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Abstract- Many fascinating astrophysical
phenomena can be simulated insufficiently by
standard numerical schemes for the compressible
hydrodynamics equations. In the present work,
a high performant 2D hydrodynamical code
has been developed. The model is designed
for the planetary formation that consists of
momentum, continuity and energy equations.
Since the two-phase model seems to be hardly
executed, we will show in a simplified form, the
implementation of this model in one-phase. It
is applied to the Solar System that such stars
can form planets. The finite volume method
(FVM) is used in this model. We aim to develop
a first-order well-balanced scheme for the Euler
equations in the the radial direction, combined
with second-order centered flux following the
radial direction. This conception is devoted to
balance the fluxes, and guarantee hydrostatic
equilibrium preserving. Then the model is used
on simplified examples in order to show its ca-
pability to maintain steady-state solutions with
a good precision. Additionally, we demonstrate
the performance of the numerical code through
simulations. In particularly, the time evolution
of gas orbited around the star, and some proper-
ties of the Rossby wave instability are analyzed.
The resulting scheme shows consequently that
this model is robust and simple enough to be
easily implemented.

Keywords- Hydrodynamics; protoplanetary
disks; finite volume scheme.

I. Introduction

The Planetesimal formation is a complex problem due
to great incomprehension process, in where stars of

the Solar System form planets. Until today, this is still
a matter of debate, because it may eventually give birth
to planets in certain variety of conditions that are not
very well known yet. The first planets observed outside
the Solar System, indicated that planetesimal formation
is also possible around massive stars. Stars, like our
Sun, takes approximately 1 million years to form, with
a protoplanetary disk that will evolve into a planetary
system takes from 10 to 100 million years to form. Many
observations show this ample evidence. In particularly,
the paper [1] shows the detection of two of the most
eccentric known planets. In addition, Wang et al. (2006)
investigate in [2] fallback disks around young neutron
stars.

The Planet formation is possibly occured in the disks
around young stars. It is happened in the Solar System
where it is considered as a natural result of star for-
mation. Many stars, however, is constitued in multiple
stellar system, where the existence of a close neighbour
could influence the construction of the disk. The au-
thors investigate in [3] the interaction between particles
resulting in star system with different gaseous disks. It
has been difficult to show this due to the lack of res-
olution (interferometric observations). It is concluded
that the presence of neighbour perhaps interferes with
the creation of planets.

Our study was interested by authors of paper [4], who
investigated the evolution of the Rossby wave instabil-
ity in thin disks using hydrodynamic simulations. They
based on the knowledge from the linear theory analysis.
They found that this wave instability is robust, purely
hydrodynamic mechanism Thus, understanding its appli-
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cations in many astrophysical topics is very important.
Here, we report on the results of new 2D simulations of
unstable protoplanetary disk which is extended from 5
to 10 AU. Noticing that each astronomical unit 1 AU is
equivalent to 1.5× 1011 meters, i.e. 1AU = 1.5× 1011m.
They studied the keplerian rotation in the Solar System,
in where each solar mass star is shown with its own point.

The numerical methods are important in order to
study a lot of problems coming from a wide range of
domains, such as astrophysical fluid dynamics. Each
field needs algorithms, and we usually look for developing
them efficiently. Developing robust algorithms implies its
progress. This article investigates a new numerical code
for the Planetesimal formation. This code models the
flow of particles in disks with refined mesh. Here, it will
be comfortably extensible from bidimensional space to
three-dimensional one. It combines Godunov method for
evaluating the radial flux and the azimuthal flux which
is approached by a cell-centred scheme.

Well-balanced finite-volume methods, which preserve
a certain class of steady states are explored in many
works [29, 30, 31, 23]. In this paper, we propose a new
class of scheme based on the simplicity and construc-
tions criterions. In order to manage easily the numerical
scheme in bidimensional space, our framework consists in
balancing the fluxes in each direction. By way of expla-
nation, the main idea is to employ radial numerical flux
approached by the Riemann problem solutions with well-
balanced scheme. It induces a conservative flux in the
following direction. Next, adjoining an azimuthal flux
which is computed by cell-centered scheme. The contri-
bution of this work, is to equilibrate flux component in
each direction, and consequently in both diretions with-
out much complications.

In this paper, we are motivated in the creation of
2D/3D vortices and in their evolution over time scale.
This paper is structured as follows. In section III.,
we compactly characterize the Euler and continuity
equations for the motion of gas then take the explicit
form. Next, we focus on detailing the used numerical
method, with giving the full discretization of the
physical domain. These details are found in section
IV. that are shared in three subsections. We describe
in first subsection A. the 2D cylindrical domain where
we integrate these equations over it. The continuous
spatial coordinates (r, θ) are discretized into a finite size
(nr, nθ) in each direction, respectively. It is followed by
the initial conditions presented in second subsection B..
The concept key of the used finite volume scheme is to
conserve variables and quantities over control volume.
We introduce these properties in third subsection C..
Next, in section V., we test the performance of the code
with simulating the progression of a protoplanetary
disk in time. Section VI. deals with stability of the
planet formation. We particularly check in this step
the unsteady state with perturbing the disk. Finally,
section VII. focuses on schematics of the 3D numerical
scheme to model the toroidal domain.

II. Modeling a Keplerian flow in two-phase

This section is devoted to examining the formation of
planets in a Keplerian disk. We then detail this study
in the presence of two-phase. We discuss here the tech-
nical details of the modeling the equilibrium over the
Keplerian disc. This modeling is presented in Fig. 1.
The numerical simulation of two-phase flow is the object
of great attention from researchers. For this reason, we
talk about it over this section, but we present numerical
results showing only a homogeneous single-phase model.
Thus, the originality of this work is to present it in a
simplified form to be validated numerically, because im-
plement it directly in two-phase seems to be complicated.

