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Abstract 

The different areas of a concave object illuminate each other 

by a multiple light reflection process, called interreflections, 

depending on the geometries of the object and the lighting. For an 

accurate prediction of the radiance perceived from each point of 

the object by an observer or a camera, an interreflection model is 

necessary, taking into account the optical properties and the shape 

of the object, the orientation(s) of the incident light which can 

produce shadows, and the infinite number of light bounces between 

the different points of the object. The present paper focusses on the 

irradiance of two adjacent planar panels (V-cavity) illuminated by 

collimated light from any direction of the hemisphere, or by diffuse 

light. According to the reflectance of the material and the angle of 

the cavity, the loss of irradiance near the fold due to the 

shadowing effect is partly compensated by the gain in radiance due 

to the interreflections. 

1. Introduction 

Interreflection is an optical phenomenon occurring everywhere 

a concave surface is illuminated. It corresponds to the multiple 

reflections that light undergoes between the different areas of the 

surface, which result in a gain in radiance displayed by the surface 

at some wavelengths where the surface is weakly absorbing, 

therefore in a gain in lightness and/or chroma of their color, 

particularly noticeable in acute cavities. This is the case for 

example at the corner between two adjacent panels illuminated 

frontally by directional light, shown in Figure 1. This phenomenon 

has gained a lot of attention in computer graphics in order to 

improve the rendering quality of scenes where various objects 

exchange light between each other (typically a colored object close 

to a white wall) [1–3]. It has also been studied in the domain of 

computer vision, in order to remove this effect from images of an 

object in order to retrieve the object's 3D shape (shape-from-

shading methods) [4–9] or its spectral reflectance as well as the 

illuminant spectral power distribution [10–11].  

In most previous studies, interreflections are modeled by 

considering only two or three bounces of lights, but we can show 

that in the case of Lambertian surfaces with high reflectance, at 

least in a given part of the visible spectrum, it is necessary to take 

into account all successive bounces until infinity in order to obtain 

an accurate prediction of the luminances displayed by the object.  

 The gain in lightness and chroma characteristic of 

interreflections illustrated by Figure 1 is well visible when the 

incident light is rather directional and illuminates the whole 

surface. However, in case of oblique lighting, the concavities may 

be only partly illuminated because of shadowing. Moreover, in 

case of diffuse lighting the shadowing effect diminishes the 

irradiance of the surface in the concavities, and the aforementioned 

visual effects consequently vanishes. The picture in Figure 2 shows 

that under a perfectly diffuse lighting, a folded piece of board is 

darker near the fold, whereas it would appear lighter under 

collimated illumination as in Figure 1. The main question resulting 

from this observation is to know to which extent interreflections, 

which increase the perceived radiance in the concavities of the 

surface, compensates shadowing, which decreases the irradiance, 

according to the shape of the surface, its reflectance, and the 

illumination geometry.  

Throughout this paper, we will consider the simple case of a V-

cavity, similar to the folded pieces of board shown in Figures 1 and 

2, but with infinite length (along the fold). This allows interesting 

analytical solutions for the interreflection model that we will use, 

which takes into account an infinity of light bounds. After a 

Section 2 dedicated to terms and notations, this interreflection 

 

Figure 1 – Picture made with a RGB camera of a V-cavity with an angle of 
45° between the two panels (folded Lambertian Munsell paper) illuminated 
frontally by collimated light. The color gradient visible near the fold is due to 
the interreflection effect. 

 

 

Figure 2 – V-cavity with an angle of 45° between the two panels made of a 

grey Lambertian material, illuminated by perfectly diffused light in an 
integrating sphere. 
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model is presented in Section 3, in the general case of a 3D-shaped 

Lambertian material, then in the special case of a V-cavity of 

infinite length. We then address the question of the illumination 

geometries and the shadowing model in Section 4, before studying 

their influence on the displayed radiance in Section 5. Finally, 

Section 6 draws the conclusions.  

