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Abstract. We investigate in this paper a hydrodynamical code in order to simulate the flow of gas
and solid particles in protoplanetary disks. This code is devoted to explore planetary formation at the
decoupling stage when the gas and solid phases are competing with one another. In this work our goal
is to study the full time evolution of gas and particles around the star and is to characterize the Rossby
wave instability in 2D.
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1 Introduction
Planetesimal formation is obviously an important process in the realm of solar-type stars, as we know

from the Solar System that such stars can form planets. There is also ample evidence from the recent
observations of extrasolar planets surrounding solar-type stars. In paper [7] we deals with the detection
of two of the most eccentric known planets. Nevertheless, the first planets detected outside the Solar
System were orbiting pulsars, indicating that planet (and therefore planetesimal) formation is also pos-
sible around massive stars. Observations indicate in [9] that at least one more planet may be present in
the system. It has been speculated and was recently observed in at least one case that fall-back material
can form a disk surrounding the remnant star after a supernova explosion. The author investigates in [8]
fallback disks around young neutron stars. This lends support to the idea that planetesimal formation
might not only accompany star formation but might also proceed under a variety of conditions, possibly
even around dying stars.

Planet formation is believed to occur in the disks of gas and dust that surround young solar-type stars.
Most stars, however, form in multiple systems, where the presence of a close companion could affect the
structure of the disk and perhaps interfere with planet formation. The author investigates in [1] the
gravitational interaction of a generally eccentric binary star system with circumbinary and circumstellar
gaseous disks. It has been difficult to investigate this because of the resolution needed. Here we report
interferometric observations (at a wavelength of 7 mm) of the core of the star-forming region L1551 (line
observations of the pre-stellar core with the Nobeyama 45 m telescope and Millimter Array). We have
achieved a linear resolution of seven astronomical units (less than the diameter of Jupiter’s orbit). The
core of L1551 contains two distinct disks, with a separation of 45 AU; these appear to be associated with
a binary system. Both disks are spatially resolved, with semi-major axes of about 10 AU, which is about
a factor of ten smaller than disks around isolated stars. The author review in [2] the ground-based and
Infrared Space Obser atory (ISO) data on the small-grain components of the inner disk regions. The
disk masses are of order 0.05 solar masses, which could be enough to form planetary systems like our own.

Our study was motivated by authors of paper [6] (2003), who investigated the evolution of gravita-
tionally unstable protoplanetary gaseous disks using three dimensional smoothed particle hydrodynamics
(SPH) simulations with unprecedented resolution. They have done simulations with codes that solve the
hydrodynamical equations on a fixed grid show that slightly perturbed disks form strong spiral arms
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and overdensities. Here we report on the results of new 2D simulations of unstable protoplanetary disk
which is extended from 5 to 10 AU initially and is in nearly keplerian rotation around a solar mass star
represented by a point mass.

Numerical methods are essential for the study of a very wide range of problems in astrophysical fluid
dynamics. As such, the development of more accurate and more capable algorithms, that is important
for progress in the field. This paper describes a new code for planetary formation. This code simulates
the flow of gas and solid particles in protoplanetary disks. It has been designed to be easily extensible
for use with static and adaptive mesh refinement. It combines Godunov method for evaluating the radial
flux and the azimuthal flux which is approached by a cell-centred scheme.

In this paper, we are interested in the formation of 2D vortices and in their long-term evolution. The
paper is structured as follows. In section 3 we briefly describe the Euler and continuity equations for
the motion of gas then take the explicit form. Details of the modeling, including the full discretization
and the numerical method is found in section 4 that is shared in three subsections. We describe in first
subsection 4.1 the 2D cylindrical domain where we integrate these equations over it. The continuous
spatial coordinates (r, θ) are discretized into a finite size (nr, nθ) in each direction, respectively. It
is followed by the initial conditions presented in second subsection 4.2. The principle of finite volume
schemes and their ability to conserve the integral of the transported properties will be introduced in third
subsection 4.3. Next, a high accuracy hydrodynamical code has been developed and tested in section
5 in order to simulate the evolution of a protoplanetary disk. We check particularly the steady state.
The Rossby wave instability is found in final section to proceed in 2D. Their formation and stability is
a complex problem and still a matter of debate.

2 Modeling a Keplerian flow
In the present work we first investigate the planetesimal formation in a compressible Keplerian disk.

