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Application of two-dimensional finite volume method to
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Tarik Chakkour

Piaf INRA. 5 chemin de Beaulieu, 63000 Clermont-Ferrand, France.

April 23, 2019

Abstract. We investigate in this paper the development, analysis and implementation of a new nu-
merical model for the planetary formation. This model consists of momentum, continuity and energy
equations. It is applied to the Solar System that such stars can form planets. The finite volume method
(FVM) used in this model combines the advantages of high accuracy 3D code. The aim of this paper is
to analyze the time evolution of gas orbited around the star, and is to give some properties of the Rossby
wave instability. We test the numerical code through simulations.
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1 Introduction
The Planetesimal formation is a complex problem due to great incomprehension process, in where

stars of the Solar System form planets. Until today, this is still a matter of debate, because it may
eventually give birth to planets in certain variety of conditions that are not very well known yet. The
first planets observed outside the Solar System, indicated that planetesimal formation is also possible
around massive stars. Stars, like our Sun, takes approximately 1 million years to form, with a proto-
planetary disk that will evolve into a planetary system takes from 10 to 100 million years to form. Many
observations show this ample evidence. In particularly, the paper [10] shows the detection of two of the
most eccentric known planets. In addition, Wang et al. (2006) investigate in [13] fallback disks around
young neutron stars.

The Planet formation is possibly occured in the disks around young stars. It is happened in the Solar
System where it is considered as a natural result of star formation. Many stars, however, is constitued
in multiple stellar system, where the existence of a close neighbour could influence the construction of
the disk. The authors investigate in [1] the interaction between particles resulting in star system with
different gaseous disks. It has been difficult to show this due to the lack of resolution (interferometric ob-
servations). It is concluded that the presence of neighbour perhaps interferes with the creation of planets.

Our study was interested by authors of paper [11] (2003), who investigated the evolution of gravi-
tationally unstable protoplanetary gaseous disks using smoothed-particle hydrodynamics (SPH). In par-
ticularly, they have applied numerical method (Lagrangian) for simulating the fluxes of a given fluid.
First, they meshed a physical demain in order to solve hydrodynamic equations. Second, they studied
the stability of the disks with perturbing them from excessive densities. Here, we report on the results
of new 2D simulations of unstable protoplanetary disk which is extended from 5 to 10 AU. Noticing that
each astronomical unit 1 AU is equivalent to 1.5 × 1011 meters, i.e. 1AU = 1.5× 1011m. They studied
the keplerian rotation in the Solar System, in where each solar mass star is shown with its own point.

The numerical methods are important in order to study a lot of problems coming from a wide range
of domains, such as astrophysical fluid dynamics. Each field needs algorithms, and we usually look for
developing them efficiently. Developing robust algorithms implies its progress. This article investigates a
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new numerical code for the Planetesimal formation. This code models the flow of particles in disks with
refined mesh. Here, it will be comfortably extensible from bidimensional space to three-dimensional one.
It combines Godunov method for evaluating the radial flux and the azimuthal flux which is approached
by a cell-centred scheme.

In this paper, we are motivated in the creation of 2D/3D vortices and in their evolution over time
scale. This paper is structured as follows. In section 3, we compactly characterize the Euler and conti-
nuity equations for the motion of gas then take the explicit form. Next, we focus on detailing the used
numerical method, with giving the full discretization of the physical domain. These details are found in
section 4 that are shared in three subsections. We describe in first subsection 4.1 the 2D cylindrical do-
main where we integrate these equations over it. The continuous spatial coordinates (r, θ) are discretized
into a finite size (nr, nθ) in each direction, respectively. It is followed by the initial conditions presented
in second subsection 4.2. The concept key of the used finite volume scheme is to conserve variables and
quantities over control volume. We introduce these properties in third subsection 4.3. Next, in section
5, we test the performance of the code with simulating the progression of a protoplanetary disk in time.
Section 6 deals with stability of the planet formation. We particularly check in this step the unsteady
state with perturbing the disk. Finally, section 7 contains the 3D numerical scheme in order to model
the toroidal domain.

2 Modeling a Keplerian flow
This section is devoted to examining the formation of planets in a Keplerian disk. We then detail this

study in the presence of two-phase. We discuss here the technical details of the modeling the equilibrium
over the Keplerian disc. This modeling is presented in Figure 1. The numerical simulation of two-phase
flow is the object of great attention from researchers. This interest is due to a lot of applications. We
model the flow by a coupled system of Euler equations. This allows to establish practical results, as well
as the study of numerical scheme. Two-phase flow is divided into two categories. The first one is to
separate flow phase, which is the type of flow that occurs when the debit of gas and liquid are low. The
second one is dispersed flow, for example the formation of air bubbles during the agitation of a water
bottle.

