the same technique as in [START_REF] Boukhatem | Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions[END_REF], we can obtain

t 0 g 1 (t -σ) Ω A 1 ∇u n (σ)∇u n t (t)dxdσ = N i, j=1 t 0 Ω g 1 (t -σ)a 1i, j (x) ∂u n (s) ∂x j ∂u n t (t) ∂x i dxds = N i, j=1 t 0 Ω g 1 (t -σ)a 1i, j (x) ∂u n (t) ∂x i ∂u n t (t) ∂x i dxdσ - N i, j=1 t 0 Ω g 1 (t -σ)a 1i, j (x) ∂u n (t) ∂x i - ∂u n t (σ) ∂x j ∂u n t (t) ∂x i dxds = 1 2 t 0 g 1 (t -σ) d dt a 1 (u n (t), u n (t))dσ - 1 2 t 0 g 1 (t -σ) d dt a 1 (u n (t) -u n (σ), u n (t) -u n (σ))dσ = 1 2 d dt t 0 g 1 (t -σ)a 1 (u n (t), u n (t) dσ - 1 2 d dt t 0 g 1 (t -σ)a 1 (u n (t) -u n (σ), u n (t) -u n (σ)) dσ - 1 2 g 1 (t)a 1 (u n (t), u n (t)) + 1 2 t 0 g (t -σ)a 1 (u n (t) -u n (σ), u n (t) -u n (σ))dσ = - 1 2 d dt (g 1 • u n )(t) + 1 2 (g 1 • u n )(t) + 1 2 d dt a 1 (u n (t), u n (t)) t 0 g 1 (σ)dσ - 1 2 g 1 (t)a 1 (u n (t), u n (t)), (25) 
where

(g 1 • u n )(t) = t 0 g 1 (t -σ)a 1 (u n (t) -u n (σ), u n (t) -u n (σ))dσ, (26) 
in the same way

t 0 g 2 (t -σ) Ω A 2 ∇υ n (σ)∇υ n t (t)dxdσ = - 1 2 d dt (g 2 • υ n )(t) + 1 2 (g 2 • υ n )(t) + 1 2 d dt a 2 (υ n (t), υ n (t)) t 0 g 2 (σ)dσ - 1 2 g 2 (t)a 2 (υ n (t), υ n (t)). (27) 
Inserting ( 23)-( 25) in [START_REF] Wu | Exponential energy decay of solutions for an integro-differential equation with strong damping[END_REF] and integrating over (0, t), we get

1 2 u n t (t) 2 2 + 1 2 υ n t (t) 2 2 + Ω F(u n (t), υ n (t))dx + 1 2 1 - t 0 g 1 (σ)dσ a 1 (u n (t), u n (t)) + 1 2 1 - t 0 g 2 (σ)dσ a 2 (υ n (t), υ n (t)) + 1 2 (g 1 ou n )(t) + 1 2 (g 2 oυ n )(t) + µ 1 t 0 u n σ (σ) 2 2 dσ + t 0 Ω τ 2 τ 1 µ 2 (s)z n 1 (x, 1, s, t)u n t (x, t)dsdxdσ + t 0 Ω τ 2 τ 1 µ 4 (s)z n 2 (x, 1, s, t)υ n t (x, t)dsdxdσ + 1 2 t 0 g 1 (σ)a 1 (u n t (t), u n t (t))dσ + 1 2 t 0 g 2 (σ)a 2 (υ n t (t), υ n t (t))dσ + µ 3 t 0 υ n σ (σ) 2 2 dσ - 1 2 t 0 (g 1 ou n )(σ)dσ - 1 2 t 0 (g 2 oυ n )(σ)dσ = 0, (28) 
now, we multiply (17) by |µ 2 (s)| z 1n, j (t) summing with respect to j and integrating over Ω × (0, 1) × (τ 1 , τ 2 ) to obtain

1 2 d dt Ω 1 0 τ 2 τ 1 s|µ 2 (s)|(z n 1 (x, k 1 , s, t)) 2 = - 1 2 Ω τ 2 τ 1 |µ 2 (s)|(z n 1 (x, 1, s, t)) 2 dsdx + 1 2 Ω |u n t (t)| 2 τ 2 τ 1 |µ 2 (s)|dsdx. (29) 
In the same way for [START_REF] Gobbino | Quasilinear Degenerate Parabolic Equations of Kirchhof Type[END_REF], we obtain

1 2 d dt Ω 1 0 τ 2 τ 1 s|µ 4 (s)|(z n 2 (x, k 2 , s, t)) 2 = - 1 2 Ω τ 2 τ 1 |µ 4 (s)|(z n 2 (x, 1, s, t)) 2 dsdx + 1 2 Ω |υ n t (t)| 2 τ 2 τ 1 |µ 4 (s)|dsdx, (30) 
under the fact that

t 0 (g 1 • u n σ )(σ)dσ ≤ 0, and t 0 (g 2 • υ n σ )(s)dσ ≤ 0,
we conclude that

(g 1 • u n t )(t) - t 0 (g 1 • u n σ )(σ)dσ + t 0 g 1 (σ)a 1 (u n t (t), u n t (t))dσ ≥ 0, ( 31 
) (g 2 • υ n t )(t) - t 0 (g 2 • υ n σ )(σ)dσ + t 0 g 2 (s)a 2 (υ n t (t), υ n t (t))dσ ≥ 0. ( 32 
)
Summing ( 28),( 29),( 30),( 31) and (32) we get

E n (t) + µ 1 - 1 2 τ 2 τ 1 s|µ 2 (s)|ds t 0 u n σ (σ) 2 2 dσ + µ 3 - 1 2 τ 2 τ 1 s|µ 4 (s)|ds t 0 υ n σ (σ) 2 2 dσ + c 3 t 0 τ 2 τ 1 µ 2 (s) z n 1 (x, 1, s, t) 2 2 dσds + c 4 t 0 τ 2 τ 1 |µ 4 (s)| z n 2 (x, 1, s, t) 2 2 dσds - 1 2 t 0 (g 1 ou)(σ)dσ + 1 2 t 0 g 1 (σ)a 1 (u(σ), u(σ))dσ - 1 2 t 0 (g 2 oυ)(σ)dσ + 1 2 t 0 g 2 (σ)a 2 (υ(σ), υ(σ))dσ ≤ 1 2 u 1n 2 2 + u 1n 2 2 + Ω F(u n (0), υ n (0))dx = E n (0), (33) 
such that

c 1 = µ 1 - 1 2 τ 2 τ 1 s|µ 2 (s)|ds > 0, c 2 = µ 3 - 1 2 τ 2 τ 1 s|µ 4 (s)|ds > 0,
where E(t) is the energy of the solution defined by the following formula

E n (t) = 1 2 u n t (t) 2 2 + 1 2 υ n t (t) 2 2 + 1 2 1 - t 0 g 1 (σ)dσ a 1 (u n (t), u n (t)) + 1 2 1 - t 0 g 2 (σ)dσ a 2 (υ n (t), υ n (t)) + 1 2 Ω 1 0 τ 2 τ 1 s|µ 2 (s)|(z n 1 (x, k 1 , s, t)) 2 dxdk 1 ds + 1 2 Ω 1 0 τ 2 τ 1 s|µ 4 (s)|(z n 2 (x, k 2 , s, t)) 2 dxdk 2 ds + Ω F(u n (t), υ n (t))dx + 1 2 (g 1 ou n )(t) + 1 2 (g 2 oυ n )(t). ( 34 
)
Remark 3.1. It is obviously to see that from (33) that the energy is decreasing .

We shall prove that the problem ( 14)-( 18) admits a local solution in [0, t m ), 0 < t m < T , for an arbitrary T > 0. The extension of the solution to the whole interval [0, T ] is a consequence of the estimates below.

Estimate 2. Replacing w j by -∆w j in ( 14)-( 15), multiplying the equation ( 14) by u n, j (t) and equation ( 15) by υ n, j (t), summing over j from 1 to n and using [START_REF] Wu | Asymptotic behavior for a viscolastic wave equation with a delay term[END_REF], [START_REF] Benaissa | Global existence and energy decay of solutions for a nondissipative wave equation with a time-varying delay term[END_REF], we get

d dt ∇u n t (t) 2 2 + a 01 1 - t 0 g 1 (σ)dσ ∆u n (t) 2 2 + (g 1 o∆u n )(t) + 1 2 g 1 (t) ∆u n (t) 2 2 - 1 2 (g 1 o∆u n )(t) + µ 1 2 ∇u n t (t) 2 2 + τ 2 τ 1 µ 2 (s) Ω z n 1 (x, 1, s, t)∆u n t (t)dsdx + Ω f 1 (u n (t), υ n (t))∆u n (t)dx = 0, (35) 
and

d dt ∇υ n t (t) 2 2 + a 02 1 - t 0 g 2 (σ)dσ ∆υ n (t) 2 2 + (g 2 o∆υ n )(t) + 1 2 g 2 (t) ∆υ n (t) 2 2 - 1 2 (g 2 o∆υ n )(t) + µ 3 2 ∇υ n t (t) 2 2 + τ 2 τ 1 µ 4 (s) Ω z n 2 (x, 1, s, t)∆υ n t (t)dsdx + Ω f 2 (u n (t), υ n (t))∆υ n (t)dx = 0. ( 36 
)
Replacing ϕ j by -∆ϕ j in ( 17)-( 18), multiplying ( 17) by |µ 2 (s)|z 1n, j (t), summing over j, it follows that

s|µ 2 (s)| 1 2 d dt ∇z n 1 (t) 2 2 + |µ 2 (s)| 1 2 d dk 1 ∇z n 1 (t) 2 2 = 0. (37) 
In the same way for ( 18)

s|µ 4 (s)| 1 2 d dt ∇z n 2 (t) 2 2 + |µ 4 (s)| 1 2 d dk 2 ∇z n 2 (t) 2 2 = 0. ( 38 
)
Using Young's inequality, summing (35)-(38) and integrating over (0, t), we get