We then perform simulations intended to study the dynamics in the presence of two-phase. We discuss
here the technical details of the modeling the equilibrium over the Keplerian disc. This modeling is
presented in Figure 1. The numerical simulation of two-phase dilute flow (droplet-gas mixture) is the
object of great attention from researchers. This interest is due to a lot of applications. We model the
flow by a coupled system of Euler equations. This allows to establish practical results, as well as the the
study of numerical scheme. Two-phase flow is divided into two categories. The first one is to separate
flow phase, which is the type of flow that occurs when the debit of gas and liquid are low. The second
one is dispersed flow, for example the formation of air bubbles during the agitation of a water bottle.

We define a control volume by a delimited domain of each cell in order to follow the evolution of
average of quantities. This Eulerian approach allows to optimize the computation time by taking into
account the fact that the dispersed phase affects the gas phase. Consequently, for modeling two phases
in control volume, each these two volumes are separated by an interface. It is through this interface that
there has been an interaction between two pahses.

Assuming that the disk is at hydrostatic equilibrium along the axis z, which occurs if the movements
along this axis are subsonic. The equilibrium hydrostatic equation is given by:

−−−−→
gradP = −ρ.

−−−−→
gradΦ, (1)

where Φ is the gravitational potential. If r ∈ [rminrmax], then the effect of the gravitational field
component coming from the mass of disk (self-gravitation) is neglected. This potetiel Φ is then written
as: Φ = −GMD , where D =

√
r2 + z2 is the distance from the considered point of system center, which

gives over the axis z, the following equality:

1
ρ

∂P

∂z
= ∂

∂z

GM

(r2 + z2)
1
2
. (2)

Assuming that the orbits are circular and obey Kepler’s laws. If the disk is thin z2 � r2, we get:
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Figure 1: Modelization of two-phase flow.

1
ρ

∂P

∂z
= ∂

∂z

GM

r

(
1− z2

2r2

)
,

= −GM
r3 z,

= −Ω2z,

(3)

where Ω means the angular velocity which is given by:

Ω =
√
GM

r3 . (4)

The equilibrium over the Keplerian disc is written as:

v2

r
= GM

r2 (5)

The solid particles perform quasi-Keplerian orbits in the plane of the disc, whereas they perform oscil-
lations around the middle equatorial plane in a perpendicular direction at the plane of the disk.

3 Euler equations
The Euler equation can express the mass, momentum and energy conservation in local form as a

function of density of the radial velocity u, of the azimuthal velocity v, of pressure p and of the internal
energy E. The total energy e is the sum of the kinetic and internal energy. Let us consider initially
an ideal fluid. For polytropic gaz law, with γ > 1, energy, pressure and temperature are given by the
following relations: 

e = 1
2 (u2 + v2) + E,

p = (γ − 1)ρE,
T = µ

kb
p
ρ .

(6)

It is useful to define vector of the conserved variables w, with components in cylindrical coordinates

w =


ρ
ρu
ρv
ρe

 .
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Defining vector w as an application:

w :
∣∣∣∣ [0,∞[×R × [0, 2π] −→ R3

(t, r, θ) 7−→ w(t, r, θ).
The conservation laws can now be written in a compact form (in cylindrical coordinates),

∂w

∂t
+ 1
r

∂rF (w)
∂r

+ 1
r

∂G(w)
∂r

= Q(r, w), (7)

where F , G are vectors of fluxes in the ~er and ~eθ directions, respectively, with components

F (w) =


ρu

ρu2 + p
ρuv

(ρe+ p)u

 ,

and

G(w) =


ρv
ρuv

ρv2 + p
(ρe+ p)v

 ,

and where the source term is defined as:

Q(w) =


0

ρv2

r
− ρGM

r2 + p

r
+ Fr

−ρuv
r

+ Fθ

−ρuGM
r2

 .

Denoting by Fθ and Fr the friction forces exerted by the gas on the particles per volume unit given
by: {

Fr = 3
2
ρg.c.l
ρmatr2

d

ρd(ud − ug),
Fθ = 3

2
ρg.c.l
ρmatr2

d

ρd(vd − vg).