2. Definitions and notations 

The description of the interreflection effect is based on 

radiometric concepts allowing to describe how light is spatially 

distributed in the scene. The light power, or flux, denoted as F, can 

be regarded as a collection of light rays propagating from the 

source to the objects, then from areas of the objects to other areas, 

then from the objects to the observer. The distribution of the light 

power over a given surface is described by the concept of 

irradiance (for incoming light) or exitance (for outgoing light), 

defined as the density of flux per elemental area dA:  

 
dF

E
dA

    (1) 

Radiance, denoted as L, is defined by the density of light 

power (or flux) d²F per elemental geometrical extent 
2d G : 

 
2

2

d F
L

d G
   (2) 

where the geometrical extent describes the flux transfer volume, as 

featured in Figure 3. By denoting respectively as idP  and jdP  the 

elemental areas located around two points Pi and Pj distant by a 

length we can define 
2d G  as: 

  2

2

cos cos
,

i i j j

i j

dP dP
d G P P 

 


  (3) 

where θi and θj are the angles between the line  i jPP  and the 

normal of the elemental areas idP  and jdP , respectively.  

The irradiance in point iP  is denoted as  iE P , and the 

radiance from point iP  to point jP  is denoted as  ,i jL P P .  

A surface able to reflect similar radiance in every direction 

(therefore towards any point in the scene) is called a Lambertian 

surface. In this case, the radiance issued from iP  in any direction is 

a constant, simply denoted as  iL P . According to Lambert’s law, 

it is proportional to the surface reflectance ri and the irradiance 

 iE P  in iP :  

    i
i i

r
L P E P


  (4) 

The direct irradiance received in a point iP  from the light 

source and the radiance after the first light reflection of the surface 

are denoted respectively as 0E  and 1L . This direct irradiance ,
 

the radiance L and the radiance after one reflection, 1L , can also be 

defined for a collection of small areas on the surface (e.g. 

corresponding to a tessellation of the surface), and are in this case 

represented under the form of vectors: 

 
   

   

0 1 0 2

1 2

T

T

E P E P

L P L P

   

   

0E

L

  (5) 

where the superscript T denotes the transpose operator.  

Notice that all radiometric quantities are wavelength-

dependent. Throughout this paper, in order to shorten the notation, 

we will consider these quantities for one wavelength which can be 

any wavelength of the visible spectrum.  

3. Radiometric model for interreflections 

Modelling interreflections of light in a concave surface means 

modelling the multiple bounds of photons between the different 

areas of the surface before reaching the observer. After having 

introduced a generic interreflection model applicable to any 3D-

shaped Lambertian surface, we will show how this generic model 

is implemented in the special case of a V-cavity of infinite length.  

General case 

One way of writing the observed radiance from a 3D-shaped 

Lambertian surface S, by taking into account the contribution of 

the multiple light bounces between each pair of points iP  and jP  

on the surface, is based on a continuous equation known as the 

radiosity equation, or interreflection equation [12-Error! 

Reference source not found.], which expresses the total radiance 

 iL P  perceived from every point iP  as the sum of two terms: 1) 

the radiance  1 iL P  after one bounce, corresponding to the 

observed photons issued from the light source of irradiance  

 0 iE P  and reflected once on the surface of reflectance ir  in iP : 

    1 0
i

i i

r
L P E P


  (6) 

and 2) the radiance after multiple bounces, corresponding to the 

observed photons issued from every other point jP  of the surface 

and reflected one more time on the surface in iP . Each point iP

emits the radiance  jL P  in every direction, therefore towards 

point iP , and the elemental irradiance received in iP  from jP  is  

 
   ,i j j jK P P L P dP

 

where  ,i jK P P  is a function called geometrical kernel (or 

interreflection kernel) related to the geometrical extent subtended 

0E

 

Figure 3 – Geometrical extent subtended by elemental areas around two 
points Pi and Pj 
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by points Pi and Pj on the surface, defined by equation (3): 

  
 

 
2 ,

,     ,
i j

i j

i j

i j

d G P P
V P P

d
K

Pd
P P

P
 , (7) 

 ,i jV P P  being a visibility function that gives 1 when both 

elementary areas idP  and jdP  can see each other, and 0 otherwise. 