1 2 ∇u n t (t) 2 2 + ∇υ n t (t) 2 2 + a 01 1 - t 0 g 1 (σ)dσ ∆u n (t) 2 2 + 1 0 τ 2 τ 1 |µ 2 (s)| ∇z n 1 (x, k 1 , s, t) 2 L 2 ((Ω)) dk 1 ds + 1 0 τ 2 τ 1 |µ 4 (s)| ∇z n 2 (x, k 2 , s, t) 2 L 2 ((Ω)) dk 2 ds + a 02 2 1 - t 0 g 2 (σ)dσ ∆υ n (t) 2 2 + 1 2 (g 1 o∆u n )(t) + 1 2 (g 2 o∆υ n )(t) + 1 2 t 0 g 1 (σ) ∆u n (σ) 2 2 dσ + 1 2 t 0 g 2 (σ) ∆υ n (σ) 2 2 dσ - 1 2 t 0 (g 1 o∆υ n )(σ)dσ - 1 2 t 0 (g 2 o∆υ n )(σ)dσ + µ 1 2 t 0 ∇u n σ (σ) 2 2 dσ + µ 3 2 t 0 ∇υ n σ (σ) 2 2 dσ + τ 2 τ 1 |µ 2 (s)| t 0 Ω |∇z n 1 (x, 1, s, t)| 2 dσdsdx + τ 2 τ 1 |µ 2 (s)| t 0 ∇u n σ (σ) 2 2 dsdσ + τ 2 τ 1 |µ 4 (s)| t 0 Ω |∇z n 2 (x, 1, s, t)| 2 dsdσdx + τ 2 τ 1 |µ 4 (σ)| t 0 ∇υ n σ (σ) 2 2 dσ ≤ Ω           f 1 (u n , υ n )∆u n -f 1 (u 0 , υ 0 )∆u 0 f 2 (u n , υ n )∆υ n -f 2 (u 0 , υ 0 )∆υ 0           dx - t 0 Ω           ∂ ∂u f 1 (u n , υ n )u n σ ∆u n + ∂ ∂υ f 1 (u n , υ n )υ n σ ∆u n + ∂ ∂υ f 2 (u n , υ n )u n σ ∆υ n + ∂ ∂υ f 2 (u n , υ n )υ n σ ∆υ n           dxdσ + t 0 τ 2 τ 1 |µ 2 (s)| 1 0 ∇z n 1σ (x, k 1 , s, t) 2 L 2 ((Ω)×(τ 1 ,τ 2 )) dk 1 dsdσ + t 0 τ 2 τ 1 |µ 4 (s)| 1 0 ∇z n 2σ (x, k 2 , s, t) 2 L 2 ((Ω)) dk 2 dsdσ + t 0 ∇u n σ (σ) 2 2 dσ + t 0 ∇υ n σ (σ) 2 2 dσ + 1 2 ∇u 1n 2 2 + 1 2 ∇υ 1n 2 2 + ∆u 1n 2 2 + ∆υ 1n 2 2 . ( 39 
)
Where

c 0 = 1 2 ∇u 1n 2 2 + 1 2 ∇υ 1n 2 2 + ∆u 1n 2 2 + ∆υ 1n 2 2 ,
is a positive constant, we just need to estimate the right hand terms of (39) . Applying Holder's inequality, Sobolev's embedding theorem inequality, we infer

Ω f 1 (u n (t), υ n (t))∆u n (t)dx ≤ Ω |u n | p + |υ n | p + |u n | p-1 2 |υ n | p+1 2 |∆u n |dx ≤ C u n p 2p + υ n p 2p + u n 3(p-1) p-1 2 u n 3(p+1) 2 p+1 2 ∆u n 2 ≤ C ∇u n p 2 + ∇υ n p 2 + ∇u n p-1 2 2 ∇υ n p+1 2 2 ∆u n 2 ≤ C ∆u n 2 2 + ∇u n 2p 2 + ∇υ n 2p 2 + ∇u n p-1 2 ∇u n p+1 2 ≤ C ∆u n 2 2 + c. (40) 
Likewise, we obtain

Ω f 2 (u n (t), υ n (t))∆υ n (t)dx ≤ C ∆υ n 2 2 + c. (41) 
Now we estimate

I := Ω ∂ ∂u f 1 (u n (t), υ n (t))u n t (t)
∆u n (t)dx, then, by (A 2 ) and Young's inequality, we get

|I| ≤ c Ω |u n | p-1 + |υ n | p-1 |u n t ||∆u n |dx, ≤ c u n t 2 u n p-1 2p ∆u n 2p + υ n p-1 2p u n t 2p ∆u n 2 .
(42)

Then |I| ≤ c ∇u n p-1 2 + ∇υ n p-1 2 ∇u n t 2 ∆u n 2 , ≤ c ∇u n t 2 ∆u n 2 , ≤ c ∆u n 2 2 + c ∇u n t 2 2 .
(43)

Then, we infer from ( 40)-( 43), using Gronwall's lemma, (39) becomes

∇u n t (t) 2 2 + ∇υ n t (t) 2 2 + a 01 1 - t 0 g 1 (σ)dσ ∆u n (t) 2 2 + a 02 1 - t 0 g 2 (σ)dσ ∆υ n (t) 2 2 + τ 2 τ 1 |µ 2 (s)|ds <µ 1 1 0 ∇z n 1 (x, k 1 , s, t) 2 L 2 ((Ω)×(τ 1 ,τ 2 )) dk 1 + τ 2 τ 1 |µ 4 (s)|ds <µ 3 1 0 ∇z n 2 (x, k 2 , s, t) 2 L 2 ((Ω)×(τ 1 ,τ 2 )) dk 2 ≤ e cT ∇u n t (0) 2 2 + ∇υ n t (0) 2 2 + ∆u n (0) 2 2 + ∆υ n (0) 2 2 + e cT 1 0 |µ 2 (s)| ∇z n 1 (x, k 1 , s, 0) 2 L 2 (Ω)×(τ 1 ,τ 2 )) dk 1 + 1 0 |µ 4 (s)| ∇z n 2 (x, k 2 , s, 0) 2 L 2 (Ω)×(τ 1 ,τ 2 )) dk 2 , (44) 
we have also from (33)

u n t (t) 2 2 + υ n t (t) 2 2 + ∇u n (t) 2 2 + ∇υ n (t) 2 2 + (g 1 ou n )(t) + 1 0 τ 2 τ 1 |µ 2 (s)| Ω z n 1 (x, 1, s, t)dxdsdk 1 + 1 0 τ 2 τ 1 |µ 4 (s)| Ω z n 2 (x, 1, s, t)dxdsdk 2 + (g 2 oυ n )(t) + 1 0 τ 2 τ 1 |µ 2 (s)| Ω z n 1 (x, k 1 , s, t)dxdsdk 1 + 1 0 τ 2 τ 1 |µ 4 (s)| Ω z n 2 (x, k 2 , s, t)dxdsdk 2 + Ω F(u, υ)dx ≤ C 1 , (45) 
where C 1 is a positive constant depending on the parameter E(0). Estimate 3. First, we estimate (u n (0)) and (υ n (0)) in ( 14)-( 15) and taking t = 0, we obtain

u n tt (0) 2 2 + υ n tt (0) 2 2 ≤ a 01 u 0n 2 2 + µ 1 u 1n 2 2 + µ 2 z 0n 1 2 2 + a 02 υ 0n 2 2 + µ 2 υ 1n 2 2 + µ 4 z 0n 2 2 2 ≤ a 01 u 0 2 2 + µ 1 u 1 2 2 + µ 2 z 0 1 2 2 + a 02 υ 0 2 2 + µ 3 υ 1 2 2 + µ 4 z 0 2 2 2 ≤ C. ( 46 
)
Where C is a positive constant. Now, differentiating ( 14) and ( 15) with respect to t u n ttt (t), w j Ω + a 1 (u n t (t), w j )

+ N i, j=1 a 1i j (x) t 0 g 1 (t -σ)∇u n (t)dσ , ∇w j Ω + µ 1 u n t (x, t) , w j Ω + τ 2 τ 1 µ 2 (s) z n 1 (x, 1, s, t) , w j Ω ds + (D f 1 (u n (t), υ n (t)), w j Ω = 0, (47) 
υ n ttt (t), w j Ω + a 2 (υ n t (t), w j )

+ N i, j=1 a 2i j (x) t 0 g 2 (t -σ)∇υ n (t)dσ , ∇w j Ω + µ 3 υ n t (x, t) , w j Ω + τ 2 τ 1 µ 4 (s) z n 2 (x, 1, s, t) , w j Ω ds + (D f 2 (u n (t), υ n (t)), w j Ω = 0. ( 48 
)
Multiplying (47)by u n, j (t) and (48) by υ n, j (t) , summing over j from 1 to n, it follows that 1 2

d dt u n tt (t) 2 2 + a 1 (u n t (t), u n t (t)) + µ 1 u n tt (t) 2 2 + τ 2 τ 1 µ 2 (s) u n tt (t), z n 1t (x, 1, s, t) Ω ds -g 1 (0) d dt A 1 ∇u n (t), ∇u n t (t) Ω + g 1 (0)a 1 (u n t (t), u n t (t)) - d dt t 0 A 1 g 1 (t -σ) ∇u n σ (σ), ∇u n t (t) Ω dσ - t 0 A 1 g 1 (t -σ) ∇u n σ (σ), ∇u n t (t) Ω ds + g 1 (0) A 1 ∇u n t (t), ∇u n t (t) Ω + D f 1 (u n (t), υ n (t)), u n tt (t) Ω , (49) and 1 2 
d dt υ n tt (t) 2 2 + a 2 (υ n t (t), υ n t (t)) + µ 3 υ n tt (t) 2 2 + τ 2 τ 1 µ 4 (s) υ n tt (t), z n 2t (x, 1, s, t) Ω ds -g 2 (0) d dt A 2 ∇υ n (t), ∇υ n t (t) Ω + g 2 (0)a 2 (υ n t (t), υ n t (t)) - d dt t 0 A 2 g 2 (t -σ) ∇υ n σ (σ), ∇υ n t (t) Ω dσ + t 0 A 2 g 2 (t -σ) ∇υ n σ (σ), ∇υ n t (t) Ω dσ + g 2 (0) A 2 ∇υ n t (t), ∇υ n t (t) Ω + D f 2 (u n (t), υ n (t)), υ n tt (t) Ω ds. (50) 
Differentiating [START_REF] Nakao | Gradient Estimates of Periodic Solutions for Some Quasilinear Parabolic Equations[END_REF] with respect to t, we get