Coming back to two-phase flow for following this lit-
erature. This interest is due to a lot of applications.
We model the flow by a coupled system of Euler equa-
tions. This allows to establish practical results, as well
as the study of numerical scheme. Two-phase flow is di-
vided into two categories. The first one is to separate
flow phase, which is the type of flow that occurs when
the debit of gas and liquid are low. The second one is
dispersed flow, for example the formation of air bubbles
during the agitation of a water bottle.

We define a control volume by a delimited domain of
each cell in order to follow the evolution of quantities
which is averaged over it. This Eulerian approach allows
to optimize the computation time by taking into account
the fact that the dispersed phase affects the gas phase.
Consequently, for modeling two phases with using the
control volume, each these two volumes are separated by
an interface. It is through this interface that there has
been an interaction between these two phases.

•
Interface

V olume of particles

vp, ρp, up, pp

V olume of gas

vg, ρg, ug, pg

Fig. 1: Modeling of two-phase flow.

Assuming that the disk is at hydrostatic equilibrium
along the z-axis, which occurs if the movements along
this axis are subsonic. The equilibrium hydrostatic equa-
tion involving the pressure p is given by:

−−−−−→
grad(p) = −ρ.

−−−−−→
grad(Φ), (1)

where Φ is the gravitational potential. If r ∈ [rmin, rmax],
then the effect of the gravitational field component com-
ing from the mass of disk (self-gravitation) is neglected.
This potential Φ is then written as: Φ = −GMD , where
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D =
√
r2 + z2 is the distance from the considered point

of system center. Here, M is the total mass of dust
grains falling into the Sun, D is its radius in which r is
the radius in the circular orbit and G is the gravitational
constant. Consequently, Φ can be determined over the
z-axis by the following equality:

1

ρ

∂p

∂z
=

∂

∂z

(
GM√
r2 + z2

)
. (2)

Assuming that the orbits are circular and obey Kepler’s
laws. If the disk is thin z2 � r2, we get:

1

ρ

∂p

∂z
=

∂

∂z

GM

r

(
1− z2

2r2

)
,

= −GM
r3

z,

= −Ω2z,

(3)

where Ω means the angular velocity which is given by:

Ω =

√
GM

r3
. (4)

The equilibrium over the Keplerian disc allows to give
the velocity v in the circular motion as:

v =

√
GM

r
. (5)

The solid particles perform quasi-Keplerian orbits in
the plane of the disc, whereas they perform oscillations
around the middle equatorial plane in a perpendicular
direction at the plane of the disk.

III. Euler equations in one/two-phase

The Euler equations [5] express the conservation of
three quantities that are the mass, momentum and en-
ergy. This conservation is viewed locally as an applica-
tion of three densities. The first one is velocity shared
into two components which are the radial velocity u and
the azimuthal velocity v. Noticing that the kinetic en-
ergy k is the half sum of components velocity squared,

i.e. k = u2+v2

2 . The second one is the pressure denoted
by p. The last one is the internal energy E. Adding the
kinetic energy k to the internal one E, gives the total
energy e. Let us consider initially an ideal fluid. For
polytropic gas law, with γ > 1, energy, pressure and
temperature are given by the following relations:

e = k + E,
p = (γ − 1)ρE,
T = µ

kb
p
ρ .

(6)

Denoting by w, the vector of the conservative variables.
The vector w components in cylindrical coordinates are
given by:

w =


ρ
ρu
ρv
ρe

 .

The conservation laws involving the cartesian coordi-
nates are written in a one-dimensional space:

∂tw +∇.F (w) = Q(w). (7)

The standard cartesian coordinates (x, y) are given in
term of cylindrical coordinates r and θ:

x = r. cos(θ),
y = r. sin(θ),
r2 = x2 + y2,
tan(θ) = y

x .

The divergence term ∇.F in cylindrical coordinates is
defined as:

∇.F (w) =
∂F

∂x
+
∂F

∂y
. (8)

The partial derivatives of function F with respect to
cartesian variables are:{ ∂F

∂x = ∂F
∂r ×

∂r
∂x ,

∂F
∂y = ∂F

∂r ×
∂r
∂y .

From this, the divergence term ∇.F is:

∇.F (w) =
1

r

∂rF (w)

∂r
. (9)

The Euler equation is expressed in the radial direction:

∂w

∂t
+

1

r

∂rF (w)

∂r
= Q(w). (10)

The extension of equation (10) to bidimensional cylin-
drical coordinates is:

∂w

∂t
+

1

r

∂rF (w)

∂r
+

1

r

∂G(w)

∂θ
= Q(w). (11)

The vector w is written as an application:

w :

∣∣∣∣ [0,∞[×R?
+ × [0, 2π] −→ R3

(t, r, θ) 7−→ w(t, r, θ).

The vectors field F and G present respectively the fluxes
in the radial and azimuthal directions, defined by the
following components:

F (w) =


ρu

ρu2 + p
ρuv

(ρe+ p)u

 ,

and

G(w) =


ρv
ρuv

ρv2 + p
(ρe+ p)v

 ,

and where the source term is defined as:
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Q(w) =


0

ρv2

r
− ρGM

r2
+
p

r
+ Fr

−ρuv
r

+ Fθ

−ρuGM
r2

 .

In which Fr and Fθ, stand respectively the friction forces
in the radial and azimuthal direction, exerted by the gas
on the particles per volume unit.