We define a control volume by a delimited domain of each cell in order to follow the evolution of
quantities which is averaged over it. This Eulerian approach allows to optimize the computation time by
taking into account the fact that the dispersed phase affects the gas phase. Consequently, for modeling
two phases with using the control volume, each these two volumes are separated by an interface. It is
through this interface that there has been an interaction between these two phases.

•
Interface

V olume of particles

vp, ρp, up, pp

V olume of gas

vg, ρg, ug, pg

Figure 1: Modelization of two-phase flow.

Assuming that the disk is at hydrostatic equilibrium along the z-axis, which occurs if the movements
along this axis are subsonic. The equilibrium hydrostatic equation involving the pressure P is given by:
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−−−−−→
grad(P ) = −ρ.

−−−−−→
grad(Φ), (1)

where Φ is the gravitational potential. If r ∈ [rmin, rmax], then the effect of the gravitational field
component coming from the mass of disk (self-gravitation) is neglected. This potential Φ is then written
as: Φ = −GMD , where D =

√
r2 + z2 is the distance from the considered point of system center. Here,

M is the mass of the earth, D is the radius of the earth, r is the radius in the circular orbit and G is the
gravitational constant. Φ can be determined over the z-axis by the following equality:

1
ρ

∂P

∂z
= ∂

∂z

(
GM√
r2 + z2

)
. (2)

Assuming that the orbits are circular and obey Kepler’s laws. If the disk is thin z2 � r2, we get:

1
ρ

∂P

∂z
= ∂

∂z

GM

r

(
1− z2

2r2

)
,

= −GM
r3 z,

= −Ω2z,

(3)

where Ω means the angular velocity which is given by:

Ω =
√
GM

r3 . (4)

The equilibrium over the Keplerian disc allows to give the velocity v in the circular motion as:

v =
√
GM

r
. (5)

The solid particles perform quasi-Keplerian orbits in the plane of the disc, whereas they perform oscil-
lations around the middle equatorial plane in a perpendicular direction at the plane of the disk.

3 Euler equations
The Euler equations [2] express the conservation of three quantities that are the mass, momentum and

energy. This conservation is viewed locally as an application of three densities. The first one is velocity
shared into two components which are the radial velocity u and the azimuthal velocity v. Noticing that
the kinetic energy k is the half sum of components velocity squared, i.e. k = u2+v2

2 . The second one is
the pressure denoted by p. The last one is the internal energy E. Adding the kinetic energy k to the
internal one E, gives the total energy e. Let us consider initially an ideal fluid. For polytropic gas law,
with γ > 1, energy, pressure and temperature are given by the following relations:

e = k + E,
p = (γ − 1)ρE,
T = µ

kb
p
ρ .

(6)

Denoting by w, the vector of the conservative variables. The vector w components in cylindrical coordi-
nates are given by:

w =


ρ
ρu
ρv
ρe

 .
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The conservation laws involving the cartesian coordinates are written in a one-dimensional space:

∂tw +∇.F (w) = Q(w). (7)

The standard cartesian coordinates (x, y) are given in term of cylindrical coordinates r and θ:
x = r. cos(θ),
y = r. sin(θ),
r2 = x2 + y2,
tan(θ) = y

x .

The divergence term ∇.F in cylindrical coordinates is defined as:

∇.F (w) = ∂F

∂x
+ ∂F

∂y
. (8)

The partial derivatives of function F with respect to cartesian variables are:{ ∂F
∂x = ∂F

∂r ×
∂r
∂x ,

∂F
∂y = ∂F

∂r ×
∂r
∂y .

From this, the divergence term ∇.F is:

∇.F (w) = 1
r

∂rF (w)
∂r

. (9)

The Euler equation is expressed in the radial direction:

∂w

∂t
+ 1
r

∂rF (w)
∂r

= Q(w). (10)

The extension of equation (10) to bidimensional cylindrical coordinates is:

∂w

∂t
+ 1
r

∂rF (w)
∂r

+ 1
r

∂G(w)
∂r

= Q(w). (11)

The vector w is written as an application:

w :
∣∣∣∣ [0,∞[×R?

+ × [0, 2π] −→ R3

(t, r, θ) 7−→ w(t, r, θ).