sz n 1tt (t) + d dk 2 z n 1t (t) 2 2 = 0. (51) 
Multiplying (51) by |µ 2 (s)|z 1n, j (t), summing over j from 1 to n, it follows that

s|µ 2 (s)| 1 2 d dt | z n 1t (t) 2 2 + |µ 2 (s)| 1 2 d dk 1 z n 1t (t) 2 2 = 0. ( 52 
)
In the same way , we obtain

s|µ 4 (s)| 1 2 d dt z n 2t (t) 2 2 + |µ 4 (s)| 1 2 d dk 2 z n 2t (t) 2 2 = 0. ( 53 
)
Taking the sum of ( 49)-( 50)-( 51)-( 52) and (53), we obtain 1 2

d dt u n tt (t) 2 2 + υ n tt (t) 2 2 + a 1 (u n t (t), u n t (t)) + a 2 (υ n t (t), υ n t (t)) + d dt 1 0 τ 2 τ 1 s|µ 2 (s)| z n 1t (t) 2 2 dk 1 ds + 1 0 τ 2 τ 1 s|µ 4 (s) z n 2t (t) 2 2 dk 2 ds + µ 1 u n tt (t) 2 2 + µ 3 υ n tt (t) 2 2 + g 1 (0)a 1 (u n t (t), u n t (t)) + g 2 (0)a 2 (υ n t (t), υ n t (t)) + 1 2 τ 2 τ 1 |µ 2 (s)| z n 1t (x, 1, s, t) 2 2 ds + 1 2 τ 2 τ 1 |µ 4 (s)| z n 2t (x, 1, s, t) ds = - 1 2 1 0 τ 2 τ 1 |µ 2 (s)| z n 1t (t) 2 2 dk 1 ds - 1 2 1 0 τ 2 τ 1 |µ 4 (s)| z n 2t (t) 2 2 dk 2 ds + 1 2 u n tt (t) 2 2 - τ 2 τ 1 |µ 2 (s)| u n tt (t), z n 1t (x, 1, s, t) Ω ds - τ 2 τ 1 |µ 4 (s)| υ n tt (t), z n 2t (x, 1, s, t) Ω ds + D f 1 (u n (t), υ n (t)), u n tt (t) Ω + D f 2 (u n (t), υ n (t)), υ n tt (t) Ω + 1 2 υ n tt (t) 2 2 + g 1 (0) d dt A 1 ∇u n (t), ∇u n t (t) Ω + g 2 (0) d dt A 2 ∇υ n (t), ∇υ n t (t) Ω -g 1 (0) A 1 ∇u n t (t), ∇u n t (t) Ω - t 0 A 1 g 1 (t -σ) ∇u n (σ), ∇u n t (t) Ω ds - d dt t 0 A 2 g 2 (t -σ) ∇υ n σ (σ), ∇υ n t (t) Ω dσ -g 2 (0) A 2 ∇υ n t (t), ∇υ n t (t) Ω - t 0 A 2 g 2 (t -σ) ∇υ n (σ), ∇υ n t (t) Ω dσ - d dt t 0 A 1 g 1 (t -σ) ∇u n σ (σ), ∇u n t (t) Ω dσ. (54) 
Using Holder and Young's inequalities, we conclude the following estimates

g 1 (0)A 1 ∇u n (t), ∇u n t (t) Ω = N i, j=1 g 1 (0)a 1i j (x) ∂u n (t) ∂x j , ∂u n t (t) ∂x i Ω ≤ N i, j=1 (g 1 (0)) 2 2µ Ω ∂u n (t) ∂x j 2 dx + 2µ N i, j=1 Ω a 1i j (x) ∂u n t (t) ∂x i dx ≤ (g 1 (0)) 2 2µ ∇u n (t) 2 2 + 2µ max 1≤i≤N         N j=1 a 1i j 2 ∞         ∇u n t (t) 2 2 ≤ (g 1 (0)) 2 2µ ∇u n (t) 2 2 + 2a 11 µ ∇u n t (t) 2 2 , (55) 
where

a 11 = max 1≤i≤N         N j=1 a 1i j 2 ∞         , a 22 = max 1≤i≤N         N j=1 a 2i j 2 ∞         , g 2 (0)A 2 ∇υ n (t), ∇υ n t (t) Ω ≤ (g 2 (0)) 2 2µ ∇υ n (t) 2 2 + 2a 22 µ ∇υ n t (t) 2 2 , ( 56 
) t 0 A 1 g 1 (t -σ) ∇u n (σ), ∇u n t (t) Ω dσ = t 0 N j=1 a 1i j (x)g 1 (t -σ) ∇u n (σ), ∇u n t (t) Ω dσ ≤ N j=1 a 11 Ω ∂u n t (t) ∂x i 2 dx + 2 g 1 L 1 N j=1 t 0 Ω ∂u n (σ) ∂x j 2 dxdσ ≤ a 11 ∇u n t (t) 2 2 + 2 g 1 L 1 t 0 ∇u n (σ) 2 2 dσ, ( 57 
) t 0 A 2 g 2 (t -σ) ∇υ n (σ), ∇υ n t (t) Ω dσ ≤ a 22 ∇υ n t (t) 2 2 + 2 g 2 L 1 t 0 ∇υ n (σ) 2 2 dσ. (58) 
Using (A 2 ) and the Sobolev's embedding, gives us

D f 1 u n (t), υ n (t)), u n tt (t) Ω ≤ C ( u n p-1 + υ n p-1 ) u n t 2 + ( u n p-1 + υ n p-1 ) υ n t 2 u n tt 2 ≤ C u n 2(p-1) 2 + υ n 2(p-1) 2 + u n t 2 2 + υ n t 2 2 u n tt 2 ≤ u n tt 2 2 + c, ( 59 
)
where c is a positive constant.

In the same way we obtain

D f 2 (u n (t), υ n (t))υ n tt Ω ≤ υ n tt 2 2 + c. (60) 
Replacing ( 55)-( 60) in (54), we get 

+ g 1 L 1 t 0 A 1 g 1 (t -σ) ∇u n (σ) 2 2 dσ + g 2 L 1 t 0 A 2 g 2 (t -σ) ∇υ n (σ) 2 2 dσ + g 1 (0) d dt A 1 ∇u n (t), ∇u n t (t) Ω + g 2 (0) d dt A 2 ∇υ n (t), ∇υ n t (t) Ω + a 11 ∇u n t (t) 2 2 + a 22 ∇υ n t (t) 2 2 - d dt t 0 A 1 g 1 (t -σ) ∇u n σ (σ), ∇u n t (t) Ω dσ - d dt t 0 A 2 g 2 (t -σ) ∇υ n s (σ)∇υ n t (t) Ω dσ. (61) 
Integrating the last inequality over (0, t) and using Gronwall's lemma, we get u n tt (t) 2 2 + υ n tt (t) 2 2 + a 1 (u n t (t), u n t (t)) + a 2 (υ n t (t), υ n t (t))

+ 1 0 τ 2 τ 1 s|µ 2 (s)| z n 1t (t) 2 2 dk 1 ds + 1 0 τ 2 τ 1 s|µ 4 (s) z n 2t (t) 2 2 dk 2 ds ≤ u n tt (0) 2 2 + υ n tt (0) 2 2
+ a 1 (u n t (0), u n t (0)) + a 2 (υ n t (0), υ n t (0))

+ 1 0 τ 2 τ 1 s|µ 2 (s)| z n 1t (x, k 1 , s, 0) 2 2 dk 1 ds + 1 0 τ 2 τ 1 s|µ 4 (s) z n 2t ((x, k 2 , s, 0)) 2 2 dk 2 ds + g 1 (0)a 1 (u n (t), u n t (t)) + g 2 (0)a 2 (υ n (t), υ n t (t)) -g 1 (0)a 1 (u n t (0), u n t (0)) -g 2 (0)a 2 (υ n t (0), υ n t (0)) - t 0 g 1 (t -σ)A 1 ∇u n σ (σ), ∇u n t (σ) Ω dσ - t 0 g 2 (t -σ)A 2 ∇υ n σ (σ), ∇υ n t (t) Ω dσ +       1 4 + g 1 (0) 2 4       t 0 ∇u n t (σ) 2 2 dσ +       1 4 + g 2 (0) 2 4       t 0 ∇υ n t (σ) 2 2 dσ + ( + g 1 2 L 1 ) t 0 ∇u n (σ) 2 2 dσ + ( + g 2 2 L 1 ) t 0 ∇υ n (σ) 2 2 dσ + t 0 u n σσ (σ) 2 2 + υ n σσ (σ) 2 2 + a 1 (u n σ (σ), u n σ (σ)) + a 2 (υ n σ (σ), υ n σ (σ)) ds + t 0 1 0 τ 2 τ 1 s|µ 2 (s)| z n 1σ (σ) 2 2 dk 1 ds + 1 0 τ 2 τ 1 s|µ 4 (s) z n 2σ (σ) 2 2 dk 2 ds dσ, (62) 
we have to estimate the right hand side of (62)

g 1 (0)A 1 ∇u n (t), ∇u n t (t) Ω = N i, j=1 g 1 (0)a 1i j (x) ∂u n (t) ∂x j , ∂u n t (t) ∂x i Ω ≤ N i, j=1 (g 1 (0)) 2 2µ Ω ∂u n (t) ∂x j 2 dx + 2µ N i, j=1 Ω a 1i j (x) ∂u n t (t) ∂x i 2 dx ≤ (g 1 (0)) 2 2µ ∇u n (t) 2 2 + 2µ max 1≤i≤N         N j=1 a 1i j 2 ∞         ∇u n t (t) 2 2 ≤ (g 1 (0)) 2 2µ ∇u n (t) 2 2 + 2a 11 µ ∇u n t (t) 2 2 .
(63)

In the same way

g 2 (0) ∇υ n (t), ∇υ n t (t) Ω ≤ (g 2 (0)) 2 2µ ∇υ n (t) 2 2 + 2a 22 µ ∇υ n t (t) 2 2 , (64) 
as previously we can obtain

t 0 g 1 (t -σ)A 1 ∇u n (σ), ∇u n t (t) Ω dσ ≤ ∇u n t (t) 2 2 + a 11 g 1 L 1 g 1 L ∞ 4 t 0 ∇u n (σ) 2 2 dσ, ( 65 
) t 0 g 2 (t -σ)A 2 ∇υ n (σ), ∇υ n t (t) Ω dσ ≤ ∇υ n t (t) 2 2 + a 22 g 2 L 1 g 2 L ∞ 4 t 0 ∇υ n (σ) 2 2 dσ. ( 66 
)
υ n → υ strongly in L 2 (0, T ; L 2 (Ω)), (95) 
Then u n → u and υ n → υ a.e in (0, T ) × Ω, (96) and u n t → u t and υ n t → υ t a.e in (0, T ) × Ω.