Now, we will determine the explicit analytic represen-
tation of the steady-state solutions of equation (10). In-
deed, there are two ways to give them. The first one con-
sists to give the stationary solutions in the radial direc-
tion independently in the azimuthal one. We check these
solutions when the radial velocity is null, i.e. ust = 0.
Formally,

∂rp

∂r
= ρv2 − ρGM

r
+ p. (12)

Remarking that equation (12) states the hydrostatic
equilibrium expressed in cartesian coordinates in section
II.. Assuming that temperature Tst and density ρst are
only given in power of the radius r:

Tst = cT .r
−α, ρst = cρ.r

−β . (13)

In which, cT and cρ are the real constants. Accord-
ing to the kinetic theory, the state law of a perfect gas
(monoatomic) is written as ρ = nM

NA , where n andM de-
sign respectively the amount of molecules per unit vol-
ume and the molar mass. Then, the pressure pst is a
linear function of product term Tstρst:

pst =
kB
µ
Tstρst. (14)

Injecting the expression of ρ and Tst given by (13) in
equality (14), we get:

pst =
cT cρkB
µ

r−φ, (15)

where φ is:

φ = α+ β. (16)

Multiplying the stationary pressure pst resulting from
(15) by r. Then, taking the derivative again with re-
spect to the same variable. Next, the obtained variable
is deducted from this pressure pst to give:

∂rpst
∂r

− pst = −φpst. (17)

Equality (17) is coupled with equation (12) to yield the
stationary azimuthal velocity vst in term of radius r:

vst =

√
GM

r
− φcT kb

µ
r−α. (18)

The derivative of the azimuthal velocity vst with respect
to r:

∂vst
∂r

=
−GM

r
+ φcT kbα

µ r−α

2r

√
GM

r
− φcT kb

µ r−α
. (19)

Describing the behavior of velocity vst in term of the vari-
able r. For that, if the power α is supposed vary strictly
between the inferior value 0 and the superior value 1, i.e.
0 < α < 1. Then, this velocity vst is strictly decreasing,
expecting to take the maximum velocity at rmin, and the
minimum velocity at rmax. Formally,

√
GM

rmax
− φcT kb

µrαmax

< vst <

√
GM

rmin
− φcT kb

µrαmin

. (20)

In what follows, we describe the basic equations of a flow
of gas and particles around a star. The protoplanetary
disk is detailed in two phase flow, with presence of these
particles. Treating the two-phase flows consists in solv-
ing simultaneously two conservation equations system.
The authors in [6, 7] deal with averaging techniques to
solve them, even in reality, it is complicated to get nu-
merically solutions. Noticing that we have 9 classical
equations, much than some existing models described in
[8, 9]. In order to simplify this model, we neglect the
viscosity effect, and thermal diffusion. An other assump-
tion is made, in the sense that solid components effect no
pressure on gas. These terms are not involved in the gov-
erning equations of this model. The vector of conserved
variables w, tensor fluxes F and G are defined as:

w =



ρg
ρug
ρvg
ρeg
ρp
ρup
ρvp
ρep
Np


, F (w) =



ρug
ρu2

g + p
ρugvg

(ρeg + p)ug
ρup
ρu2

p

ρupvp
ρepup
Npup


,

G(w) =



ρvg
ρugvg
ρv2
g + p

(ρeg + p)vg
ρvp
ρupvp
ρv2
p

ρepvp
Npvp


.

(21)

Here, the notations are classical as previously, simplify-
ing them, g and p for labeling the gas and solid phase,
respectively. In which, ρg, Tg, ug, vg, stand for den-
sity, temperature, and two-components velocity stating
the single phase, ρp, Tp up, vp stand for density, tem-
perature, and two-components velocity stating the solid
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phase. The radius rp is necessary to determine inter-
actions between phases. The pressure p is common for
the two phases. Indeed, we impose the same pressure p
avoiding the contact discontinuity between gas and solid
particles. These components are shared into two groups.
The first one is related to equations for gas, constituted
of the four first components. The second one is related
to the dispersed phase, that components are from 5 to
8. The last equation solves Np the number of particles
per unit volume. The source term Q depends on heat
transfer qr,θ that is given by:

Q(w) =



0
ρv2
g

r
− ρGM

r2
+
p

r
+ Fr

−ρugvg
r

+ Fθ

−ρug
GM

r2
+ Frup + Fθvp + qr,θ

0
ρv2
p

r
− ρGM

r2
+
p

r
− Fr

−ρupvp
r
− Fθ

−qr,θ
0



.

The presence of friction forces Fr and Fθ in source Q
proves that gas and solid particles are well coupled. The
eight equation model for two phase flow problems are
not enough to solve the system. Indeed, we have 10
unknowns: ρg, Tg, ug, vg, ρp, Tp up, vp, rp, p. Two
equations are necessary to close this system. The first
one is obtained from the variable Np. The second one
describes the state law of a perfect gas. In the sequel, in
two phase model, a small relative velocity difference is
expected between gas and particles while they are couple.

IV. Numerical scheme

A. Computational domain
The computational domain can be subdivided into

a finite number of cells. These cells cover entirely the
computational domain and provide a good geometrical
approximation of the flow. We studied the rotation of
gas and particles around the star in a ring. This ring is
confined between an inner zone of radius rin = 5AU, and
an outer zone in which it is delimited by radius rout =
10AU. We discretize the domain on an annular grid. As
a consequence, the ring is divided into nr and nθ cells,
respectively for the radial and azimuthal directions. The
spatial distribution of cell is defined by the radial step
∆r and the angular step ∆θ that given by:{

∆r =
rout−rin

nr
,

∆θ = 2π
nθ
.