The vectors field F and G present respectively the fluxes in the radial and azimuthal directions, defined
by the following components:

F (w) =


ρu

ρu2 + p
ρuv

(ρe+ p)u

 ,

and

G(w) =


ρv
ρuv

ρv2 + p
(ρe+ p)v

 ,

and where the source term is defined as:

Q(w) =


0

ρv2

r
− ρGM

r2 + p

r
+ Fr

−ρuv
r

+ Fθ

−ρuGM
r2

 .
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Denoting by Fθ and Fr the friction forces exerted by the gas on the particles per volume unit given by:{
Fr = 3

2
ρg.c.l
ρmatr2

d

ρd(ud − ug),
Fθ = 3

2
ρg.c.l
ρmatr2

d

ρd(vd − vg).

If there is only gas, the friction forces are nuls. Generally, we have:



ρg : gas density
ρd : particle density
c : speed of sound
ρmat : constant fixed at 3g/cm3

ug, vg : vertical and azimuthal velocities for gas
ud, vd : vertical and azimuthal velocities for particle
l : angular momentum

The angular momentum l for the solid particles satisfies the following differential equation:

∂l

∂t
+ 1
r

∂rlu

∂r
+ 1
r

∂lv

∂θ
= 0. (12)

Fr Fθ

Figure 2: Action and reaction theory for frictional forces.

Now, we will determine the explicit analytic representation of the steady-state solutions of equation (10).
There are two ways to give them. The first one consists to give the stationary solutions in the radial
direction independently in the azimuthal one. We check these solutions when the radial velocity is null,
i.e. ust = 0. Formally,

∂rp

∂r
= ρv2 − ρGM

r
+ p. (13)

We notice that equation (13) states the hydrostatic equilibrium expressed in cartesian coordiantes in
section 2. Assuming that temperature Tst and density ρst are only given in power of the radius r:

Tst = cT .r
−α, ρst = cρ.r

−β . (14)

In which, cT and cρ are the real constants. According to the kinetic theory, the state law of a perfect
gas (monoatomic) is written as ρ = nM

NA , where n presents the amount of molecules per unit volume.
Considering M the molar mass, the gas density ρ is written as: ρ = nM

NA . From this, the pressure pst is
a linear function of product term Tstρst:

pst = kb

µ
Tstρst. (15)

Injecting the expression of ρ and Tst given by (14) in equality (15), we get:

pst = cT cρkb

µ
r−φ, (16)

where φ is:

φ = α+ β. (17)

Multiplying the stationary pressure pst resulting from (16) by r. Then, taking the derivative again with
respect to the same variable. Next, the obtained variable is deducted from this pressure pst to give:
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∂rpst
∂r

− pst = −φpst. (18)

Equality (18) is coupled with equation (13) to yield the stationary azimuthal velocity vst in term of
radius r:

vst =

√
GM

r
− φcT kb

µ
r−α. (19)

The derivative of the azimuthal velocity vst with respect to r:

∂vst
∂r

=
−GM

r
+ φcT kbα

µ r−α

2r
√
GM

r
− φcT kb

µ r−α
. (20)

Describing the behavior of velocity vst in term of the variable r. For that, if the power α is supposed
vary strictly between the inferior value 0 and the superior value 1, i.e. 0 < α < 1. Then, this velocity
vst is strictly decreasing, expecting to take the maximum velocity at rmin, and the minimum velocity at
rmax. Formally, √

GM

rmax
− φcT kb

µrαmax
< vst <

√
GM

rmin
− φcT kb

µrαmin
. (21)

r

vst

Figure 3: Azimuthal velocity vst.

r

ust

−2.10−11

2.10−11

Figure 4: Radial approached velocity ust.

Comparing the approached azimuthal velocity generated by the developed numerical code to its explicit
expression given by equality (19). We present these velocities in the Figure 3. The blue and red diagrams
present the exact azimuthal velocity and its approximation, respectively. This simulation shows that the
gas phase does not give much satisfaction due to bad preservation of the stationary solution. In order to
overcome these important effects, we need to limit the time computation and refine mesh. There is an
other reason for this poor conservation. Indeed, the radial velocity does not converge to the initial zero
value. This appears clearly in the Figure 4. The oscillatory precision appears, near from 10−11, meaning
of something physically happens. It is concluded that the numerical scheme does not behave correctly
for this phase.