(97)

Analysis of nonlinear term. 

f 1 (u n , υ n ) L 2 (Ω×(0,T )) ≤ T 0 Ω (|u n (s)| p + |υ n (s)| p + |u n (s)| p-1 2 |υ n (s)| p+1 
≤ 2c p s TC P 1 + c p-1 2 s TC p-1 2 1 TC p-1 2 1 + c p+1 2 s TC p+1 2 1 TC p+1 2 1 . = C. ( 98 
)
Where C is a positive constant. In the same way for

f 2 (u n , υ n ) f 2 (u n , υ n ) L 2 (Ω×(0,T )) ≤ C. (99) 
From ( 98) and (99), we deduce that

f 1 (u n , υ n ) → f 1 (u, υ) weakly in L 2 (0, T ; L 2 (Ω)), f 1 (u n , υ n ) → f 1 (u, υ) weakly in L 2 (0, T ; L 2 (Ω)). (100) 
For suitable functions (u, υ) ∈ (L ∞ (0, T ; H 1 0 (Ω))) 2 , (z 1 , z 2 ) ∈ (L ∞ (0, T ; L 2 (Ω × (τ 1 , τ 2 ) × (0.1)))) 2 , ψ 1 , ψ 2 ∈ L 2 (Ω × (0, T )), (χ 1 , χ 2 ) ∈ L 2 (Ω×(0, T )) 2 , ξ ∈ L ∞ ((0, T ); L 2 (Ω)). We have to show that ((u, z 1 ), (υ, z 2 )) is a solution of ( 14)- [START_REF] Gobbino | Quasilinear Degenerate Parabolic Equations of Kirchhof Type[END_REF] Using the embedding L ∞ (0, T ; H 1 0 (Ω)) → L 2 (0, T ; H 1 0 (Ω)),

H 1 ((0, T ) × Ω) → L 2 ((0, T ) × Ω).
and from (70)-(71) we can conclude that u n t , υ n t are bounded in

L ∞ ((0, T ); H 1 0 (Ω)) → L 2 ((0, T ); H 1 0 (Ω)). Hence, u n tt , υ n tt are bounded in L ∞ ((0, T ); L 2 (Ω)) → L 2 ((0, T ); L 2 (Ω)).
Consequently, u n t , υ n t are bounded in H 1 ((Ω) × (0, T )), using Aubin-Lions theorem [START_REF] Boukhatem | Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions[END_REF], we can extract a subsequence (u ξ ) of (u n ) and (υ ξ ) of (υ n ) such that

u ξ t → u t strongly in L 2 (Ω × (0, T )), (101) 
υ ξ t → υ t strongly in L 2 (Ω × (0, T )), (102) 
therefore u ξ t → u t strongly and a.e. in (Ω × (0, T )), (103) υ ξ t → υ t strongly and a.e. in (Ω × (0, T )).

(104)

Similarly

z ξ 1 → z 1 strongly in L 2 (0, T ; L 2 (Ω × (τ 1 , τ 2 ) × (0, 1)), ( 105 
)
z ξ 2 → z 2 strongly in L 2 (0, T ; L 2 (Ω × (τ 1 , τ 2 ) × (0, 1)). ( 106 
)
It follows at once from the convergence (80), ( 87),( 100), ( 90), ( 91), ( 92), ( 93), (95), and (97) for each fixed

ϑ ∈ L 2 (0, T, L 2 (Ω)), ν ∈ L 2 (0, T, L 2 (Ω × (τ 1 , τ 2 ) × (0, 1)) as ξ → ∞ permits us to deduce that T 0 Ω u ξ tt (t)ϑdx + Ω A 1 ∇u ξ (t)∇ϑdx + Ω t 0 g 1 (t -σ)A 1 ∇u ξ (t)∇ϑdσdx dt + T 0 Ω µ 1 u ξ t (t)ϑdx + Ω τ 2 τ 1 sµ 2 (s)z ξ 1 (x, 1, s, t)ϑdxds = Ω f 1 (u ξ (t)υ ξ (t))ϑdx dt → T 0 Ω u tt (t)ϑdx + Ω A 1 ∇u(t)∇ϑdx + Ω t 0 g 1 (t -σ)A 1 ∇u(t)∇ϑdσdxdt dt + T 0 Ω µ 1 u t (t)ϑdx + Ω τ 2 τ 1 sµ 2 (s)z 1 (x, 1, s, t)ϑdxds = Ω f 1 (u(t), υ(t))ϑdx dt, ( 107 
) T 0 Ω υ ξ tt (t)ϑdxdt + Ω A 2 ∇υ ξ (t)∇ϑdx + Ω t 0 A 2 g 2 (t -σ)∇υ ξ (t)∇ϑdσdx dt + T 0 Ω µ 3 υ ξ t (t)ϑdx + Ω τ 2 τ 1 sµ 4 (s)z ξ 2 (x, 1, s, t)ϑdxds = Ω f 2 (u ξ (t)υ ξ (t))ϑdx dt → T 0 Ω υ tt (t)ϑdx + Ω A 2 ∇υ(t)∇ϑdx + Ω t 0 g 2 (t -σ)A 2 ∇υ(t)dσ∇ϑdx dt + T 0 Ω µ 3 υ t (t)ϑdx + Ω τ 2 τ 1 s|µ 4 (s)z 2 (x, 1, s, t)ϑdxds = Ω f 2 (u(t), υ(t))ϑdx dt. (108) 
Exploiting the convergence (90), (91) we deduce

T 0 1 0 τ 2 τ 1 s|µ 2 (s)| Ω ∂ ∂t z ξ 1 + ∂ ∂k 1 z ξ 1 νdxdk 1 dsdt → T 0 1 0 τ 2 τ 1 s|µ 2 (s)| Ω ∂ ∂t z 1 + ∂ ∂k 1 z 1 νdxdk 1 dsdt, (109) 
T 0 1 0 τ 2 τ 1 s|µ 4 (s)| Ω ∂ ∂t z ξ 2 + ∂ ∂k 1 z ξ 1 νdxdk 1 dsdt → T 0 1 0 τ 2 τ 1 s|µ 4 (s)| Ω ∂ ∂t z 2 + ∂ ∂k 2 z 2 νdxdk 2 dsdt, (110) 
Uniqueness. Let (u 1 , υ 1 ) and (u 2 , υ 2 ) be two solutions of problem [START_REF] Nicaise | Exponential stability of the wave equation with boundary time-varying delay[END_REF]. Then (w, q) = (u 1 , υ 1 ) -(u 2 , υ 2 ) and we put also w =

τ 2 τ 1 s|µ 2 (s) |u 1 (x, t -s) -u 2 (x, t -s) ds, q = τ 2 τ 1 s|µ 4 (s) υ 1 (x, t -s) -υ 2 (x, t -s) ds.
Multiplying the first equation in ( 13) by w , integrating over Ω and using integration by parts, we get

d dt w (t) 2 2 + 1 - t 0 g 1 (s)ds a 1 (w(t), w(t)) + (g 1 ow)(t) + µ 1 w (t) 2 2 + τ 2 τ 1 |µ 2 (s) w(x, 1, s, t) 2 2 ds + g 1 (t)a 1 (w(t), w(t)) -(g 1 • w)(t) = - τ 2 τ 1 µ 2 (s) Ω w(x, 1, s, t)w (t)dxds + w (t) 2 2 + Ω f 1 (u 1 , υ 1 ) -f 1 (u 2 , υ 2 ) w (t)dx. ( 111 
)
In the same way for second equation in [START_REF] Nicaise | Exponential stability of the wave equation with boundary time-varying delay[END_REF]. Multiplying the second equation in ( 13) by q , integrating over Ω and using integration by parts, we get d dt q (t) 2 2 + 1 -t 0 g 2 (s)ds a 2 (q(t), q(t)) + (g 2 oq)(t)