(22)

The time-space complexity of the cell is described by
set of couple (ri, θj), where indexes i and j mean theirs

10AU

5AU

Fig. 2: Computational domain.

•

•

• •

•

•

ri

θj

•
ri − ∆r

2 ri + ∆r
2

θj − ∆θ
2

θj + ∆θ
2

Fig. 3: Cylindrical cell.

labels according respectively to the radial and azimuthal
directions. Each cell (ri, θj) is configurated as follows:{

ri = rin + (i− 1
2 )∆r,

θj = (j − 1
2 )∆θ.

(23)

The cell (ri, θj) is illustrated in Fig. 3. This cell is
bounded in the radial direction between two values ri −
∆r
2 and ri+

∆r
2 , while in the azimuthal direction, it varies

from θj − ∆θ
2 to θj + ∆θ

2 . The average values of the
quantities are stored for each cell with using finite volume
method.

The aim here is to define ghost cells, called also ghost
nodes, at every point in our domain. These ghost cells
are used in our method framework in order to build effi-
cient numerical scheme which can be extended easily to
multidimensional space and different time integration.
These ghost cells provide the well-posed boundary con-
ditions for the conservative equations form (11). We
present them in Fig. 4 for each cell Ji,j defined by:

Ji,j =
[
ri−1/2, ri+1/2

]
×
[
θj−1/2, θj+1/2

]
. (24)

The option of suitable boundary conditions at ring bor-
der stays challenging. Particularly, in the radial direc-
tion. These boundary conditions are extrapolated in or-
der to connect with the rest of the disk. The two in-
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ner cells in the computational domain (i = 3, 4) are ex-
trapolated to determine the limits inside the ghost cells
(i = 0, 1). This choice is justified to provide small nu-
merical fluctuations.


ρ0,j = ρ4,j

(
r0
r4

)−3/2

, ρ1,j = ρ3,j

(
r1
r3

)−3/2

,

p0,j = p4,j

(
r0
r4

)−2

, p1,j = p3,j

(
r1
r3

)−2

.

(25)

• •• • • • •

• •• • • • •

•

•

•

•

•

•

•

•

•

•

•

•

Fig. 4: Ghost cells.

Here, the number of ghost cells is exactly two, allow-
ing to perform numerical simulations. Similarly, among
the state variables, density and pressure in the outer
ghost cells (i = nr, nr+1) are obtained as well as for inner
ghost cells. Besides of this, we impose periodic boundary
conditions in the azimuthal direction. On others words,
the variables are identical between 0 and 2π:

w(r, 0) = w(r, 2π). (26)

They are not active, which means that the physical quan-
tities inside these cells do not evolve according to the
conservation equations. Indeed, they are determined in
the way to close stably the domain for the used model.
Otherwise, they can also evolve over time. The principal
geometrical data to be known is the surface Si,j defined
by the angular variation:

Si,j = ri∆θ∆r. (27)

The surface vectors allow to determine the radial and
the azimuthal flux, which are related to each of the faces
of the considered cell. We express the lengths of each
facet presented in Fig. 5 as follows:

~li−1/2,j = −ri−1/2∆θ ~er,
~li+1/2,j = −ri+1/2∆θ ~er,
~l′i,j−1/2 = −∆r ~eθ,
~l′i,j+1/2 = ∆r ~eθ.

(28)

B. Initial conditions
The purpose of this subsection is to provide initial

conditions that is an essential part of conceptualizing

~l′i,j+1/2

~l′i,j−1/2

~li+1/2,j

~li−1/2,j

Fig. 5: The surface vectors.

and modeling the flow of particles in two phase (mixing
gas and solid particles) over planetary disks. The speci-
fication of appropriate initial conditions is important in
this topic because is also the part most subject to seri-
ous error by hydrologists. We explain here the concept
of initial conditions and we discuss some common pitfalls
in the model. In order to evolve these densities of the
surface disk, we must choose an initial profile. This pro-
file is previously introduced in [10] by Hayashi (1985). If
Dinit presents one of these densities, it can be written
generally in the form of a power law as follows:

Dinit = D0

(
r

r0

)−d
. (29)

The density profile is calculated from the mass of plan-
ets. The amount of solid contained in the planets is
distributed in rings, and then from a gas report dust.
The density profile of the gas is computed by the power
law (29). Otherwise, we suppose that the mixture of hy-
drogen molecules and helium in small quantity gives the
final gas particle. These initial conditions are given as
follows: 

ρinit = ρ0

(
r
r0

)−3/2

,

Tinit = T0( rr0 )−1/2,

pinit = p0( rr0 )−2,

uinit = 0,

vinit =
√

GM
r0

(r0/r)− 2pρ ,

(30)

where, 
ρ0 = 1.4.10−6Kg.m−3,
T0 = 280K,
p0 = 1.42Pa,
r0 = 1AU.

(31)

C. Numerical method in one-phase
The conservation laws defined by equation in (11)

related to the one-phase model, is written in following
form:

∂tw +∇.f(w) = Q(w). (32)
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The finite volume method is the mechanism for dis-
cretizing a partial differential equations in the formalism
of compact equations. The values are computed at
discrete zone on the grid. In this computational fluid
dynamics package, the average of the conserved variables
is stored alongside the two radial and azimuth meshes
defining a control volume. In this method, volume
integrals in the equation (32) containing a divergence
variable, are becoming surface integrals, using the
Green-Ostrogradski Theorem. Then, the terms involved
in this equation are then presented as fluxes at the
surfaces of each control volume. Now, we will explain
why the used numerical mehod must be conservative.
Indeed, the entering flux is equal to the leaving one in
a given volume in each direction. Another advantage
of this method is that it is clearly adjusted to allow
meshing for unstructured grid. Evaluation based on the
integral, rather than the differential, form of equation
(11) have very wide advantages for flows that contain
impacts and discontinuities [11]. Integration of equation
(32) over the control volume Ωi,j delimited by the
surface Si,j gives:

∫
Ωi,j

(
∂w

∂t
+∇.f(w)

)
dΩ =

∫
Ωi,j

QdΩ. (33)

Assuming that wi,j is the average value on each control
volume Ωi,j , and using Gauss’s theorem, the equation
(33) is written:

∂w

∂t
Ωi,j +

∫
∂Ωi,j

f(w)dΩ =

∫
Ωi,j

QdΩ. (34)

The conserved variable w, and the source term Q are
averaged over control volume Ωi,j :

wi,j =
1

Ωi,j

∫
Ωi,j

wdΩ,

Qi,j =
1

Ωi,j

∫
Ωi,j

QdΩ.
(35)

We start discretizing the source term on each grid Ji,j
that is approximated between two interfaces as:

∫ r
i+1

2

r
i− 1

2

Q(w) dr =


0

ri+1/2p
L
i+ 1

2

− pR
i+ 1

2

ri− 1
2

−ρiuivi∆r

−ρiui
GM

ri
∆r

 . (36)

Noticing that pi is a regular function depending on the
variable r, we use an order 1 Taylor expansion of pressure
term given in equality (36). Then, we obtain:

ri+ 1
2
pLi+ 1

2
= ripi +

∂rpi
∂r

∆r

2
+O(∆r2), (37)

and,

pRi+ 1
2
ri− 1

2
= ripi −

∂rpi
∂r

∆r

2
+O(∆r2). (38)

The difference between these two equalities (37) and (38)
gives:

ri+ 1
2
pLi+ 1

2
− pRi+ 1

2
ri− 1

2
= ∆r

∂rpi
∂r

. (39)

The fluxes are computed on each of the faces, the radial
flux F according to the components l, and the azimuthal
flux G according to the components l′. The discrete-time
linear system is written in following form:

∂wi,jΩi,j
∂t

+
∑
l

~F .~S +
∑
l′

~G.~S = Qi,jΩi,j . (40)

There are N uniform time steps ∆t. Noticing that the
time step may vary at each increment time. We refer the
reader to equality (52) in which it satisfies an estimate of
the CFL stability condition. The initial time steps ∆t0 is
defined as the difference between the final time tf when
the computation is stopped and initial time t0 when the
computation begins, divided by the number N , i.e.

∆t0 =
tf − t0
N

(41)

Now, coming back to integration of both sides of equal-
ity (40) with repect to variable time. The variation of
quantity wi,j can be determined at each time step ∆t:

∆wi,j = ∆t

(
Qi,j −

∑
l

~F .~S +
∑
l′

~G.~S

Si,j

)
. (42)

An other discretization form of equation (42) is given by
the following equality:

wn+1
i,j = wni,j + ∆t

(
Qni,j −

li+ 1
2 ,j
Fn
i+ 1

2 ,j
− li− 1

2 ,j
Fn
i− 1

2 ,j

Sni,j

)

+ ∆t

(
Gn
i,j+ 1

2

l′
i,j+ 1

2

−Gn
i,j− 1

2

l′
i,j− 1

2

Sni,j

)
.

(43)

Let us explain how the flux terms involved in equality
(43) are evaluated on the interface (ri+ 1

2
, θj) that sepa-

rates two cells Ji−1,j and Ji,j . According to the definition
(28), we formally have:

li+ 1
2 ,j
Fni+ 1

2 ,j
= ri+1/2∆θH(wLi+ 1

2 ,j
, wRi+ 1

2 ,j
). (44)

This evaluation depends on state of the neighbors wL

and wR. Here, function H means the approximated
Riemann solver, and it defines a consistent flux, i.e.
H(w,w) = F (w). This solver takes into account the
left and right states in order to interpolate variables at
the interface. For instance, we will test it for the consid-
ered Godunov method. Then, the conservative vector w
at this interface takes the same value at center:{

wL
i+ 1

2 ,j
= wi,j ,

wR
i+ 1

2 ,j
= wi+1,j .

(45)
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Consequently, the discrete conservative vectors are given
as:

wLi+ 1
2

=


ρiri+ 1

2

ui
viri+ 1

2

piri+ 1
2

 , wRi+ 1
2

=


ρi+ 1

2
ri+ 1

2

ui+1

vi+1ri+ 1
2

pi+1ri+ 1
2

 . (46)

r

θ

Fn
i− 1

2 ,j
Fn
i+ 1

2 ,j

Gn
i,j+ 1

2

Gn
i,j− 1

2

∆θ

r∆r

Fig. 6: Discretization by the numerical scheme over a
cylindrical domain.

We categorize this method as first-order, and it is con-
sisting in the projection of centered values. The equation
defined by (11) is resolved by a splitting extrapolation
method. Then, this equation (11) allows to give the fol-
lowing equivalent system:{

∂w
∂t + 1

r
∂rF (w)
∂r = Q(w),

∂w
∂t + 1

r
∂G(w)
∂r = Q(w).