In what follows, we describe the basic equations of a flow of gas and particles around a star. The
protoplanetary disk is detailed in two phase flow, with presence of these particles. Treating the two-phase
flows consists in solving simultaneously two conservation equations system. The authors in [4, 5] deal
with averaging techniques to solve them, even in reality, it is complicated to get numerically solutions.
Noticing that we have 9 classical equations, much than some existing models described in [12, 9]. In
order to simplify this model, we neglect the viscosity effect, and thermal diffusion. An other assumption
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is made, in the sense that solid components effect no pressure on gas. These terms are not involved in
the governing equations of this model. The vector of conserved variables w, tensor fluxes F and G are
defined as:

w =



ρg
ρug
ρvg
ρeg
ρp
ρup
ρvp
ρep
Np


, F (w) =



ρug
ρu2

g + p
ρugvg

(ρeg + p)ug
ρup
ρu2

p

ρupvp
ρepup
Npup


, G(w) =



ρvg
ρugvg
ρv2
g + p

(ρeg + p)vg
ρvp
ρupvp
ρv2
p

ρepvp
Npvp


.

Here, the notations are classical as previously, simplifying them, g and p for labeling the gas and solid
phase, respectively. In which, ρg, Tg, ug, vg, stands density, temperature, and two-components velocity
stating the single phase, ρp, Tp up, vp stands density, temperature, and two-components velocity stating
the solid phase. The radius rp is necessary to determine interactions between phases. The pressure p is
common for the two phases. Indeed, we impose the same pressure p avoiding the contact discontinuity
between gas and solid particles. These components are shared into two groups. The first one is related
to equations for gas, constituted of the four first components. The second one is related to the dispersed
phase, that components are from 5 to 8. The last equation solves Np the number of particles per unit
volume. The source term Q depends on heat transfer qr,θ that is given by:

Q(w) =



0
ρv2
g

r
− ρGM

r2 + p

r
+ Fr

−ρugvg
r

+ Fθ

−ρug
GM

r2 + Frup + Fθvp + qr,θ

0
ρv2
p

r
− ρGM

r2 + p

r
− Fr

−ρupvp
r
− Fθ

−qr,θ
0



.

The presence of friction forces Fr and Fθ in source Q proves that gas and solid particles are well coupled.
The eight equation model for two phase flow problems are not enough to solve the system. Indeed, we
have 10 unknowns: ρg, Tg, ug, vg, ρp, Tp up, vp, rp, p. Two equations are necessary to close this system.
The first one is obtained from the variable Np. The second one describes the state law of a perfect gas.
In the sequel, we will show in Figure 5 some errors from a set of numerical simulations. We notice that
there are no much velocity differences between gas and particles while they are coupled. In two phase
model, we will expect a small relative difference, that we have not obtained.

Figure 5: The numerical velocity error in two phase model.
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4 Numerical scheme
4.1 Computational domain
The computational domain can be subdivided into a finite number of cells. These cells cover entirely
the computational domain and provide a good geometrical approximation of the flow. We studied the
rotation of gas and particles around the star in a ring. This ring is confined between an inner zone of
radius rin = 5AU, and an outer zone in which it is delimited by radius rout = 10AU. We discretize the
domain on an annular grid. As a consequence, the ring is divided into nr and nθ cells, respectively for
the radial and azimuthal directions. The spatial distribution of cell is defined by the radial step ∆r and
the angular step ∆θ that given by: {

∆r = rout−rin
nr

,

∆θ = 2π
nθ
.

(22)

The time-space complexity of the cell is described by set of couple (ri, θj), where indexes i and j mean
theirs labels according respectively to the radial and azimuthal directions. Each cell (ri, θj) is configurated
as follows: {

ri = rin + (i− 1
2 )∆r,

θj = (j − 1
2 )∆θ. (23)

The cell (ri, θj) is illustrated in Figure 7. This cell is bounded in the radial direction between two values
ri − ∆r

2 and ri + ∆r
2 , while in the azimuthal direction, it varies from θj − ∆θ

2 to θj + ∆θ
2 . The average

values of the quantities are stored for each cell with using finite volume method.

10AU

5AU

Figure 6: Computational domain.

•

•

• •

•

•

ri

θj

•
ri − ∆r

2 ri + ∆r
2

θj − ∆θ
2

θj + ∆θ
2

Figure 7: Cylindrical cell.
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The aim here is to define ghost cells, called also ghost nodes, at every point in our domain. These
ghost cells are used in our method framework in order to build efficient numerical scheme which can be
extended easily to multidimensional space and different time integration. These ghost cells provide the
well-posed boundary conditions for the conservative equations form (11). We present them in Figure 8
for each cell Ji,j defined by:

Ji,j =
[
ri−1/2, ri+1/2

]
×
[
θj−1/2, θj+1/2

]
. (24)

Besides of this, we impose periodic boundary conditions in the azimuthal direction. On others words,
the variables are identical between 0 and 2π:

w(r, 0) = w(r, 2π). (25)

They are not active, which means that the physical quantities inside these cells do not evolve according
to the conservation equations. Indeed, they are determined in the way to close stably the domain for
the used model. Otherwise, they can also evolve over time. The principal geometrical data to be known
is the surface Si,j defined by the angular variation:

Si,j = ri∆θ∆r. (26)

• •• • • • •

• •• • • • •

•

•

•

•

•

•

•

•

•

•

•

•

Figure 8: Ghost cells.