+ µ 3 q (t) 2 2 + τ 2 τ 1 µ 4 (s) q(x, 1, s, t) 2 2 ds + g 2 (t)a 2 (q(t), q(t)) -(g 2 • q)(t) = - τ 2 τ 1 µ 4 (s) Ω q(x, 1, s, t)q dxds + q (t) 2 2 + Ω f 2 (u 1 , υ 1 ) -f 2 (u 2 , υ 2 ) q (t)dx. ( 112 
)
Multiplying the third equation in ( 13) by s |µ 2 (s)| w, integrating over Ω × (0, 1), we get

s |µ 2 (s)| 1 2 d dt w(t) 2 2 + s |µ 2 (s)| 1 2 d dk 1 w(t) 2 2 = 0. ( 113 
)
Hence

s |µ 2 (s)| 1 2 d dt 1 0 w(t) 2 2 dk 1 + s |µ 2 (s)| 1 2 w(x, 1, s, t) 2 2 -w (t) 2 2 = 0. ( 114 
)
In the same way for the fourth equation in [START_REF] Nicaise | Exponential stability of the wave equation with boundary time-varying delay[END_REF] we have

s |µ 4 (s)| 1 2 d dt 1 0 q(t) 2 2 dk 2 + s |µ 4 (s)| 1 2 q(x, 1, s, t) 2 2 -q (t) 2 2 = 0. ( 115 
)
Combining ( 111)-( 112), ( 114)-( 115) we get 1 2

d dt                w (t) 2 2 + q (t) 2 2 + 1 - t 0 g 1 (s)ds a 2 (w(t), w(t)) + 1 - t 0 g 2 (s)ds a 1 (q(t), q(t)) + (g 1 ow)(t) + (g 2 oq)(t)                dx + 1 2 d dt 1 0 τ 2 τ 1 µ 2 (s) w(t) 2 2 dk 1 ds + 1 0 τ 2 τ 1 µ 4 (s) q(t) 2 2 dk 2 ds + µ 1 ω (t) 2 2 + µ 3 q (t) 2 2 + τ 2 τ 1 µ 2 (s) q(x, 1, s, t) 2 2 ds + τ 2 τ 1 µ 4 (s) w(x, 1, s, t) 2 2 ds = - τ 2 τ 1 µ 2 (s) Ω w(x, 1, s, t)w (t)dxds - τ 2 τ 1 µ 4 (s) Ω q(x, 1, s, t)q (t)dxds + 1 2 w (t) 2 2 + 1 2 q (t) 2 2 + Ω f 1 (u 1 , υ 1 ) -f 1 (u 2 , υ 2 ) w (t)dx + Ω f 2 (u 1 , υ 1 ) -f 2 (u 2 , υ 2 ) q (t)dx. ( 116 
)
As in [START_REF] Mustafa | Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations[END_REF] , we estimate the right hand side of (116) as follows

Ω f 1 (u 1 , υ 1 ) -f 1 (u 2 , υ 2 ) w dx ≤ C w (t) 2 2 + ∇w(t) 2 2 + ∇q(t) 2 2 , ( 117 
) Ω f 2 (u 1 , υ 1 ) -f 2 (u 2 , υ 2 ) w dx ≤ C q (t) 2 2 + ∇w(t) 2 2 + ∇q(t) 2 2 , (118) 
Setting

Y(t) = w (t) 2 2 + q (t) 2 2 + ∇w(t) 2 2 + ∇q(t) 2 2 + 1 0 τ 2 τ 1 µ 2 (s) w(t) 2 2 dk 1 ds + 1 0 τ 2 τ 1 µ 4 (s) q(t) 2 2 dk 2 ds, 20 
then the equality (116) becomes

1 2 d dt Y(t) + µ 1 ω (t) 2 2 + µ 3 q (t) 2 2 + τ 2 τ 1 µ 2 (s) q(x, 1, s, t) 2 2 ds + τ 2 τ 1 µ 4 (s) w(x, 1, s, t) 2 2 ds ≤ w(t) 2 ∇w (t) 2 + q(t) 2 ∇q (t) 2 + 1 2 w (t) 2 2 + q (t) 2 2 + ∇w(t) 2 2 + ∇q(t) 2 2 , (119) 
Consequently

1 2 d dt Y(t) ≤ Y(t), (120) 
integrating the last equality and using the Gronwall's lemma we get

w (t) 2 2 + q (t) 2 2 + a 01 l 1 ∇w(t) 2 2 + a 02 l 2 ∇q(t) 2 2 + 1 0 τ 2 τ 1 µ 2 (s) w(t) 2 2 dk 1 ds + 1 0 τ 2 τ 1 µ 4 (s) q(t) 2 2 dk 2 ds = 0.
This completes our proof of existence and uniqueness of the weak solution.

Remark 3.2. By virtue of the theory of ordinary differential equations, the system ( 14)-( 18) has local solution which is extended to a maximal interval [0, T k [ with ( 0 < T k ≤ +∞). Now we will prove that the solution obtained above is global and bounded in time, for this purpose, we define

I(t) = Ω 1 0 τ 2 τ 1 µ 2 (s)z 2 1 (x, k 1 , s, t)dxdk 1 ds + Ω 1 0 τ 2 τ 1 µ 4 (s)z 2 2 (x, k 2 , s, t)dxdk 2 ds + (p + 1) Ω F(u, υ)dx + 1 - t 0 g 1 (s)ds a 1 (u(t), u(t)) + 1 - t 0 g 2 (s)ds a 2 (υ(t), υ(t)) + (g 1 • u)(t) + g 2 • υ)(t), (121) 
J(t) = 1 2 Ω 1 0 τ 2 τ 1 µ 2 (s)z 2 1 (x, k 1 , s, t)dxdk 1 ds + 1 2 Ω 1 0 τ 2 τ 1 µ 4 (s)z 2 2 (x, k 2 , s, t)dxdk 2 ds + Ω F(u, υ)dx + 1 2 1 - t 0 g 1 (s)ds a 1 (u(t), u(t)) + 1 2 1 - t 0 g 2 (s)ds a 2 (υ(t), υ(t)) + 1 2 (g 1 • u)(t) + 1 2 g 2 • υ)(t). (122) 
Remark 3.3. From the definition of E(t), by (122), we observe that 2 . We denote by ((u(t), z 1 (t)), (υ(t), z 2 (t))) the solution to the problem (13), we define

E(t) = 1 2 u t (t) 2 2 + υ t (t) 2 2 + J(t). ( 123 
) Definition 3.1. Let (u 0 , υ 0 ) ∈ H 1 0 (Ω) ∩ H 2 (Ω) 2 , (u 1 , υ 1 ) ∈ (H 2 0 (Ω)) 2 and (φ 0 , φ 1 ) ∈ (H 1 (Ω × (0, 1) × (τ 1 , τ 2 )))
T * = sup {T > 0, ((u(t), z 1 (t)), (υ(t), z 2 (t))) exists on [0, T ]} .
If T * = ∞, we say that the solution of ( 13) is global. Lemma 3.1. Let ((u, z 1 ), (υ, z 2 )), be the solution of problem [START_REF] Nicaise | Exponential stability of the wave equation with boundary time-varying delay[END_REF]. Assume further that I(0) > 0 and

α = ρ 2(p + 1) p -1 E(0) p-1 2 < 1. ( 124 
)
Then I(t) > 0 ∀ t.

Proof: Since I(0) > 0, then there exists (by continuity of u(t)) , there exists a time t 1 > 0 such that

I(t) ≥ 0, ∀ t ∈ (0, t 1 ). (125) 
Let {I(t 0 = 0 and I(t) > 0, 0 ≤ t < t 0 } From (122), (113) we deduce that for ∀ t ∈ [0, t 0 ]

J(t) ≥ p -1 2(p + 1) l 1 a 1 (u(t), u(t)) + l 2 a 2 (υ(t), u(t)) + Ω 1 0 τ 2 τ 1 µ 2 (s)z 2 1 (x, k 1 , s, t)dxdk 1 ds + p -1 2(p + 1) Ω 1 0 τ 2 τ 1 µ 4 (s)z 2 2 (x, k 1 , s, t)dxdk 1 ds + (g 1 • u)(t) + (g 2 • υ)(t) + 1 p + 1 I(t) ≥ p -1 2(p + 1) [l 1 a 1 (u(t), u(t)) + l 2 a 2 (υ(t), υ(t))] . (126) 
Thus by ( 126) and the fact that (

g 1 • u)(t) + (g 2 • υ)(t) > 0 , we deduce l 1 a 1 (u(t), u(t)) + l 2 a 2 (υ(t), υ(t)) ≤ 2(p + 1) p -1 J(t) ≤ 2(p + 1) (p -1) E(t) ≤ 2(p + 1) (p -1) E(0), ∀ t ∈ [0, t 0 ]. (127) 
Employing lemma 2.1, we obtain

(p + 1) Ω F(u(t 0 ), υ(t 0 ))dx ≤ ρ(l 1 ∇u(t 0 ) 2 2 + l 2 ∇υ(t 0 ) 2 2 ) p+1 2 ≤ ρ 2(p + 1) p -1 p-1 2 (l 1 ∇u(t 0 ) 2 2 + l 2 ∇υ(t 0 ) 2 2 ) = α(l 1 ∇u(t 0 ) 2 2 + l 2 ∇υ(t 0 ) 2 2 ) < (l 1 ∇u(t 0 ) 2 2 + l 2 ∇υ(t 0 ) 2 2 ) ≤ l 1 a 01 a 1 (u(t 0 ), u(t 0 )) + l 2 a 02 a 2 (υ(t 0 ), υ(t 0 )). (128) 
Exploiting lemma 2.2 . Hence , we conclude from (128) that I(t) > 0 on [0, t 0 ] which contradicts thus I(t) > 0 on [0, T ], which completes the proof. 2 . Suppose that (124) and I(0) > 0 hold. Then the solution of ( 13) is global and bounded.

Theorem 3.2. Let (u 0 , υ 0 ) ∈ H 1 0 (Ω) ∩ H 2 (Ω) 2 , (u 1 , υ 1 ) ∈ (H 2 0 (Ω)) 2 , (φ 0 , φ 1 ) ∈ (H 1 (Ω × (0, 1) × (τ 1 , τ 2 )))
Proof: To prove Theorem 3.2, using the definition of T * , we have to check that

a 1 (u(t), u(t)) + a 2 (υ(t), υ(t))
is uniformly bounded in time. To do this, we use (123) to get

E(0) ≥ E(t) = J(t) + 1 2 u t (t) 2 2 + 1 2 υ t (t) 2 ≥ 2(p + 1) p -1 [a 1 (u(t), u(t)) + a 2 (υ(t), υ(t))] + 1 2 u t (t) 2 2 + 1 2 υ t (t) 2 2 . (129) 
Therefore

a 1 (u(t), u(t)) + a 2 (υ(t), υ(t)) ≤ CE(0),
where C is positive constant, which depends only on p. Thus, we obtain the global existence result.