(47)

The azimuthal flux G is approached by a cell-centred
scheme. In order to preserve the hyperbolic charac-
ter and to balance the bidimensional numerical scheme,
we keep the same undimensional radial flux F . As-
suming that G is twice-derivable-function over interval[
ri, θj − ∆θ

2

]
×
[
ri, θj + ∆θ

2

]
, function G is Taylor-Young

expanded in (ri, θj + ∆θ
2 ) until the order 2 to obtain:

G

(
ri, θj +

∆θ

2

)
= G(ri, θj) +

∆θ

2

(
∂G

∂θ

)

+
(∆θ)

2

8

(
∂2G

∂θ2

)
+O((∆θ)

3
),

(48)

and function G is Taylor-Young expanded in point
(ri, θj − ∆θ

2 ) until the order 2 to obtain:

G

(
ri, θj −

∆θ

2

)
= G(ri, θj)−

∆θ

2

(
∂G

∂θ

)

+
(∆θ)

2

8

(
∂2G

∂θ2

)
+O((∆θ)

3
).

(49)

Subtracting equation (48) from equation (49), we get:

Gi,j+ 1
2
−Gi,j− 1

2

∆θ
=
∂G

∂θ
+O((∆θ)

2
). (50)

The second-order discretization for the flux G is de-
fined from the upstream approximation at the interface
(ri, θj+ 1

2
) and the downstream approximation at the in-

terface (ri, θj− 1
2
) as follows:

Gi,j+ 1
2

=


ρi,j+ 1

2
vi,j+ 1

2

ρi,j+ 1
2
ui,j+ 1

2
vi,j+ 1

2

ρi,j+ 1
2
v2
i,j+ 1

2

+ pi,j+ 1
2

(ρi,j+ 1
2
ei,j+ 1

2
+ pi,j+ 1

2
)vi,j+ 1

2

 . (51)

Insisting here that first-order well-balanced scheme is
based on constructing a piecewise constant way for the
density and velocity, in which the associated cells are av-
eraged. Next, the pressure is deduced with hydrostatic
equilibrium. This contributes for the discretization nu-
merically of the radial flux F . This flux is fused directly
with the azimutal one G which is computed by equality
(51).

The Courant-Friedrichs-Lewy is a dimensionless
quantity, which is denoted shortly CFL for meaning a
fundamental restriction. It leads to the numerical solu-
tion defined by the discretization process for a quickly
convergence. This number is involved in the numerical
analysis in order to maintain a stability of the solution,
when if it existes. Considering the Euler equations (11)
in one-phase which is presented by a compressible gas. In
the low Mach number regimes, the acoustic waves influ-
ence the capturing the motion of this fluid. On the other
hand, they dont not impact loss of energy that is stays
negligible. In order to affect the efficiency of the numer-
ical method itself, the time step is based on wavespeeds
at cell centers. If the cells are too small compared with
the time step, numerical smearing may occur leading to
instability and in some cases divergence. Since time step
∆t ≤ ∆t0 depends on chosen cell Ωi,j , then it is given
by:

∆t =
CCFL

max
i,j
|ui,j + cr,θ,ni,j |
ri+1/2∆r +

max
i,j
|vi,j + cr,θ,ni,j |

∆θ

, (52)

where cr,θ,ni,j is the speed of propagation inside the cell
according to the radial and azimuthal directions. This
velocity in the two-dimensional case is defined as:

∀0 ≤ i ≤ nr, 0 ≤ j ≤ nθ, cr,θ,ni,j =

√
γpi,j
ρi,j

. (53)

The coefficient CFL is chosen from such so that the con-
dition of numerical stability is verified. The flux depend
necessarily on coefficient CFL, for the method of 1st or-
der, we take in practice CCFL ' 0.9. In what follows, we
realize one test that consists in following the behavior of
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the disc in the absence of any perturbations. The goal
of this test is to verify the stability of the flow. For that,
comparing the initial profile of each variable denoted var
(stands for density, pressure, temperature, etc) to the ob-
tained one by simulation with using a large number of
integration time. In the sequel, we only focus this com-
parison on the radial direction. That why each variable
is averaged following the azimuthal direction under this
form:

var 7→ 1

nθ

nθ∑
i=1

var(r, θi). (54)

Comparing the approached azimuthal velocity generated
by the developed numerical code to its explicit expres-
sion given by equality (18). We present these velocities
in the Fig. 7. The blue and red diagrams present the
exact azimuthal velocity and its approximation, respec-
tively. This simulation shows that the gas phase does not
give much satisfaction due to bad preservation of the sta-
tionary solution. In order to overcome these important
effects, we need to limit the time computation and refine
mesh. There is an other reason for this poor conserva-
tion. Indeed, the radial velocity does not converge to the
initial zero value. This appears clearly in the Fig. 8. The
oscillatory precision appears, near from 10−11, meaning
of something physically happens. It is concluded that
the numerical scheme does not behave correctly.

r

vst

Fig. 7: Azimuthal velocity vst.

r

ust

−2.10−11

2.10−11

Fig. 8: Radial approached velocity ust.

In order to show the applicability and performance of
the proposed well-balanced scheme. For comparison, we
present in Fig. 9 the radial velocity result obtained with
a standard (unbalanced) base scheme. It shows that the
scheme does not react well since the model reacts to

perturbations and produces significant oscillations. On
other hand, as one can see in Fig. 10, the well-balanced
scheme correctly captures the behavior of the solution.
Indeed, the geometry of the domain does not influence
the nature of the azimuthal velocity for relaxed and re-
fined meshes.

Continuing here to perform a resolution test with giv-
ing convergence results for the stated spatial resolution.
It is known that numerical simulations of one-phase flow
are always far to be predictive, particularly when consid-
ering system of Euler equations. Many reasons should be
responsible for this problem, inducted by mesh quality,
numerical scheme, etc. In order to give an answer to this
problem, we should aim to state an estimate for the rel-
ative error in some physical variable. This error states
perturbation analysis in density, pressure and internal
energy shown in Fig. 11 which is interpreted as follows.
The system is stable, with very low relative error.