The surface vectors allow to determine the radial and the azimuthal flux, which are related to each of
the faces of the considered cell. We express the lengths of each facet presented in Figure 9 as follows:

~li−1/2,j = −ri−1/2∆θ ~er,
~li+1/2,j = −ri+1/2∆θ ~er,
~l′i,j−1/2 = −∆r ~eθ,
~l′i,j+1/2 = ∆r ~eθ.

(27)

~l′i,j+1/2

~l′i,j−1/2

~li+1/2,j

~li−1/2,j

Figure 9: The surface vectors.
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4.2 Initial conditions
The purpose of this subsection is to provide initial conditions that is an essential part of conceptu-

alizing and modeling the flow of particles in two phase (mixing gas and solid particles) over planetary
disks. The specification of appropriate initial conditions is important in this topic because is also the
part most subject to serious error by hydrologists. We explain here the concept of initial conditions and
we discuss some common pitfalls in the model. In order to evolve these densities of the surface disk,
we must choose an initial profile. This profile is previously introduced by Hayashi [3] (1985). If Dinit

presents one of these densities, it can be written generally in the form of a power law as follows:

Dinit = D0

(
r

r0

)−d
. (28)

The density profile is calculated from the mass of planets. The amount of solid contained in the planets
is distributed in rings, and then from a gas report dust. The density profile of the gas is computed by
the power law (28). Otherwise, we suppose that the mixture of hydrogen molecules and helium in small
quantity gives the final gas particle. These initial conditions are given as follows:

ρinit = ρ0

(
r
r0

)−3/2

,

Tinit = T0( rr0
)−1/2,

pinit = p0( rr0
)−2,

uinit = 0,
vinit =

√
GM
r0

(r0/r)− 2pρ ,

(29)

where,  ρ0 = 1.4.10−6Kg.m−3,
T0 = 280K,
p0 = 1.42Pa.

(30)

4.3 Numerical method
The conservation laws defined by equation in (11) is written in following form:

∂tw +∇.f(w) = Q(w). (31)

The finite volume method is the mechanism for discretizing a partial differential equations in the formal-
ism of compact equations. The values are computed at discrete zone on the grid. In this computational
fluid dynamics package, the average of the conserved variables is stored alongside the two radial and
azimuth meshes defining a control volume. In this method, volume integrals in the equation (31) contain-
ing a divergence variable, are becoming surface integrals, using the Green-Ostrogradski Theorem. Then,
the terms involved in this equation are then presented as fluxes at the surfaces of each control volume.
Now, we will explain why the used numerical mehod must be conservative. Indeed, the entering flux is
equal to the leaving one in a given volume in each direction. Another advantage of this method is that
it is clearly adjusted to allow meshing for unstructured grid. Evaluation based on the integral, rather
than the differential, form of equation (11) have very wide advantages for flows that contain impacts and
discontinuities [6]. Integration of equation (31) over the control volume Ωi,j delimited by the surface Si,j
gives:

∫
Ωi,j

(
∂w

∂t
+∇.f(w)

)
dΩ =

∫
Ωi,j

QdΩ. (32)

Assuming that wi,j is the average value on each control volume Ωi,j , and using Gauss’s theorem, the
equation (32) is written:
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∂w

∂t
Ωi,j +

∫
∂Ωi,j

f(w)dΩ =
∫

Ωi,j
QdΩ. (33)

The conserved variable w, and the source term Q are averaged over control volume Ωi,j :
wi,j = 1

Ωi,j

∫
Ωi,j

wdΩ,

Qi,j = 1
Ωi,j

∫
Ωi,j

QdΩ.
(34)

We start discretizing the source term on each grid Ji,j that is approximated between two interfaces as:

∫ r
i+ 1

2

r
i− 1

2

Q(w) dr =


0

ri+1/2p
L
i+ 1

2
− pR

i+ 1
2
ri− 1

2

−ρiuivi∆r
−ρiui

GM

ri
∆r

 . (35)