Asymptotic behavior

In this section we prove the asymptotic behavior result by constructing a suitable Lyapunov functionnal. Let us now define the following functionals needed later

L(t) = ME(t) + ψ(t) + ϕ(t) + I(t), (130) 
with

ψ(t) = Ω uu t dx + Ω υυ t dx, (131) 
ϕ(t) = - Ω u t t 0 g 1 (t -σ)(u(t) -u(σ))dσdx - Ω υ t t 0 g 2 (t -σ)(υ(t) -υ(σ))dσdx, (132) 
I(t) = Ω 1 0 τ 2 τ 1 se -sk 1 |µ 2 (s)|z 2 1 (x, k 1 , s, t)dxdk 1 ds + Ω 1 0 τ 2 τ 1 se -sk 2 |µ 4 (s)|z 2 2 (x, k 2 , s, t)dxdk 1 ds. (133) 
In order to show our stability result, we need the following Lemmas.

Lemma 4.1. ( [START_REF] Wu | General decay of solutions for a nonlinear system of viscoelastic wave equations with degenerate damping and source terms[END_REF]). Let ((u, z 1 ), (υ, z 2 )) be the solution of problem ( 13) and assume that (124) holds. Then, for γ ≥ 0, we have

Ω t 0 g 1 (t -σ)(u(t) -u(σ))dσ γ+1 dx ≤ (1 -l 1 ) γ+1 c γ+1 s 4(p + 1)E(0) l 1 (p -1) γ 2 (g 1 ou)(t), (134) 
and

Ω t 0 g 2 (t -σ)(υ(t) -υ(σ))dσ γ+1 dx ≤ (1 -l 2 ) γ+1 c γ+1 s 4(p + 1)E(0) l 2 (p -1) γ 2 (g 2 oυ)(t). (135) 
Lemma 4.2. ( [START_REF] Wu | General decay of solutions for a nonlinear system of viscoelastic wave equations with degenerate damping and source terms[END_REF]). Suppose that (A 0 ) -(A 3 ) hold. Let (u 0 , υ 0 ) ∈ (H 1 0 (Ω)) 2 , (u 1 , υ 1 ) ∈ (L 2 (Ω)) 2 be given and satisfying [START_REF] Nicaise | Exponential stability of the wave equation with boundary time-varying delay[END_REF]. Then there exist two positive constants η 1 and η 2 such that for any δ > 0 and for all t ≥ 0,

Ω f 1 (u, υ) t 0 g 1 (t -σ)(u(t) -u(σ))dσdx ≤ η 1 δ(l 1 ∇u 2 2 + l 2 ∇υ 2 2 ) + (1 -l 1 )c 2 s 4δ (g 2 ou)(t), (136) 
and

Ω f 2 (u, υ) t 0 g 2 (t -σ)(υ(t) -υ(σ))dσdx ≤ η 2 δ(l 1 ∇u 2 2 + l 2 ∇υ 2 2 ) + (1 -l 2 )c 2 s 4δ (g 2 oυ)(t). (137) 
Lemma 4.3. There exists two positive constants λ 1 ,λ 2 depending on and M such that for all t > 0

λ 1 E(t) ≤ L(t) ≤ λ 2 E(t), (138) 
for M sufficiently large .

Proof: Thanks to the Holder and Young's inequalities, we have

|ψ(t)| ≤ ω u 2 2 + 1 4ω u t 2 2 + ω υ 2 2 + 1 4ω υ t 2 2 , (139) 
and

ϕ(t) = - Ω u t t 0 g 1 (t -σ)(u(t) -u(σ))dσdx - Ω υ t t 0 g 2 (t -σ)(υ(t) -υ(σ))dσdx ≤ 1 2 u t 2 2 + 1 2 Ω t 0 g 1 (t -σ)(u(t) -u(σ))dσ 2 dx + 1 2 υ t 2 2 + 1 2 Ω t 0 g 2 (t -σ)(υ(t) -υ(σ))dσ 2 dx ≤ 1 2 u t 2 2 + (1 -l 1 )c 2 s t 0 g 1 (t -σ)a 1 (u(t) -u(σ), u(t) -u(σ))dσ + 1 2 υ t 2 2 + (1 -l 2 )c 2 s t 0 g 2 (t -σ)a 2 (υ(t) -υ(σ), υ(t) -υ(σ))dσ ≤ 1 2 u t 2 2 + (1 -l 1 )c 2 s 2βE(0) l 1 (g 1 ou)(t) + 1 2 υ t 2 2 + (1 -l 2 )c 2 s 2βE(0) l 2 (g 2 oυ)(t) . (140) 
It follows from (133) that ∀c > 0 

|I(t)| ≤ Ω 1 0 τ 2 τ 1 se -sk 1 |µ 2 (s)|z 2 1 (x, k 1 , s, t)dxdk 1 ds + Ω 1 0 τ 2 τ 1 se -sk 2 |µ 4 (s)|z 2 2 (x, k 2 , s, t)dxdk ds ≤ c Ω 1 0 τ 2 τ 1 se -sk 1 |µ 2 (s)|z 2 1 (x, k 1 , s, t)dxdk 1 ds + c Ω 1 0 τ 2 τ 1 se -sk 2 |µ 4 (s)|z 2 2 (x, k 2 , s, t)dxdk 1 ds. (141) 
Where

c 1 = ωc 2 s , c 2 = ωc 2 s , c 3 = 4ω + 1 2 , c 4 = 4ω + 1 2 , c 5 = (1-l 1 )c 2 s 2 2βE(0) l 1 , c 6 = (1-l 2 )c 2 s 2 2βE(0) l 2 , c 7 = c 8 = c. Finally we obtain |L(t) -ME(t)| ≤ c 9 E(t), (143) 
where c 9 = max(c 1 , c 2 , c 3 , c 4 , c 5 , c 6 , c 7 , c 8 ). Thus, from the definition of E(t) and selecting M sufficiently large to get

λ 2 E(t) ≤ L(t) ≤ λ 1 E(t). (144) 
Where λ 1 = (Mc 9 ), λ 2 = (M + c 9 ). This completes the proof.

dI(t) dt ≤ c Ω u 2 t dx -γ 0 1 0 τ 2 τ 1 s|µ 2 (s)|z 2 1 (x, k 1 , s, t)dxdk 1 ds + c Ω υ 2 t dx -γ 1 1 0 τ 2 τ 1 s|µ 4 (s)|z 2 2 (x, k 2 , s, t)dxdk 1 ds (145) 
Where c, γ 0 and γ 1 are a positive constants.

Proof: Taking the derivative of (133) and using the same technique as [START_REF] Lions | Quelques méthodes de résolution des problémes aux limites non linéaires[END_REF] produces

I (t) = -2 Ω τ 2 τ 1 |µ 2 (s)| 1 0 e -sk 1 z 1 (x, k 1 , s, t)z k 1 (x, k 1 , s, t)dxdsdk 1 -2 Ω τ 2 τ 1 |µ 4 (s)| 1 0 e -sk 2 z 2 (x, k 2 , s, t)z k 2 (x, k 2 , s, t)dxdsdk 2 = - Ω τ 2 τ 1 |µ 2 (s)| 1 0 e -sk 1 ∂ ∂k 1 z 2 1 (x, k 1 , s, t)dxdsdk 1 - Ω τ 2 τ 1 |µ 4 (s)| 1 0 e -sk 2 ∂ ∂k 2 z 2 2 (x, k 2 , s, t)dxdsdk 2 - Ω τ 2 τ 1 |µ 2 (s)| e -s z 2 1 (x, 1, s, t) -z 2 1 (x, 0, s, t) + s 1 0 e -sk 1 z 2 1 (x, k 1 , s, t)dk 1 dxds - Ω τ 2 τ 1 |µ 4 (s)| e -s z 2 2 (x, 1, s, t) -z 2 2 (x, 0, s, t) + s 1 0 e -sk 2 z 2 1 (x, k 2 , s, t)dk 2 dxds ≤ c Ω u 2 t dx -γ 0 Ω 1 0 τ 2 τ 1 s|µ 2 (s)|z 2 1 (x, k 1 , s, t)dxdk 1 ds + c Ω υ 2 t dx -γ 1 Ω 1 0 τ 2 τ 1 s|µ 4 (s)|z 2 2 (x, k 2 , s, t)dxdk 2 ds. ( 146 
)
The proof is hence complete.

Lemma 4.5. The functional defined in (131) satisfies

dψ(t) dt ≤ 1 + µ 1 4β u t 2 2 + 1 + µ 3 4β υ t 2 2 -(p + 1) Ω F(u(t), υ(t))dx + µ 1 1 + 2βc 2 s a 01 -l 1 a 1 (u(t), u(t)) + µ 3 1 + 2βc 2 s a 01 -l 2 a 2 (υ(t), υ(t)) + 1 4β τ 2 τ 1 µ 2 (s)ds z 1 (x, 1, s, t) 2 2 + 1 4β τ 2 τ 1 µ 4 (s)ds z 2 (x, 1, s, t) 2 2 + N 4a 01 µ (1 -l 1 )(g 1 • u)(t) + N 4a 02 µ (1 -l 2 )(g 2 • υ)(t). (147) 
Proof: Taking the derivative of (131) and using system (13), we get

dψ(t) dt = Ω u tt udx + Ω u tt udx + u t 2 2 + υ t 2 2 = u t 2 2 + υ t 2 2 -a 1 (u(t), u(t)) -a 2 (υ(t), υ(t)) + Ω t 0 g 1 (t -σ)A 1 ∇u(s)∇u(t)dσdx + Ω t 0 g 2 A 2 (t -σ)∇υ(σ)∇υ(t)dσdx - τ 2 τ 1 µ 2 (s) Ω z 1 (x, 1, s, t)udsdx -µ 1 Ω u t udx - τ 2 τ 1 µ 4 (s) Ω z 2 (x, 1, s, t)υdsdx -µ 3 Ω υ t υdx -(p + 1) Ω F(u(t), υ(t))dx, (148) 
following [START_REF] Boukhatem | Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions[END_REF], yields 