Fig. 9: Exact and approached radial velocities for the
standard numerical scheme.

Fig. 10: Exact and approached azimuthal velocities be-
tween coarse mesh, i.e. (nr, nθ) = (30, 30), and refined
mesh, i.e. (nr, nθ) = (200, 200) for well-balanced scheme.
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Fig. 11: Relative uncertainty for three quantities. The
first one is the density ρ presented in left diagram, the
second one is the pressure p presented in middle diagram,
the last one is the internal energy E shown in right dia-
gram.

V. Testing the code accuracy in
two-dimensional space

We test in this section the ability of the code to con-
serve the disk in steady-state. Indeed, the rotation of
gas density around the central star stays the same over
time. Here, we show the results that regime steady-state
determine the solution in different time durations. This
solution is unchanging in continuous instants.

Fig. 12: Disk at initial
time, with scale 10−7.

Fig. 13: Disk at initial
time, with scale 10−10.

Fig. 14: Disk after 500
years, with scale 10−10.

Fig. 15: Disk after 1000
years, with scale 10−14.

In these simulations, we keep the same value of in-
ner and outer radii, introduced previously in subsection
A.. These results are performed over 1000 years for two-
dimensional space. A reasonable grid resolution are 100
cells in two space directions, i.e. nr = nθ = 100. Now,
we are checking whether the code has the necessary ac-
curacy to calculate the stationary solutions that remain
uniform over time. The 2D evolution of the density ρ is
presented in Figs. 12, 13, 14 and 15. Fig. 12 presents
that there is no fluctuations with a scale of approxima-
tion 10−7 of density ρ. However on a smaller scale than
10−7, the disturbances presented in Figs. 13, 14 and 15
begin to appear on the disk.

VI. Stability and long-term evolution

This section adresses to study the perturbation of the
vortices in the disk. In this study, we are neglecting the
various physical effects such as turbulence. Testing here
the evolution of the disc, with adding an overdensity and
an overpressure to the stationary solution. The target is
to study how the disc reacts with the presence of over-
density. The variables involved in this model are defined
by:

• (X,Y ): the cartesian reference in rotation linked to
the vortex;

• (x, y): the inertial cartesian coordinates system;

• R =
√
X2 + Y 2: the distance to the center of the

vortex;

• (r, θ): the inertial cylindrical coordinate system;

• (x0, y0): the coordinates of the vortex center in the
reference.

We recall that r is the distance from the sun to the
vortex center expressed in astronomical unit. As shown
in Fig. 16, the change reference for returning to the
initial cylindrical system (r, θ) is:

 X = r cos θ − x0,
Y = r sin θ − y0,
R2 = r2 + x2

0 + y2
0 − 2r(x0 cos θ + y0 sin θ).

y0

x0

y

x

r

X
Y

Fig. 16: Different coordinate system.
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The perturbation of the velocity in the reference (r, θ) is
written: {

∆Vr = cos θ∆VX + sin θ∆VY ,
∆Vθ = cos θ∆VY − sin θ∆VX .

On other hand, the perturbation of the velocity in the
cartesian coordinate system linked to the vortex is writ-
ten: {

∆VX = cos θ∆Vr + sin θ∆Vθ,
∆VY = cos θ∆Vθ − sin θ∆Vr.

It is convenient to use this vortex described above, be-
cause it will be simply implemented. On other word,
it does not require a mesh refinement. Noticing that a
Gaussian overdensity is not necessarily a vortex, because
a vortex turns around itself. On the contrary, overden-
sity does not. In order to test the stability of the disc, we
will add the Gaussian perturbations, which are randomly
distributed inside the disc.

Fig. 17: Disk at initial
time.

Fig. 18: Disk after 10
years.

Fig. 19: Disk after 15
years.

Fig. 20: Disk after 25
years.

The average width of this Gaussian function takes
the value 0.075 AU. It means that a small amplitude of
noise is considered. We assure that a set of vortices stays
always in the disk. We are interested to follow them in
order to know how much time they are survived. Seeing
later that they will be deformed, and disappearing after
only 3 rotations. For our numerical setup, a refine mesh
is used to get more stability precision, the grid size is
200× 200, i.e. nr = nθ = 200.

The stability of Rossby waves has been discussed by
authors Lovelace and Li [12, 13] from 1999 to 2001 in the
evolution of protoplanetary disks. In [12], the authors
investigate the stability problem of non-magnetized Ke-
plerian disks. They study particularly a linear instability
of non-axisymmetric perturbations for conditions where
the disk variables, such as pressure density has saturated
radial gradients. On other hand, the nonlinear instabil-
ity has been studied by the authors in [13]. They consid-

ered thin disks. The numerical results showing this wave
instability are the revelation for many scientists, pre-
cisely in meteorological slant. This instability makes loss
the atmospheric prevision which existes in some models.
This energy faillure is due to for the presence of the light,
contributing to the interactions between particles.

In what follows, we try to produce one of the linear
Rossby stability, that why we use Gaussian bump. Figs.
17, 18, 19 and 20 show that different evolutions of the gas
density ρ in disk. We present in Fig. 17, the initial state
of Gaussian bump distributed on disk. Inside the vortex,
the density field is given to get a Gaussian density like the
background-disk case. The vortex survived more than
3 rotations and its structure was quasi-steady with only
two days duration meaning source of numerical diffusion.