Noticing that pi is a regular function depending on the variable r, we use an order 1 Taylor expansion
of pressure term given in equality (35). Then, we obtain:

ri+ 1
2
pLi+ 1

2
= ripi + ∂rpi

∂r

∆r
2 +O(∆r2), (36)

and,

pRi+ 1
2
ri− 1

2
= ripi −

∂rpi
∂r

∆r
2 +O(∆r2). (37)

The difference between these two equalities (36) and (37) gives:

ri+ 1
2
pLi+ 1

2
− pRi+ 1

2
ri− 1

2
= ∆r ∂rpi

∂r
. (38)

The fluxes are computed on each of the faces, the radial flux F according to the components l, and the
azimuthal flux G according to the components l′. The discrete-time linear system is written in following
form:

∂wi,jΩi,j
∂t

+
∑
l

~F .~S +
∑
l′

~G.~S = Qi,jΩi,j . (39)

There are N uniform time steps ∆t. It is defined as the difference between the final time tf when the
computation is stopped and initial time t0 when the computation begins, divided by the number N , i.e.
∆t = tf−t0

N . The variation of quantity wi,j can be determined at each time step ∆t:

∆wi,j = ∆t
(
Qi,j −

∑
l

~F .~S +
∑
l′

~G.~S

Si,j

)
. (40)

An other discretization form of equation (40) is given by the following equality:

wn+1
i,j = wni,j + ∆t

(
Qni,j −

li+ 1
2 ,j
Fn
i+ 1

2 ,j
− li− 1

2 ,j
Fn
i− 1

2 ,j
+Gn

i,j+ 1
2
l′
i,j+ 1

2
−Gn

i,j− 1
2
l′
i,j− 1

2

Sni,j

)
. (41)

Let us explain how the flux terms involved in equality (41) are evaluated on the interface (ri+ 1
2
, θj) that

separates two cells Ji−1,j and Ji,j . According to the definition (27), we formally have:

li+ 1
2 ,j
Fni+ 1

2 ,j
= ri+1/2∆θH(wLi+ 1

2 ,j
, wRi+ 1

2 ,j
). (42)

This evaluation depends on state of the neighbors wL and wR. Here, function H means the approximated
Riemann solver, and it defines a consistent flux, i.e. H(w,w) = F (w). This solver takes into account the
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left and right states in order to interpolate variables at the interface. For instance, we will test it for the
considered Godunov method. Then, the conservative vector w at this interface takes the same value at
center: {

wL
i+ 1

2 ,j
= wi,j ,

wR
i+ 1

2 ,j
= wi+1,j .

(43)

Consequently, the discrete conservative vectors are given as:

wLi+ 1
2

=


ρiri+ 1

2
ui

viri+ 1
2

piri+ 1
2

 , (44)

wRi+ 1
2

=


ρi+ 1

2
ri+ 1

2
ui+1

vi+1ri+ 1
2

pi+1ri+ 1
2

 . (45)

We categorize this method as first-order, and it is consisting in the projection of centered values. The
equation defined by (11) is resolved by a splitting extrapolation method. Then, this equation (11) allows
to give the following equivalent system:{

∂w
∂t + 1

r
∂rF (w)
∂r = Q(w),

∂w
∂t + 1

r
∂G(w)
∂r = Q(w).

(46)

The azimuthal flux G is approached by a cell-centred scheme. In order to preserve the hyperbolic
character and to balance the bidimensional numerical scheme, we keep the same undimensional radial
flux F .

r

θ

Fn
i− 1

2 ,j
Fn
i+ 1

2 ,j

Gn
i,j+ 1

2

Gn
i,j− 1

2

∆θ

r∆r

Figure 10: Discretization by the numerical scheme over a cylindrical domain.

Assuming that G is twice-derivable-function over interval
[
ri, θj − ∆θ

2
]
×
[
ri, θj + ∆θ

2
]
, function G is

Taylor-Young expanded in (ri, θj + ∆θ
2 ) until the order 2 to obtain:

G

(
ri, θj + ∆θ

2

)
= G(ri, θj) + ∆θ

2

(
∂G

∂θ

)
+ (∆θ)2

8

(
∂2G

∂θ2

)
+O((∆θ)3), (47)

and function G is Taylor-Young expanded in (ri, θj − ∆θ
2 ) until the order 2 to obtain:
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G

(
ri, θj −

∆θ
2

)
= G(ri, θj)−

∆θ
2

(
∂G

∂θ

)
+ (∆θ)2

8

(
∂2G

∂θ2

)
+O((∆θ)3). (48)

Subtracting equation (47) from equation (48), we get:

Gi,j+ 1
2
−Gi,j− 1

2

∆θ = ∂G

∂θ
+O((∆θ)2). (49)

The second-order discretization for the flux G is defined from the upstream approximation at the interface
(ri, θj+ 1

2
) and the downstream approximation at the interface (ri, θj− 1

2
) as follows:

Gi,j+ 1
2

=


ρi,j+ 1

2
vi,j+ 1

2
ρi,j+ 1

2
ui,j+ 1

2
vi,j+ 1

2
ρi,j+ 1

2
v2
i,j+ 1

2
+ pi,j+ 1

2

(ρi,j+ 1
2
ei,j+ 1

2
+ pi,j+ 1

2
)vi,j+ 1

2

 .