Ω A 1 t 0 g 1 (t -σ)(
+ N i, j=1 Ω t 0 g 1 (t -σ)a 1i j (x) ∂u(t) ∂x j ∂u(σ) ∂x i - ∂u(t) ∂x i dσdx ≤ (1 -l 1 )a 1 (u(t), u(t)) + µ N i, j=1 Ω a 1i j (x) ∂u(s) ∂x j ds 2 dx + 1 µ N i, j=1 Ω t 0 g 1 (t -σ) ∂u(s) ∂x i - ∂u(t) ∂x i ds 2 dx ≤ (1 -l 1 ) + µa 11 a 01 a 1 (u(t), u(t)) + N 4a 01 µ (1 -l)(g 1 ou)(t), (149) 
in the same way

Ω A 2 t 0 g 2 (t -σ)(∇υ(t)∇υ(σ)dσdx ≤ (1 -l 2 ) + µa 22 a 02 a 22 (u(t), u(t)) + N 4a 02 µ (1 -l 2 )(g 2 oυ)(t), (150) 
for the seventh, eight, ninth and tenth term in [START_REF] Nicaise | Exponential stability of the wave equation with boundary time-varying delay[END_REF] 

Ω τ 2 τ 1 µ 2 (s)z 1 (x, 1, s, t)udsdx ≤ βc 2 s a 01 a 1 (u(t), u(t)) + 1 4β Ω τ 2 τ 1 µ 2 (s)ds <µ 1 τ 2 τ 1 µ 2 (s)z 2 1 (x, 1, s, t)dsdx, (152) 
Ω τ 2 τ 1 µ 4 (s)z 2 (x, 1, s, t)υdsdx ≤ βc 2 s a 02 a 1 (υ(t), υ(t)) + 1 4β Ω τ 2 τ 1 µ 4 (s)ds <µ 3 τ 2 τ 1 µ 4 (s)z 2 2 (x, 1, s, t)dsdx. (153) 
Inserting ( 149)-( 154) into (148) we get finally 

dψ(t) dt ≤ 1 + µ 1 4β u t 2 2 + 1 + µ 3 4β υ t 2 2 -(p + 1) Ω F(u(t), υ(t))dx + µ 1 1 + 2βc 2 s a 01 -l 1 a 1 (u(t), u(t)) + µ 3 1 + 2βc 2 s a 01 -l 2 a 2 (υ(t), υ(t)) + 1 4β τ 2 τ 1 µ 2 (s)ds z 1 (x, 1, s, t) 2 2 + 1 4β τ 2 τ 1 µ 4 (s)ds z 2 (x, 1, s, t) 2 2 + N 4a 01 µ (1 -l 1 )(g 1 • u)(t) + N 4a 02 µ (1 -l 2 )(g 2 • υ)(t). (155 
+ (1 -l 1 ) 1 a 01 β 1 4 + 2βa 11 + N 4 + c 2 s 4δ + 2(1 -l 1 )c 2 s µ 1 g 1 • u)(t) + (1 -l 2 ) 1 a 02 β 1 4 + 2βa 22 + N 4 + c 2 s 4δ + 2(1 -l 2 )c 2 s (µ 3 g 2 • υ)(t) + τ 2 τ 1 µ 2 (s)ds z 1 (x, 1, s, t) 2 2 + τ 2 τ 1 µ 4 (s)ds z 2 (x, 1, s, t) 2 2 + g 1 (0)c 2 s 4β (-g 1 • u)(t) + g 2 (0)c 2 s 4β (-g 2 • υ)(t). (156) 
Proof: Taking derivative of (132), using system (13), we obtain

dϕ(t) dt = - Ω u tt t 0 g 1 (t -σ)(u(t) -u(σ))dσdx - Ω u t t 0 g 1 (t -σ)(u(t) -u(σ))dσdx - t 0 g 1 (σ)dσ Ω u 2 t dx - Ω υ tt t 0 g 2 (t -σ)(υ(t) -υ(σ))dσdx - Ω υ t t 0 g 2 (t -σ)(υ(t) -υ(σ))dσdx - t 0 g 2 (σ)dσ Ω υ 2 t dx = N i, j=1 Ω a 1i j (x) ∂u(t) ∂x j t 0 g 1 (t -σ) ∂u(t) ∂x i - ∂u(σ) ∂x i dσ dx + N i, j=1 Ω a 2i j (x) ∂υ(t) ∂x j t 0 g 2 (t -σ) ∂υ(t) ∂x i - ∂υ(σ) ∂x i dσ dx - N i, j=1 Ω t 0 g 1 (t -σ) ∂u(σ) ∂x i dσ t 0 g 1 (t -σ) ∂u(t) ∂x i - ∂u(σ) ∂x i dσ dx - N i, j=1 Ω t 0 g 2 (t -σ) ∂υ(σ) ∂x i dσ t 0 g 2 (t -σ) ∂υ(t) ∂x i - ∂υ(σ) ∂x i dσ dx - Ω f 1 (u(t), υ(t)) t 0 g 1 (t -σ)u(t) -u(σ)dσ dx - Ω f 2 (u(t), υ(t)) t 0 g 2 (t -σ)υ(t) -υ(σ)dσ dx + Ω µ 1 u(t) t 0 g 1 (t -σ)(u(t) -u(σ))dσdx + Ω µ 3 υ(t) t 0 g 2 (t -σ)(υ(t) -υ(σ))dσdx + Ω τ 2 τ 1 µ 2 (s)z 1 (x, 1, s, t) t 0 g 1 (t -σ)(u(t) -u(σ))dsdσdx + Ω τ 2 τ 1 µ 4 (s)z 2 (x, 1, s, t) t 0 g 2 (t -σ)(υ(t) -υ(s))dsdσdx - Ω u t t 0 g 1 (t -σ)(u(t) -u(σ))dσdx - t 0 g 1 (σ)dσ Ω u 2 t dx - Ω υ t t 0 g 2 (t -σ)(υ(t) -υ(σ))dσdx - t 0 g 2 (σ)dσ Ω υ 2 t dx. (157) 
Using Young's inequality and the embedding

H 1 0 (Ω) → L 2 (Ω), we infer N i, j=1 Ω a 1i j (x) ∂u(t) ∂x j t 0 g 1 (t -σ) ∂u(t) ∂x i - ∂u(σ) ∂x i dσ dx + N i, j=1 Ω a 2i j (x) ∂υ(t) ∂x j t 0 g 2 (t -σ) ∂υ(t) ∂x i - ∂υ(σ) ∂x i dσ dx ≤ β a 01 a 1 (u(t), u(t)) + β a 02 a 2 (υ(t), υ(t)) + (1 -l 1 ) 4a 01 β (g 1 ou)(t) + (1 -l 2 ) 4a 02 β (g 2 oυ)(t), (158) and N 
i, j=1 Ω t 0 g 1 (t -σ) ∂u(s) ∂x i dσ t 0 g 1 (t -σ) ∂u(t) ∂x i - ∂u(σ) ∂x i dσ dx + N i, j=1 Ω t 0 g 2 (t -σ) ∂υ(σ) ∂x i dσ t 0 g 2 (t -σ) ∂υ(t) ∂x i - ∂υ(σ) ∂x i dσ dx ≤ β N i, j=1 Ω t 0 g 1 (t -σ) ∂u(σ) ∂x i dσ 2 dx + 1 β N i, j=1 Ω t 0 g 1 (t -σ) ∂u(t) ∂x i - ∂u(σ) ∂x i dσ 2 dx + β N i, j=1 Ω t 0 g 2 (t -σ) ∂υ(σ) ∂x i dσ 2 dx + 1 β N i, j=1 Ω t 0 g 2 (t -σ) ∂υ(t) ∂x i - ∂υ(σ) ∂x i dσ 2 dx ≤ a 11 β a 01 (1 -l 1 ) 2 a 1 (u(t), u(t)) + a 22 β a 01 (1 -l 2 ) 2 a 2 (υ(t), υ(t)) + (1 -l 1 ) a 01 2βa 11 + N 4β (g 1 • u)(t) + (1 -l 2 ) a 02 2βa 22 + N 4β (g 2 • υ)(t). (159) 
From a lemma 4.2

Ω f 1 (u, υ) t 0 g 1 (t -σ)(u(t) -u(σ))dσdx ≤ λδ l 1 ∇u 2 2 + l 2 ∇υ 2 2 + (1 -l 1 )c 2 s 4δ (g 2 ou)(t) ≤ λδl 1 a 01 a 1 (u(t), u(t)) + λδl 2 a 02 a 2 (υ(t), υ(t)) + (1 -l 1 )c 2 s 4δ (g 1 ou)(t), (160) also 
Ω f 2 (u, υ) t 0 g 2 (t -σ)(υ(t) -υ(σ))dσdx ≤ λδ l 1 ∇u 2 2 + l 2 ∇υ 2 2 + (1 -l 2 )c 2 s 4δ (g 2 oυ)(t) ≤ λδl 2 a 02 a 2 (υ(t), υ(t)) + λδl 1 a 01 a 1 (u(t), u(t)) + (1 -l 2 )c 2 s 4δ (g 2 oυ)(t). (161) 
Since g 1 , g 2 are positive, continuous and g 1 (0) > 0, g 2 (0) > 0 for any t 0 , we have

t 0 g 1 (s)dσ ≥ t 0 0 g 1 (σ)dσ = g 10 , ∀t ≥ t 0 , (162) 
t 0 g 2 (σ)dσ ≥ t 0 0 g 2 (σ)dσ = g 20 , ∀t ≥ t 0 , (163) 
then we use (162), (163) to get

Ω u t t 0 g 1 (t -σ)(u(t) -u(σ))dσdx - t 0 g 1 (σ)dσ Ω u 2 t dx ≤ β u t 2 2 + g 1 (0)c 2 s 4β (-g 1 ou)(t) -g 10 u t 2 2 , (164) 
Ω υ t t 0 g 2 (t -σ)(υ(t) -υ(σ))dσdx - t 0 g 2 (σ)dσ Ω υ 2 t dx ≤ β υ t 2 2 + g 2 (0)c 2 s 4β (-g 2 oυ)(t) -g 20 υ t 2 2 . (165) 
From a lemma 4.1 with γ = 0, we have, for δ > 0, (170) Theorem 4.1. Let (u 0 , , υ 0 ) ∈ (H 1 0 (Ω) ∩ H 2 (Ω)) 2 , (u 1 , υ 1 ) ∈ (H 1 0 (Ω)) 2 be given. Assume that (A 0 ) -(A 3 ) hold. Then, for each t 0 > 0, there exist strictly positive constants K and α such that the solution of [START_REF] Nicaise | Exponential stability of the wave equation with boundary time-varying delay[END_REF] 

- Ω µ 1 u t t 0 g 1 (t -σ)(u(t) -u(s))dσdx ≤ µ 1 u t 2 2 + µ 1 (1 -l 1 ) 2 c 2 s (g 1 ou)(t), (166) 
At this point, we choose M so large such that

η 1 = a 1 M -1 + µ 1 4β -c + g 10 -µ 1 -β > 0, η 2 = a 2 M -1 + µ 3 4β -c + g 20 -µ 3 -β > 0, η 3 = M 2 - g 1 (0)c 2 s 4β > 0, η 4 = M 2 - g 2 (0)c 2 s 4β > 0.
Then we choose sufficiently small such that (178)

η
This completes the proof.