If there is only gaz, the friction forces are nuls. We have:



ρg : gas density
ρd : particle density
c : speed of sound
ρmat : constant fixed at 3g/cm3

ug, vg : vertical and azimuthal velocities for gas
ud, vd : vertical and azimuthal velocities for particle
l : angular momentum

The angular momentum l for the solid particles satisfies the following differential equation:

∂l

∂t
+ 1
r

∂rlu

∂r
+ 1
r

∂lv

∂θ
= 0. (8)

Fr Fθ

Figure 2: Action and reaction theory for frictional forces.
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4 Numerical scheme
4.1 Computational domain
The computational domain can be subdivided into a finite number of cells. These cells cover entirely
the computational domain and provide a good geometrical approximation of the flow. The flow of gas
and particles is studied in a ring around the star with inner and outer radii denoted by rin = 5AU and
rout = 10AU, respectively. The physical domain is illustrated in Figure 4. For the numerical description,
the variables are discretized on an annular grid divided into nr and nθ pieces, respectively for the radial
and azimuthal directions. The grid is regularly spaced with:{

∆r = rout−rin
nr

,

∆θ = 2π
nθ
.

(9)

The cells are labeled with the index i in the radial direction and with the index j in the azimuthal
direction as follows: {

ri = rint + (i− 1
2 )∆r,

θj = (j − 1
2 )∆θ. (10)

The configuration of the cell is illustrated in Figure 5. In the radial direction the boundaries of the
cell are given by ri + ∆r

2 and ri − ∆r
2 , while in the azimuthal direction they are given by θj + ∆θ

2 and
θj− ∆θ

2 , respectively. The average values of the quantities are stored for each cell with using finite volume
method.

1OUA

5UA

Figure 3: Computational domain.

•

•

• •

•

•

ri

θj

•
ri − ∆r

2 ri + ∆r
2

θj − ∆θ
2

θj + ∆θ
2

Figure 4: Cylindrical cell
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Our goal is to define ghost cells at every point in the computational domain. The use of ghost cells
(actually ghost nodes in our finite volume framework) is to keep the scheme robust and easy to program
with simple extensions to multidimensions and multilevel time integration. To produce ghost cells that
satisfy the appropriate boundary conditions for the Euler equations, we present them in Figure 6 for
each cell

[
ri−1/2, ri+1/2

]
×
[
θj−1/2, θj+1/2

]
. The pincipal geometrical data to know is the surface Si,j

defined by the angular variation:

Si,j = ri∆θ∆r. (11)

• •• • • • •

• •• • • • •

•

•

•

•

•

•

•

•

•

•

•

•

Figure 5: Ghost cells.

The surface vectors allow to determine the radial and the azimuthal flux, which are related to each of
the faces of the considered cell. We express the lengths of each facet presented in Figure 7 as follows:

~li−1/2,j = −ri−1/2∆θ ~er,
~li+1/2,j = −ri+1/2∆θ ~er,
~l′i,j−1/2 = −∆r ~eθ,
~l′i,j+1/2 = ∆r ~eθ.

(12)

~l′i,j+1/2

~l′i,j−1/2

~li+1/2,j

~li−1/2,j

Figure 6: The surface vectors.
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4.2 Initial conditions
The purpose of this subsection is to provide initial conditions that is an essential part of conceptual-

izing and modeling the flow of gas and solid particles used for protoplanetary disks. The specification of
appropriate initial conditions is important in this topic because is also the part most subject to serious
error by hydrologists. We explain here the concept of initial conditions and we discuss some common
pitfalls in the model. The initial conditions are chosen within the framework of the disk model introduced
by Hayashi et al. in paper [3] (1985). The gas is assumed to be a mixture of hydrogen molecules and
helium with a small amount of heavy elements. The initial conditions are given as follows:

ρinit = ρ0( rr0
)−3/2,

Tinit = T0( rr0
)−1/2,

pinit = p0( rr0
)−2,

uinit = 0,
vinit =

√
GM
r0

(r0/r)− 2pρ ,

(13)

where  ρ0 = 1.4.10−6Kg.m−3,
T0 = 280K,
p0 = 1.42Pa.