The Courant-Friedrichs-Lewy is a dimensionless quantity, which is denoted shortly CFL for meaning a
fundamental restriction. It leads to the numerical solution defined by the discretization process for a
quickly convergence. This number is involved in the numerical analysis in order to maintain a stability
of the solution, when if it existes. For gas the time step ∆t is given as follows:

∆t = CCFL min
0≤i≤nr
0≤j≤nθ

(∆i,j). (50)

If the cells are too small compared with the time step, numerical smearing may occur leading to instability
and in some cases divergence. If time step ∆t depends on chosen cell Ωi,j , then it is given by:

∆t = CCFL min
0≤i≤nr
0≤j≤nθ

(
∆r
cr,ni,j

,
∆θ
cθ,ni,j

)
, (51)

where cr,ni,j and cθ,ni,j are respectively the speed of propagation inside the cell in the radial and azimuthal
directions. Since the rotation of the gas around the sun must be taken into account, this velocity is
the sum of two velocities. The first one is the speed of sound and the second one is the speed of the
wave in propagation. In the one-dimensional case, ci,j means the speed of sound. The coefficient CFL is
chosen from such so that the condition of numerical stability is verified. The flux depend necessarily on
coefficient CFL, for the method of 1st order, we take in practice CCFL ' 0.9. In the numerical code, we
use the following time step ∆t defined by:

∆t = min
0≤i≤nr
0≤j≤nθ

(
∆t0,

Si,j

v∆r + uri+1/2∆θ +
√

γp
e (∆r2 + ∆θri+1/2

2)

)
. (52)

We realize one test that consists in following the behavior of the disc in the absence of any perturbations.
The goal of this test is to verify the stability of the flow. For that, comparing the initial profile of each
variable denoted var (stands density, pressure, temperature, etc) to the obtained one by simulation with
using a large number of integration time. In the sequel, we only focus this comparison on the radial
direction. That why each variable is averaged following the azimuthal direction under this form:

var 7→ 1
nθ

nθ∑
i=1

var(r, θi). (53)
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5 Testing the code accuracy in two-dimensional space
We test in this section the ability of the code to conserve the disk in steady-state. Indeed, the rotation
of gas density around the central star stays the same over time. Here, we show the results that regime
steady-state determine the solution in different time durations. This solution is unchanging in continuous
instants. In these simulations, we keep the same value of inner and outer radii, introduced previously
in subsection 4.1. These results are performed over 1000 years for two-dimensional space. A reasonable
grid resolution are 100 cells in two space directions, i.e. nr = nθ = 100.
Now, we are checking whether the code has the necessary accuracy to calculate the stationary solutions
that remain uniform over time. The 2D evolution of the density ρ is presented in Figures 11, 12, 13 and
14. First Figure 11 presents that there is no fluctuations with a scale of approximation 10−7 of density
ρ. However on a smaller scale than 10−7, the disturbances presented in Figures 12, 13 and 14 begin to
appear on the disk.

Figure 11: Disk at initial time, with approxi-
mation 10−7.

Figure 12: Disk at initial time, with approxi-
mation 10−10.

Figure 13: Disk after 500 years, with approx-
imation 10−10.

Figure 14: Disk after 1000 years, with approx-
imation 10−14.
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6 Stability and long-term evolution
This section adresses to study the perturbation of the vortices in the disk. In this study, we are

neglecting the various physical effects such as turbulence. Testing here the evolution of the disc, with
adding an overdensity and an overpressure to the stationary solution. The target is to study how the
disc reacts with the presence of overdensity. The variables involved in this model are defined by:

• (X,Y ): the cartesian reference in rotation linked to the vortex;

• (x, y): the inertial cartesian coordinates system;

• R =
√
X2 + Y 2: the distance to the center of the vortex;

• (r, θ): the inertial cylindrical coordinate system;

• (x0, y0): the coordinates of the vortex center in the reference.

y0

x0

y

x

r

X
Y

Figure 15: Different coordinate system.