Remark 4.1. We illustrate the energy decay rate given by Theorem 3.2 through the following examples which are introduced in [START_REF] Wu | On decay and blow up of solutions for a system of nonlinear wave equations[END_REF][START_REF] Wu | General decay of solutions for a nonlinear system of viscoelastic wave equations with degenerate damping and source terms[END_REF].

1. If g 1 (t) = a 1 e -b 1 (1+t) ν 1 , g 2 (t) = a 2 (1+t) ν 2 , for a i > 0 and ν i > 0, then ζ 1 (t) = b 1 ν 1 (1 + t) ν 1 -1 and ζ 2 (t) = ν 2 1+t satisfy the condition [START_REF] Said-Houari | Global nonexistence of a positive initial energy solutions of a system of nonlinear wave equation with dumping and source terms[END_REF]. Thus (178) gives the estimate E(t) ≤ K(1 + t) -α 2. If g 1 (t) = a 1 e -(1+t) ν 1 , g 2 (t) = a 2 e -(1+t) ν 2 for a i , ν i > 0(i = 1, 2), then ζ i (t) = ν i (1+t) min(0,ν i -1) satisfies the condition [START_REF] Said-Houari | Global nonexistence of a positive initial energy solutions of a system of nonlinear wave equation with dumping and source terms[END_REF]. Thus (178) gives the estimate E(t) ≤ Ke -α(1+t) min(1,ν 1 ,ν 2 )

  , Holder,Young's inequalities to get

	Ω	u t udx ≤	βc 2 s a 01	a 1 (u(t), u(t)) +	1 4β	u t	2 2 ,	(151)
	Ω	υ t υdx ≤	βc 2 s a 02	a 2 (υ(t), υ(t)) +	1 4β	υ t	2 2 ,	

  Proof: Taking derivative of (130 and using the lemmas ??,4.5,4.6 we infer

	dL(t) dt	≤ -a 1 M -1 +	µ 1 4β	-c + g 10 -µ 1 -β u t	2 2
		-a 2 M -1 +	µ 3 4β	-c + g 20 -µ 3 -β υ t	2 2
		+	M 2	-	g 1 (0)c 2 s 4β	(g 1 ou)(t) +	M 2	-	g 2 (0)c 2 s 4β	(g 2 oυ)(t)
		-	a 11 β a 01	(1 + l 2 1 ) -	β a 01	-	2λδ a 01	-µ 1 1 +	2βc 2 s a 01	+ l 1 a 1 (u(t), u(t))
		-	a 22 β a 01	(1 + l 2 2 ) -	β a 02	-	2λδ a 02	-µ 3 1 +	2βc 2 s a 02	+ l 2 a 2 (υ(t), υ(t))
		+ (1 -l 1 )	1 a 01 β	1 4	+ 2βa 11 +	N 4	+	4µ	+ 2	c 2 s 4δ	+ (1 -l 1 )µ 1 (g 1 • u)(t)
		+ (1 -l 2 )	1 a 02 β	1 4	+ 2βa 22 +	N 4	+	4µ	+ 2	c 2 s 4δ	+ (1 -l 2 )µ 3 (g 2 • υ)(t)
		-(Ma 3 + µ 1 ) -			1 4β	τ 2 τ 1	µ 2 (s)ds z 1 (x, 1, s, t) 2 2 -(p + 1)
										1 4β	τ 2 τ 1	µ 4 (s)ds z 2 (x, 1, s, t) 2 2
		-γ 0	Ω	0	1	τ 2 τ 1	s|µ 2 (s)|z 2 1 (x, k 1 , s, t)dxdk 1 ds
		-γ 1	Ω	0	1	τ 2 τ 1	s|µ 4 (s)|z 2 2 (x, k
											satisfies
									E(t) ≤ Ke	-α	t t 0	ζ(s)ds , f or t ≥ t 0 .	(171)

Ω F(u(t), υ(t))dx -(Ma 4 + α 1 ) -2 , s, t)dxdk 2 ds.

  (t), υ(t))dxη 5 a 1 (u(t), u(t)) -η 6 a 2 (υ(t), υ(t))+ η 7 (g 1 • u)(t) + η 8 (g 2 • υ)(t) -η 9 14 E(t) + η 15 (g 1 • u)(t) + g 2 • υ)(t)) , ∀t ≥ t 0 ,(174)where η i , i = 5, 6, 7.. are some positive constants. Multiplying (174) by ζ = min{ζ 1 , ζ 2 } and exploiting (A 0 ), we get, for all t ≥ t 0ζ(t)L (t) ≤ -η 14 ζ(t)E(t) + ζ(t)η 14 ((g 1 • u)(t) + g 2 • υ)(t)) .Since g 1 (t) ≤ -ζ 1 (t)g 1 (t) and g 2 (t) ≤ -ζ 2 (t)g 2 (t) and using the fact that

	and (144) remains valid. Hence for all t ≥ t 0 , we arrive at
	dL(t) dt	≤ -η 1 u t	2 2 -η 2 υ t	2 2 -η 3 (g 1 ou)(t) + η 4 (g 2 oυ)(t)
		-(p + 1)							
											τ 2 τ 1	µ 2 (s) z 1 (x, 1, s, t) 2 2 ds -η 10	τ 2 τ 1	2 ds µ 4 (s) z 2 (x, 1, s, t) 2	(173)
		-γ 0	Ω	0	1	τ 2 τ 1	s|µ 2 (s)|z 2 1 (x, k 1 , s, t)dxdk 1 ds -γ 1	Ω	0	1	τ 2 τ 1	s|µ 4 (s)|z 2 2 (x, k 2 , s, t)dxdk 2 ds.
	which yields									
							dL(t) dt	≤ -η -α	t t 0	ζ(s)ds .	(177)
	Then , the equivalent relation between χ(t) and E(t) yields
											E(t) ≤ Ke -α	t t 0	ζ(s)ds .
						5 =	a 11 β a 01	(1 + l 2 1 ) -	β a 01	-	2λδ a 01	-µ 1 1 +	2βc 2 s a 01	+ l 1 > 0,
						η 6 =	a 22 β a 01	(1 + l 2 2 ) -	β a 02	-	2λδ a 02	-µ 3 1 +	2βc 2 s a 02	+ l 2 > 0,

Ω F(u-(g 1 • u(t) + (g 2 • υ(t)) ≤ -2E (t).

By (33), we get

ζ(t)L (t) ≤ -η 14 ζ(t)E(t) -η 15 g 1 • u)(t) + g 2 • υ)(t) ≤ -η 14 ζ(t)E(t) -2η 15 E (t), ∀ t ≥ t 0 .

(175)

Define χ(t) = ζ(t)L(t) + 2η 15 E(t), which is equivalent to E(t) and ζ (t) ≤ 0 ∀t ≥ 0, we obtain

χ(t) (t) ≤ ζ (t)L(t) -η 14 ζ(t)E(t) -η 14 ζ(t)E(t) ≤ -αζ(t)E(t), ∀ t ≥ t 0 .

(176)

Integrating the last inequality over (t 0 , t), we conclude that χ(t)(t) ≤ χ(0)e

Replacing (63)-(66) in (62), after choosing small enough and using Gronwall's lemma, we obtain u n tt (t) 2 2 + υ n tt (t) 2 2 + a 01 ∇u n t (t) 2 2 + a 02 ∇υ n t (t) 2 2

Where M is some positive constant ∀ t ∈ R + therefore, from (44), ( 45), (67), we conclude that

Applying Dunford-Pettis theorem, we deduce from (68)-( 79) that there exists a subsequence (u n (t), z n 1 (t)), (υ n (t), z n 2 (t)) such that

z n 1t (x, 1, s, t) → ψ 1 weakly star in L 2 (Ω × (τ 1 , τ 2 ) × (0, 1)), (92)

Further, by Aubin's lemma [START_REF] Lions | Quelques méthodes de résolution des problémes aux limites non linéaires[END_REF], it follows from (80)-( 93) that there exists a subsequence (u n (t), υ n (t)) still represented by the same notation, such that u n → u strongly in L 2 (0, T ; L 2 (Ω)),

3. If g 1 (t) = a 1 e -(ln(1+t)) ν 1 , g 2 (t) = a 2 e -(ln(1+t)) ν 2 for a i > 0 and ν i > 1(i = 1, 2), then ζ i (t) = ν i (ln(1+t)) ν i -1 1+t (i = 1, 2) satisfies the condition [START_REF] Said-Houari | Global nonexistence of a positive initial energy solutions of a system of nonlinear wave equation with dumping and source terms[END_REF] . Thus (178) gives the estimate E(t) ≤ Ke -α(ln(1+t)) min(ν 1 ,ν 2 )