The radiance after multiple bounces, which incorporates the 

elemental irradiances in iP  formed by the light coming from all 

other points jP  of the surface S, is therefore 

 
     ,

i

i
i j j j

P S

r
K P P L P dP

   

and the total radiance  iL P  displayed by point iP  is given by: 

        0   ,
i

i
i i i j j j

P S

r
L P E P K P P L P dP


 

 
   (8) 

The integral equation (8) has no analytical solution in the 

general case. It can be solved numerically or, more conveniently, 

converted into a discrete version after sampling the surface, thus 

represented by a collection of n microfacets having same area, as 

proposed by Nayar et al. [4Error! Reference source not found.].  

By considering both radiance and reflectance constant over 

each facet, represented by a point Pi and its finished area Pi, the 

integral equation (8) becomes: 

 0( ) ( ) ( )i
i i ij jj i

r
L P E P K L P


  
 

   (9) 

where 

 ( , )
j

ij i
P P

K K P P dP


    (10)  

This allows transforming the geometrical kernel into a matrix  

 

112

21 2

1 2

0

0

0

n

n

n n

KK

K K

K K

 
 
 
 
 
 

K   (11) 

which is symmetrical as Kij = Kji for every i and j.  

Since each facet has its proper spectral reflectance, we gather 

all facet's reflectances into an n × n diagonal matrix whose ith 

entry on the diagonal is the reflectance of facet i: 

 

1

2

0 0

0

0

0 0 n

r

r

r

 
 
 
 
 
 

R   (12) 

We can finally write Eq. (9) as: 

  
1


0L = R E + KL   (13) 

where vectors L and E0 are defined in Eq. (5), or equivalently as: 

 

1
1 1



 
 

  
0L = I RK RE   (14) 

where I is the n × n identity matrix. All terms contained in this 

general matrix equation are wavelength-dependent. The equation is 

therefore written for each wavelength of light. 

Remark: the computation of the terms ijK  defined by equation 

(10) needs an important comment. When points iP  and jP  are far 

from each other, we can assume that function ( , )i jK P P  is nearly 

constant over the integration domain and therefore that equation 

(10) can be simplified as  

 ( , )ij i j jK K P P P    (15) 

However, this approximation is not valid for adjacent facets, 

i.e., when iP  and jP  are close to each other. In this case, ijK  must 

be computed by integration as defined in equation (10), either 

analytically when possible, or numerically.  

Special case of a V-cavity of infinite length 

In the present study, we consider the interreflections in a "V-

cavity" drawn by two adjacent planar panels forming an angle α, as 

shown in Figure 4. The two panels will be labelled 1 and 2. The 

common edge of the panels, assumed to be of infinite length, 

defines the x-axis of the 3D Cartesian space. The width of both 

panels is set to unity (it could be equivalently any other value: the 

width has no impact on the interreflection effect in this 

configuration as we will show later). The y- and z-axes belong to 

the plane orthogonal to the x-axis, the z-axis being in the bisector 

plane between the two panels. Hence, each panel forms an angle 

α/2 with the z-axis. Moreover, the position of points in the panels 

will be described by proper bi-dimensional coordinate systems: 

 ,x y  in panel 1 and  ,x y  in panel 2, where the y   and y   

axes belong respectively to panel 1 and panel 2 and are 

perpendicular to the x axis. Since the V-cavities considered in this 

paper have an infinite length according to the x-axis, their 

geometry depends only on angle α.  

The general interreflection equation (14), in particular the 

 

Figure 4 – 3D Geometry of a V-cavity. 
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matrices R and K, can be adapted to the V-cavity of infinite length 

made of a uniform Lambertian material as follows.  

Regarding matrix R, since the two panels are uniform and 

made of the same Lambertian material, all facets have the same 

reflectance r. Hence, matrix R is a diagonal matrix where all terms 

on the diagonal are r, and can therefore be replaced with rI, where 

I is the 2p × 2p unity matrix. Eq. (14) can therefore be written as: 

 

1
r r



 
 

  
0L = I K E   (16) 

Regarding matrix K, it is built according to a tessellation of the 

panels into 2p facets, and has therefore the dimension 2p × 2p. 