We recall that r is the distance from the sun to the vortex center expressed in astronomical unit. As
shown in Figure 15, the change reference for returning to the initial cylindrical system (r, θ) is: X = r cos θ − x0,

Y = r sin θ − y0,
R2 = r2 + x2

0 + y2
0 − 2r(x0 cos θ + y0 sin θ).

The perturbation of the velocity in the reference (r, θ) is written:{
∆Vr = cos θ∆VX + sin θ∆VY ,
∆Vθ = cos θ∆VY − sin θ∆VX .

On other hand, the perturbation of the velocity in the cartesian coordinate system linked to the vortex
is written: {

∆VX = cos θ∆Vr + sin θ∆Vθ,
∆VY = cos θ∆Vθ − sin θ∆Vr.

It is convenient to use this vortex described above, because it will be simply implemented. On other
word, it does not require a mesh refinement. Noticing that a Gaussian overdensity is not necessarily a
vortex, because a vortex turns around itself. On the contrary, overdensity does not. In order to test
the stability of the disc, we will add the Gaussian perturbations, which are randomly distributed inside
the disc. The average width of this Gaussian function takes the value 0.075 AU. It means that a small
amplitude of noise is considered. We assure that a set of vortices stays always in the disk. We are
interested to follow them in order to know how much time they are survived. Seeing later that they will
be deformed, and disappearing after only 3 rotations. For our numerical setup, a refine mesh is used to
get more stability precision, the grid size is 200× 200, i.e. nr = nθ = 200.

15



The stability of Rossby waves has been discussed by authors Lovelace and Li [8, 7] from 1999 to
2001 in the evolution of protoplanetary disks. In [8], the authors investigate the stability problem
of non-magnetized Keplerian disks. They study particularly a linear instability of non-axisymmetric
perturbations for conditions where the disk variables, such as pressure density has saturated radial
gradients. On other hand, the nonlinear instability has been studied by the authors in [7]. They
considered thin disks. The numerical results showing this wave instability are the revelation for many
scientists, precisely in meteorological slant. This instability makes loss the atmospheric prevision which
existes in some models. This energy faillure is due to for the presence of the light, contributing to the
interactions between particles.

In what follows, we try to produce one of the linear Rossby stability, that why we use Gaussian bump.
Figures 16, 17, 18 and 19 show that different evolutions of the gas density ρ in disk. We present in Figure
16, the initial state of Gaussian bump distributed on disk. Inside the vortex, the density field is given
to get a Gaussian density like the background-disk case. The vortex survived more than 3 rotations and
its structure was quasi-steady with only two days duration meaning source of numerical diffusion.

Figure 16: Disk at initial time. Figure 17: Disk after 10 years.

Figure 18: Disk after 15 years. Figure 19: Disk after 25 years.

16



7 Three-dimensional finite volume method
We will extend the 2D numerical code for the simulation to three dimensional space by taking into

account the height in the z-axis direction. The success to build the numerical scheme in bidimensional
space allows and ensures to be expanded to three dimensional one. The aim of this work is to keep the
stationary solutions with a good precision. Consequently, we consider the physical domain to be a toroid
around the Sun. It is sufficient to add another dimension of space, relative to the two-dimensional scheme.
The radial and azimuthal discretizations will remain the same. However, the following z-direction is dis-
cretized between two opposite values −H and H, as it is shown in Figure 20.

H

rint rout

Figure 20: Computational domain in 3D.

This preliminary study shows that the development of the 3D numerical code should not present a
major problem. This numerical scheme is based on the Riemann solver problem at each interface, by
determining the approached solution from left and right states. Here, we used the centered fluxes into
the azimuthal and height directions in order to balance the scheme. The first results show that Rossby
instability can be developed in a 3D disk in the same way as in the two-dimensional case. Indeed, we
test it in the case of annular overdensity (see Figures 21 and 22). Setting value for the height H in order
to generate the same density in these Figures.

Figure 21: Projection of disk in the xy plan. Figure 22: Projection of disk in the yz plan.

8 Conclusions
The proposed work is set in the protoplanetary nebula before coupling solid and gas phases. This

work involves constructing the 2D numerical code for the planetisimal formation. This basic study pro-
grams the development of the 3D numerical code with balancing the fluxes. The new numerical scheme
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allows to better represent the steady Keplerian flow. This accuracy is showed by the long term inte-
grations. The future part of the project to explore is to use a second order numerical method for the
flux integration. Numerical tests will be performed by comparing the accuracy and efficiency of the new
multi-slopes methods with the first order method.
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