VII. Three-dimensional finite volume method

We will extend the 2D numerical code for the simu-
lation to three dimensional space by taking into account
the height in the z-axis direction. The success to build
the numerical scheme in bidimensional space allows and
ensures to be expanded to three dimensional one. The
aim of this work is to keep the stationary solutions with
a good precision. Consequently, we consider the phys-
ical domain to be a toroid around the Sun. It is suffi-
cient to add another dimension of space, relative to the
two-dimensional scheme. The radial and azimuthal dis-
cretizations will remain the same. However, the follow-
ing z-direction is discretized between two opposite values
−H and H, as it is shown in Fig. 21.

H

rint rout

Fig. 21: Computational domain in 3D.

The system of Euler equations given by (11) is extended
from bidimensional space to three-dimensional one in
cylindrical coordinates as:

∂w

∂t
+

1

r

∂rF (w)

∂r
+

1

r

∂G(w)

∂θ
+

1

r

∂H(w)

∂z
= Q(w). (55)

The configuration of the cell labeled in our three-
dimensional grid around the star is illustrated in Fig.
VII.. Since the cell is labeled (i, j, k) with the index k in
the z-direction, its position is given by: ri = rin + (i− 1

2 )∆r,
θj = (j − 1

2 )∆θ,
zk = (k − 1

2 )∆z.
(56)
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Fig. 22: Cylindrical coordinates (ri, θj , zk) in 3D.

Fig. 23: Cylindrical cell in 3D.

The discrete-time linear system of above equation is done
as in two-dimensional space (see equality (42)),

∆wi,j,k = ∆t

(
Qi,j,k −

∑
l

~F .~S +
∑
l′

~G.~S +
∑
l”

~H.~S

Vi,j,k

)
.

(57)
where l” means the length of each facet in the z-direction,
i.e. ~l”i,j,k−1/2 = −∆z ~ez, ~l”i,j,k+1/2 = ∆z ~ez, and con-
trol volume of each cell denoted by Vi,j,k, defined as
Vi,j,k = ri∆θ∆r∆z. The discrete formalism of equation
(57) involving the three indices i, j and k going through
in the height direction is described as follows:

wn+1
i,j,k = wni,j,k + ∆tQni,j,k

+ ∆t

(
−
li+ 1

2 ,j,k
Fn
i+ 1

2 ,j,k
− li− 1

2 ,j,k
Fn
i− 1

2 ,j,k

V ni,j,k

)
.

+ ∆t

(
Gn
i,j+ 1

2 ,k
l′
i,j+ 1

2 ,k
−Gn

i,j− 1
2 ,k
l′
i,j− 1

2 ,k

V ni,j,k

)

+ ∆t

(
Hn
i,j,k+ 1

2

l”i,j,k+ 1
2
−Hn

i,j,k− 1
2

l”i,j,k− 1
2

V ni,j,k

)
.

(58)

This preliminary study shows that the development of
the 3D numerical code should not present a major prob-
lem. This numerical scheme is based on the Riemann
solver problem at each interface, by determining the ap-
proached solution from left and right states. Here, we
used the centered fluxes into the azimuthal and height
directions in order to balance the scheme.

VIII. Conclusions

The proposed work is set in the protoplanetary neb-
ula before coupling solid and gas phases. This work in-
volves constructing the 2D numerical code for the plan-
etisimal formation. In summary, we have applied the
lifetime of gaz phase in a protoplanetary disk. Besides,
we have presented a specific method to construct well-
balanced scheme for the conservative Euler system. This
basic study programs the development of the 3D numer-
ical code with balancing the fluxes. The new numerical
scheme allows to better represent the steady Keplerian
flow. This accuracy is showed by the long term inte-
grations. The future part of the project to explore is
summarized by following stages:

• We will develop in a second-order well-balanced
scheme for the compressible Euler equations with
keeping the gravitational source term. This exten-
sion from first-order to the second one relies on a
pressure reconstruction with underlying hydrostatic
equilibrium. It allows many advances for a highly-
accurate numerical solutions.

• Numerical tests will be performed by comparing
the accuracy and efficiency of the new multi-slopes
methods with the first order method.
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[23] R. Käppeli, S. Mishra, ”A well-balanced finite vol-
ume scheme for the euler equations with gravitation-
the exact preservation of hydrostatic equilibrium
with arbitrary entropy stratification,” Astronomy &
Astrophysics, vol. 587, pp. A94, 2016.

[24] O. Gressel, J. P. Ramsey, C. Brinch, R. P. Nelson, N.
J. Turner, S. Bruderer, ”Global hydromagnetic simu-
lations of protoplanetary disks with stellar irradiation
and simplified thermochemistry,” The Astrophysical
Journal, vol. 896, no. 2, p.126, 2020.

[25] R. T. Tominaga, S. I. Inutsuka, S. Z. Takahashi,
”Non-linear development of secular gravitational in-
stability in protoplanetary disks,” Publications of the
Astronomical Society of Japan, vol. 70, no. 1, 2018.

[26] R. Li, A. N. Youdin, J. B. Simon, ”On the numer-
ical robustness of the streaming instability: Particle
concentration and gas dynamics in protoplanetary
disks,” The Astrophysical Journal, vol. 862, no. 1,
2018.

[27] T. G Elizarova, , A. A. Zlotnik, M. A. Istomina.
”Hydrodynamical aspects of the formation of spiral-
vortical structures in rotating gaseous disks,” Astron-
omy Reports, vol. 62, no. 1, pp. 9-18, 2018.

[28] P. Bentez-Llambay, L. Krapp, M. E. Pessah,
”Asymptotically Stable Numerical Method for Mul-
tispecies Momentum Transfer: Gas and Multifluid
Dust Test Suite and Implementation in FARGO3D,”
The Astrophysical Journal Supplement Series, vol.
241, no. 2, p.25, 2019.

[29] L. Grosheintz-Laval, R. Käppeli, ”High-order well-
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