(14)

4.3 Numerical method
The conservation laws defined by equation in (7) can be written in following form:

∂tw +∇.f(w) = Q(w). (15)

The finite volume method is a method for representing and evaluating partial differential equations in
the form of algebraic equations. The values are calculated at discrete places on a meshed geometry. In
this computational fluid dynamics package, the average of the conserved variables is stored alongside the
two radial and azimuth meshes defining a control volume. In the finite volume method, volume integrals
in a partial differential equation that contain a divergence term (see equation (15)) are converted to
surface integrals, using the divergence theorem. These terms are then evaluated as fluxes at the surfaces
of each finite volume. Because the flux entering a given volume is identical to that leaving the adjacent
volume, these methods are conservative. Another advantage of the finite volume method is that it
is easily formulated to allow for unstructured meshes. Discretizations based on the integral, rather
than the differential, form of equation (7) have numerous advantages for flows that contain shocks and
discontinuities (LeVeque 2002). Integration of equation (15) over the volume of a grid cell Ωi,j delimited
by the surface Si,j gives: ∫

Ωi,j

(
∂w

∂t
+∇.f(w)

)
dΩ =

∫
Ωi,j

QdΩ. (16)

Assuming that wi,j is the average value on each control volume Ωi,j , and using Gauss’s theorem, the
equation is written:

∂w

∂t
Ωi,j +

∫
∂Ωi,j

f(w)dΩ =
∫

Ωi,j
QdΩ. (17)

The conserved variable w, and the source terms Q are averaged over control volume Ωi,j :
wi,j = 1

Ωi,j

∫
Ωi,j

wdΩ,

Qi,j = 1
Ωi,j

∫
Ωi,j

QdΩ.
(18)
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The fluxes are computed on each of the faces, the radial flux F according to the components l, and the
azimuthal flux G according to the components l′. The discrete-time linear systems is written in following
form:

∂wi,jΩi,j
∂t

+
∑
l

~F .~S +
∑
l′

~G.~S = Qi,jΩi,j . (19)

Time is discretized into N uniform steps between the initial value t0 and the final stopping time tf .
Following the usual convention tn+1− tn = ∆t. The variation of quantity wi,j can be determined at each
time step ∆t:

∆wi,j = ∆t
(
Qi,j −

∑
l

~F .~S +
∑
l′

~G.~S

Si,j

)
. (20)

An other discretization form of equation (20) is given by the following equality:

wn+1
i,j = wni,j + ∆t

(
Qni,j −

Fni+1/2,j li+1/2,j − Fni−1/2,j li−1/2,j +Gni,j+1/2l
′
i,j+1/2 −G

n
i,j−1/2l

′
i,j−1/2

Sni,j

)
. (21)

The equation defined by (7) is resolved by a splitting extrapolation method, we are able to present the
general result equivalent to (7), i.e. {

∂w
∂t + 1

r
∂rF (w)
∂r = Q(r, w),

∂w
∂t + 1

r
∂G(w)
∂r = Q(r, w).

(22)

The azimuthal flux G is approached by a cell-centred scheme. In order to preserve the hyperbolic
character and to balance the bidimensional numerical scheme, we keep the same the undimensional
radial flux F .

r

θ

Fni−1/2,j Fni+1/2,j

Gni,j+1/2

Gni,j−1/2

∆θ

r∆r

Figure 7: Discretization by the finite volume method over a cylindrical domain.

Assuming that G is twice-derivable-function over interval
[
ri, θj − ∆θ

2
]
×
[
ri, θj + ∆θ

2
]
, function G is

Taylor-Young expanded in (ri, θj + ∆θ
2 ) until the order 2 to obtain:

G

(
ri, θj + ∆θ

2

)
= G(ri, θj) + ∆θ

2

(
∂G

∂θ

)
ri,θj

+ (∆θ)2

8

(
∂G

∂θ

)
ri,θj

+ (∆θ)2

4 ε1(∆θ), (23)

and function G is Taylor-Young expanded in (ri, θj − ∆θ
2 ) until the order 2 to obtain:
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G

(
ri, θj −

∆θ
2

)
= G(ri, θj)−

∆θ
2

(
∂G

∂θ

)
ri,θj

+ (∆θ)2

8

(
∂G

∂θ

)
ri,θj

+ (∆θ)2

4 ε2(∆θ), (24)

where all applications εi, with i ∈ {1, 2}, converge to 0 when ∆θ goes to 0. Subtracting equation (23)
from equation (24), we get:

Gi,j+ 1
2
−Gi,j− 1

2

∆θ =
(
∂G

∂θ

)
(ri,θj)

+O(∆θ2). (25)

The second-order discretization for the flux G is defined from the upstream approximation at the interface
(ri, θj+ 1

2
) and the downstream approximation at the interface (ri, θj− 1

2
) as follows:

Gi,j+ 1
2

=


ρi,j+ 1

2
vi,j+ 1

2
ρi,j+ 1

2
ui,j+ 1

2
vi,j+ 1

2
ρi,j+ 1

2
v2
i,j+ 1

2
+ pi,j+ 1

2

(ρi,j+ 1
2
ei,j+ 1

2
+ pi,j+ 1

2
)vi,j+ 1

2

 .