Each of the two panels is decomposed into p facets of infinite 

length (according to the x-axis) and finite width (according to the y' 

or y" axis, accordingly). Since the total width of each panel is 

unity, the width of each facet is 1/p. The entries ijK  of matrix K 

are computed according to Eq. (10), where function ( , )i jK P P  is 

defined by Eq. (7). The visibility function  ,i jV P P  introduced in 

equation (7) is 0 for facets belonging to the same panel, and 1 for 

facets belonging to different panels. The geometrical extent 

 2 ,i jd G P P , also introduced in equation (7), must take into 

account the fact that we have here facets of infinite length. It has 

an analytical expression that we propose to derive now.  

Let us consider on panel 1 a point iP  of coordinates  ,i ix y  in 

the (x, y')-coordinate system used for panel 1, and a point jP  of 

coordinates  ,j jx y  in the (x, y'')-coordinate system used for 

panel 2, as featured in Figure 5. We also consider on panel 2 a 

facet of infinite length whose edges are parallel to the x-axis. Its 

highest edge meets point jP  at the ordinate jy   and, since every 

facet has a width 1/p, its lower edge is at the ordinate 1 /jy p  . 

We want to express first the geometrical extent subtended by 

elemental areas idP  and jdP  around points iP  and jP , then the 

geometrical extent subtended by idP  and the whole facet j.  

In the 3D Cartesian system introduced in Figure 4, the points 

iP  and jP  have the coordinates 

  

 

sin / 2

cos / 2

i

i i

i

x

P y

y

 
   
 
   

   and    

 

sin / 2

cos / 2

j

j j

j

x

P y

y

 
  
 
   

 (17) 

and the normal of idP  and jdP , corresponding to the normals N1 

and N2 of panels 1 and 2, respectively, are: 

  

 

0

cos / 2

sin / 2

 
 

 
 
  

1N    and    

 
2

0

cos / 2

sin / 2

 
 

  
 
  

N  (18) 

The angles θi and θj formed by the line  i jPP  and the normals 

N1, respectively N2, therefore satisfy the equations:   

 

Figure 5 – Geometrical configuration where a point Pi on panel 1 sees a facet 
of infinite length on panel 2. 

    

   

 

 

0
1

cos sin / 2 sin / 2 cos / 2

cos / 2 cos / 2 sin / 2

j i

i j i

j i

x x

y y

y y

   
          
            

  

and 

    

   

 

 

0
1

cos sin / 2 sin / 2 cos / 2

cos / 2 cos / 2 sin / 2

i j

j i j

i j

x x

y y

y y

   
            
            

 

where symbol   denotes the dot product between vectors, and Δ 

denotes the length i jPP : 

 
         

 

2 2 22 2

2 2

2 2 2

sin cos

2 cos

i j i j i j

i j i j i

x x y y y y

x x y y y y

          

        

 (19) 

After computation, one obtains: 

 
sin

cos
j

i

y 
 


   and   

sin
cos i

j

y 
 


 (20) 

The elemental area idP  around iP  can be written i idx dy  and 

the elemental area jdP  around jP , j jdx dy .  

Finally, according to Eqs. (3), (19) and (20), the geometrical 

extent is written: 

 

 

2

4

2
2 2 2

sin

2 cos

i j

i i j j

i j i j i j

y y
d G dx dy dx dy

x x y y y y

  
 

        
 

 (21) 

and the interreflection Kernel defined by Eq. (7) becomes 

  
 

2

2
2 2 2

sin
, , ,

2 cos

i j

i i j j

i j i j i j

y y
K x y x y

x x y y y y

  
  

        
 

 (22) 
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Figure 6 - Geometry of the V-cavity and the considered illuminations.

Regarding the non-zero entries of matrix K, defined by Eq. 

(10) in the case where iP  and jP  belong to different panels, they 

are obtained by integrating the interreflection Kernel 

 , , ,i i j jK x y x y  , given by Eq. (22), over the facet, i.e., between 

  to   along the x-axis, and between 1 /jy p   and jy   along 

the y  -axis: 

 

 

2

21/ 2 2 2

sin

2 cos

j

j

y
i

ij
x y y p

i i i

y y dxdy
K

x x y y y y



   

  


         

   (23) 

This double integral has an analytical solution, given by: 

    1

ij j j p
y yK F F     (24) 

with 

  
2 2

cos

2 2 cos

i

i i

u y
F u

y u y u

 


   
 

Unsurprisingly, ijK  is independent of ix . This is due to the 

infinite length of the V-cavity which generates an invariant 

interreflections process along the x axis.  