The Courant-Friedrichs-Lewy (CFL) condition is a necessary condition for convergence while solving the
partial differential equation defined by (7) numerically by the finite volume method. It arises in the
numerical analysis of explicit time integration schemes, when these are used for the numerical solution.
For gas the time step ∆t is given as follows:

∆t = CCFL min(∆i,j). (26)

If the cells are too small compared with the time step, numerical smearing may occur leading to instability
and in some cases divergence. If time step ∆t depends on chosen cell Ωi,j , then it is given by:

∆t = CCFL min
(

∆r
cr,ni,j

,
∆θ
cθ,ni,j

)
, (27)

where cr,ni,j and cθ,ni,j are respectively the speed of propagation inside the cell in the radial and azimuthal
directions. Since the rotation of the gas around the sun must be taken into account, this velocity is
the sum of two velocities. The first one is the speed of sound and the second one is the speed of the
wave in propagation. In the one-dimensional case, ci,j means the speed of sound. The coefficient CFL is
chosen from such so that the condition of numerical stability is verified. The flux depend necessarily on
coefficient CFL, for the method of 1st order, we take in practice CCFL ' 0.9. In ths numerical code, we
use the following time step ∆t defined by:

∆t = min
(

∆t0,
Si,j

v∆r + uri+1/2∆θ +
√

γp
e (∆r2 + ∆θri+1/2

2)

)
. (28)
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5 Testing the code accuracy in two-dimensional space
We test in this section the capacity of the code to keep a gas disk in steady rotation around the star.
We precise the duration that the code satisfy the initial steady state solution for the gas. The steady
state solution of a gas disk flowing around a central star is will given in simulations, with inner and
outer boundaries chosen at 5 and 10 AU, respectively. Simulations are performed over 1000 years and
for two-dimensional space. A reasonable grid resolution are 100 cells in the radial direction and the same
number of cells in the azimuthal direction.
Now, we check whether the code has the required accuracy to compute the stationary solutions that
remain uniform over time. The 2D evolution of the density ρ is presented in Figures 9, 10, 11 and
12. First Figure 9 shows that there is no fluctuations with a scale of approximation 10−7 of density
ρ. However on a smaller scale than 10−7, the disturbances presented in Figures 10, 11 and 12 begin to
appear on the disc.

Figure 8: Disk at initial time, with approxi-
mation 10−7.

Figure 9: Disk at initial time, with approxi-
mation 10−10.

Figure 10: Disk after 500 years, with approx-
imation 10−10.

Figure 11: Disk after 1000 years, with approx-
imation 10−14.
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6 Stability and long-term evolution
The stability of Rossby waves has been discussed by Lovelace et al. (1999) and Li et al. (2000, 2001)
in the evolution of protoplanetary disks. The authors reconsider in [5] the question of the stability
of non-magnetized Keplerian disks. In particular, they find a linear instability of non-axisymmetric
perturbations for conditions where the disk quantities, such as surface density and entropy have steep
radial gradients. The authors study in [4] the nonlinear evolution of the Rossby wave instability in
thin disks using global 2D hydrodynamic simulations. Although the result that Rossby waves may be
unstable is perhaps surprising from a meteorological viewpoint, it is less remarkable when viewed in the
light of vave interaction theory. This instability is primarily responsible for tho loss of predictability
observed in numerical atmospheric models, i.e. the divergence observed between the properties of two
time integrations with slightly different initial conditions.

We try to produce one of the linear stability, that why we use Gaussian bump. Figures 13, 14, 15 and 16
show that different evolutions of the density ρ in a Rossby-unstable disk. We present in Figure 13, the
initial state of Gaussian bump distributed on disk. Inside the vortex, the density field is found to have
a Gaussian profile like the background-disk state. The vortex survived more than 3 rotations and its
structures were quasi-steady with only two days time-evolution associated with the numerical diffusion.

Figure 12: Disk at initial time. Figure 13: Disk after 10 years.

Figure 14: Disk after 15 years. Figure 15: Disk after 25 years.
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