 Finally, matrix K in Eq. (16) is a 2p × 2p matrix whose 

entries are 0 for pairs of facets belonging to the same panel, and 

are given by Eq. (24) for pairs of facets belonging to different 

panels, knowing that ij jiK K . 

4. Illumination Geometries 

In the radiance equation (16), the term E0 denotes the direct 

irradiance of the different facets in the V-cavity (without taking 

into account the interreflections), which depends on the 

geometrical configuration of illumination. In this study, we 

consider that the lighting is uniform and covers the whole V-

cavity. Three configurations are considered, featured in Figure 6: 

frontal directional lighting, where the incoming light is parallel to 

the z-axis; oblique directional lighting where the incoming light is 

parallel to a vector e, featured in Figure 5 by a green arrow, 

forming a polar angle θ in respect to the z-axis and an azimuthal 

angle φ in respect to the (y, z)-plane; and perfectly diffuse lighting, 

characterized by a radiance uniformly distributed over the 

hemisphere. In every case, the lighting covers uniformly the whole 

cavity area. The aim of this section is to study the influence of the 

angular distribution of incident light on the radiance displayed by 

the cavity in each point by taking into account to possible shadows 

that one panel may project onto the other panel.  

Directional Lighting 

We first consider a frontal collimated lighting, parallel to the z-

axis, i.e.,  0 0 1
T

e . The horizontal plane (x, y) receives an 

irradiance denoted as zE . It is the maximum direct irradiance that 

a panel can receive. Under this frontal illumination, since both 

panels form an angle α/2 with the vector e, each one receives an 

irradiance  sin 2zE  . All entries of vector 0E  are therefore 

identical:  

   
2

sin 1 1
T

zE 0E   (25) 

Under an oblique illumination, where the collimated light is 

parallel to the vector  

  sin sin sin cos cos
T

     e , (26) 

the panels receive an irradiance given by 

 z iE e N   (27) 

where the symbol   denotes the clamped dot product between 

the illumination vector e and the normal iN  of the panel i  = 1 or 

2, given by Eq. (18), or equal to 0 when the dot product is negative 

since the surface is not illuminated when the angle between the 

incident light direction and the surface normal exceeds 90°. 

Hence, for an oblique illumination, the entries of vector  0E  

are    sin cos cos / 2 cos sin / 2zE u          with 1u   for the 

p first entries attached to the facets on panel 1, and 1u    for the 

p last entries attached to the facets on panel 2.  

Moreover, part of a panel may also be not illuminated because 

of shadowing by the other panel. Shadowing can be taken into 

account into the interreflection equation (16) by simply setting to 0 

the entries of the irradiance vector E0 corresponding to the non-

illuminated facets, thanks to a diagonal matrix hS  of size 2p × 2p 

whose jth entry on the diagonal is 1 if the jth facet is illuminated, 

and 0 otherwise. The interreflection equation modified as follows 

automatically takes into account the fact that some facets may be 
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not directly illuminated by the light source: 

 

1
r r



 
 

  
h 0L = I K S E   (28) 

The Boolean values in this diagonal matrix hS  are given by a 

function  θ,φjS  depending on the orientation of illumination, 

computed according to a condition that the central point F of each 

facet j of the V-cavity satisfies or not, and that we propose to 

introduce now.  

First of all, we can observe that shadowing does not occur if 

vector e is parallel to the (x, z) plane. It occurs only if the vector 


e  obtained by projection of vector e onto the (y, z) plane forms 

an angle larger than α/2. This projected vector  


e  can be defined 

by its coordinates  ,e ey z  in the (y, z) plane: 

 
sin cos

cos

e

e

y

z


    

    
  

e   (29) 

In Figure 7, the projections of panels 1 and 2 onto the (y, z) 

plane are represented by a blue segment OA and a red segment 

OB, respectively. Vector 


e , represented by a green arrow, is 

based on the central point F of a facet located on panel 1, at a 

distance Fy   from the fold (point O):  

 
 

 

sin / 2
F

cos / 2

FF

FF

yy

yz

   
         

  (30) 

The line parallel to vector 


e  that meets point F intersects line 

(AB) in a point G whose coordinates in the (y, z) plane satisfy both 

line equations:  

 

 

 

2
(AB) : cos

(FG) :

G

e
G F G F

e

z

z
z z y y

y



  
 (31) 

By solving this system of two equations, one obtains:  

      22
1 tan cos cos sinG F Fy y y

       (32) 

The condition for this point F on panel 1 to be illuminated is 

that G is between A and B, i.e., that  sin / 2Gy   , which yields 

the condition: 

        
2 2 2

1 tan cos cos sin sinF Fy y          (33) 

The Boolean function  θ,φiS  used to determine the values of 

the first p entries on the diagonal of matrix hS  is 1 is the central 

point F of the ith facet satisfies the inequality (33), and 0 

otherwise.  

Similar reasoning line applies when the point F is on panel 2, 

except that its coordinates in the (y, z) plane are: 

 

 

 

sin / 2
F

cos / 2

FF

FF

yy

yz

   
           

 

Figure 7 – Geometry of the V-cavity and the illumination vector projected onto 
the plan (y, z) plane. 

and the inequality of Eq. (33) becomes 

        
2 2 2

1 tan cos cos sin sinF Fy y          (34) 

The Boolean function  θ,φjS  used to determine the values of 

the last p entries on the diagonal of matrix hS  is 1 if the central 

point F of the p+jth facet satisfies the inequality (34), and 0 

otherwise.  

Diffuse lighting 

Another type of lighting geometry is the perfectly diffuse light, 

also called Lambertian illumination (see Figure 5.c). Under this 

lighting, a horizontal plan would receive same radiance L0 from 

every direction of the hemisphere, forming on the (x, y) plane a 

total irradiance Ez related to L0 by: 

  
2 /2

0 0
0 0

cos sinzE L d d L
 

 
          (35) 

In the case of the V-cavity, because of the shadowing effect, 

the panels are not homogeneously illuminated: the points near the 

edges are more illuminated than the ones near the fold. The 

irradiance 0, jE  on each facet j of the V-cavity can be computed 

thanks to the Boolean function  ,jS    introduced previously:   

  
2 /2

0, 0
0 0

, cos sinj jE L S d d
 

 
          (36) 

The entries of the vector 0E  are computed according to this 

equation (36), and the interreflection equation (16) can be used to 

predict the radiance observed from the facets of the cavity. 

Figure 8 shows the irradiance distribution on panel 1 along the 

y'-axis, for various cavities characterized by different angles α 

between the panels, all illuminated by a Lambertian lighting that 

produces an irradiance unity  1zE   on a horizontal flat surface 

(α = 180°). Similar distribution would be observed on panel 2 

along the y"-axis. It is interesting to observe that the irradiance 
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received by the panel is lower near the fold than near their external 

edges. As α decreases, the irradiance is decreased by a factor 
 sin / 2  in every position y' [see Eq. (25)], and is even more 

decreased as y' tends to zero due to the shadowing effect.   

 

 

Figure 8 – Direct irradiance on panel 1 along the y’ axis, from 0 (fold) to 1 
(external edge), for a panel of V-cavities characterized by different angles α 
under a Lambertian illumination producing an irradiance Ez = 1 on the 
horizontal plane.  

Other illumination geometries 

More complex illumination geometries can be considered as 

soon as the radiance  0 ,L    coming from every direction of the 

hemisphere is known. The entries of vector 0E  are thus computed 

according to the following equation, which extends Eq. (36): 

     
2 /2

0, 0
0 0

, , cos sinj jE L S d d
 

 
           (37) 

Outdoor lighting in a sunny day can often be modeled as the 

sum of direct illumination from the sun and diffuse illumination 

from the blue sky that we can consider as Lambertian in a first 

approximation. In this case, two vectors 0,directE  and 0,diffuseE  can 

be computed for the sunlight according to the orientation of the 

sun, respectively for the diffuse light from the sky, by reminding 

that two spectral power distribution of the two lightings are 

different. The global irradiance vector 0,directE  is a linear 

combination of the two vectors 

 0, 0,(1 ) direct diffuseb b  generalE E E   (38) 

with b a real number between 0 and 1.  

5. Perceived radiance according to the 
illumination geometry 

The present section aims at using the interreflection model 

introduced in the previous sections to study, through various 

simulations, the influence of the illumination geometry on the 

gradient of radiances displayed by the V-cavity, as well as the one 

of the surface reflectance.   

Collimated lighting 

The first simulation is based on a V-cavity whose panels form 

an angle α = 45°, made of a Lambertian material with spectral 

reflectance r(λ) corresponding to a magenta color. The V-cavity is 

illuminated by collimated light, parallel to the z-axis (frontal 

illumination), producing an irradiance zE    on a horizontal 

plane parallel to the (x, y) plane. Under this illumination, the 

radiance displayed by a perflectly white (reflectance 1r  ), 

lambertian, flat and horizontal surface would be / 1zL E   . 

The cavity is observed frontally, along the z-axis. The radiance 

displayed by similar surface but with a spectral reflectance  r   

corresponding to a magenta color is plotted with a blue line in 

Figure 9. We also consider a V-cavity made of this magenta 

material whose panels form an angle α = 45°. Due to the 

obliqueness of the panels, their irradiance is  sin / 2zE  , which 

represents only 39% of the irradiance Ez on the horizontal flat 

surface. The spectral radiances displayed by the different facets of 

panel 1, given by Eq. (28), are plotted in Figure 9 in grey lines 

except the ones issued from the two facets located near the fold 

 0y  and near the external edge  1 ,y which are plotted in 

solid black line and dashed black line, respectively. Notice that 

similar spectral radiances are displayed by panels 1 and 2 under 

this frontal lighting.  

Near the external edge of the cavity, the interreflection effect is 

weak: the perceived radiance in this area (plotted with a dashed 

line) is made of photons having undergone at most one or two 

bounces on the panels and its spectral distribution is close to the 

one of the radiance displayed by the flat horizontal surface (plotted 

with a blue line), on which photons undergo one bounce only. The 

difference between these two spectra relies mainly on the 

wavelength- independent irradiance factor 
 sin / 2  due to the 

oblique illumination of the panel. In contrast, the interreflection 

effect is strong near the fold: the radiance displayed in these areas 

is higher, especially in the spectral domain for which the material 

is highly reflecting (reflectance r higher than 0.7): the radiance 

noticeably overpasses the one displayed by the flat surface. The 

 

Figure 9 – Simulated spectral radiances perceived from a flat Lambertian 
surface of magenta material illuminated by frontal collimated irradiance Ez = 
π, and from facets of a V-cavity of angle α = 45° under similar irradiance. 
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color of the panels is clearly more saturated near the fold than near 

the edges, as shown in Figure 1.  

The average radiance that would be observed far from the 

cavity, plotted with a red line, is darker that the one issued from 

the flat surface in the spectral domain where the material is the 

more absorbing (i.e., the less reflecting), but it is lighter in the rest 

of the spectrum. The average color of the V-cavity is more 

saturated than the one of the flat surface.   

We also simulated the radiance exhibited by this cavity when 

illuminated with oblique collimated light in a configuration where 

shadowing occurs. The incidence direction forms an angle of 30° 

with the z-axis, and is parallel to the (y, z) plane. Panel 1 is only 

partly illuminated, and panel 2 is not illuminated at all. The 

radiance profile displayed by the two panels, along the y'- and y"-

axes, is plotted and shown under the form of a grey level image in 

Figure 10. We can see that even though panel 2 is not directly 

illuminated, it is illuminated by interreflections with panel 1 and 

displays a non-zero radiance. 

Diffuse lighting 

After the simulations done for collimated light, we performed 

simulations for a Lambertian illumination by considering same 

material, same cavity geometry, and same irradiance zE    on 

the flat surface as for the frontal collimated lighting. Observation is 

still frontal, along the z-axis. The radiances displayed by the 

different facets of panel 1 along the y'-axis are plotted in Figure 11, 

by using the same line style as in Figure 9. The radiances displayed 

by panel 2 are similar. We observe that the facets near the external 

edge receive a higher irradiance under this Lambertian lighting 

(76% of the irradiance Ez on the horizontal surface) than under 

frontal collimated lighting (39%). The spectral radiances displayed 

in these areas where the interreflection effect is the weakest are 

therefore higher in Figure 11 than in Figure 9 (see dashed lines), 

but remain lower than the one issued from the flat surface (blue 

line). Near the fold where the interreflections are the strongest, the 

irradiance is strongly decreased by the shadowing effect. The 

facets in this area display a lower radiance (solid black line) than 

the ones near the external edge (dashed black line), despite the 

effect of the interreflections. This is visible in Figure 2 through the 

picture of a V-cavity made of grey Lambertian material, placed 

into an integrating sphere which provides the Lambertian 

illumination.  

There is therefore a competition between the interreflection 

effect, which tends to increase the radiance, and the shadowing 

effect, which tends to decrease it. This latter is clearly the strongest 

in the case of a Lambertian illumination, but we wanted to 

investigate the case of other illumination geometries for which the 

competition between the two effects could be more equitable, in 

particular the case of mixed collimated and diffuse illuminations.   

Mixing direct and diffuse lightings 

The variation of perceived radiance on panel 1 of a cavity of 

angle α = 45°, along the y'-axis from the fold (y' = 0) to the 

external edge (y' = 1), have been simulated by using the 

interreflection model and plotted in Figure 12 for two values of the 

material's reflectance, r = 1 and r = 0.8, and various illumination 

geometries combining frontal collimated light and perfectly diffuse 

lights in different proportions according to Eq. (38) (ratio b from 0 

to 1 in steps of 0.2). In every case, the irradiance on the horizontal 

plane is Ez = π, and the panel is still observed frontally, according 

to the z-axis.  

 

 

Figure 10 – Simulated spectral radiance perceived from the two panels of a 
V-cavity of angle α = 45° and reflectance r = 1, illuminated by oblique 
collimated irradiance Ez = π coming from the direction (θ, φ) = (30°, 0°). A 
slice of the cavity, perpendicular to the x-axis, is shown in grey level below 
the graph.  

 

 

 

Figure 11 – Simulated spectral radiances perceived from a flat Lambertian 
surface of magenta material illuminated by a Lambertian irradiance Ez = π, 
and from facets of a V-cavity of angle α = 45° under similar irradiance.  
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Figure 12 – Variation of the perceived radiance along the y'-axis on panel 1 in 
a V-cavity with angle α = 45° and reflectance r = 1 (solid lines) or 0.8 (dashed 
lines), for various illumination geometries obtained by mixing a fraction b of 
perfectly diffuse light and a fraction (1 – b) of frontal collimated light. 

When illuminated by perflectly diffuse light, the perflectly 

non-absorbing cavity, with reflectance 1, displays a constant 

radiance equal to unity over the whole panel: it looks similar as a 

flat, horizontal surface made of the same material, which also 

displays a uniform radiance equal to unity. As soon as the 

illumination geometry contains a fraction of collimated light, the 

areas near the fold display a higher radiance and thus look brighter 

than the horizontal flat surface; in opposition, the areas near the 

external edge are darker than the horizontal flat surface. At a 

position on the panel around y' = 0.6, the radiance unity is 

displayed independently of the illumination geometry. For the 

material with reflectance r = 0.8, which is slightly absorbing, all 

points of the panel display a lower radiance than a horizontal flat 

surface of the same material, which would display a radiance 0.8. 

The areas near the fold are brighter than the ones near the external 

edge when the proportion of collimated light is high (low b values) 

but they look darker when the proportion of collimated light is low 

(high b values). As for the non-absorbing material, there is a 

position on the panel, around y' = 0.55, where the displayed 

radiance is independent on the illumination geometry. 

Different variations as the ones displayed in Figure 12 would 

be obtained with other material reflectance values: the displayed 

radiance strongly decreases as the reflectance decreases. The 

cavity angle α, fixed to 45° in our simulations, also have a strong 

impact on the radiance gradient displayed by the cavity panels. A 

lower angle value strengthens both interreflection and shadowing 

effects, the first one tending to increase the displayed radiance near 

the fold, and the second one tending to decrease it. There is 

therefore a competition between the two phenomena, being 

generally in favor to the interreflection effect (brighter areas near 

the fold) under a rather collimated lighting, and in favor to the 

shadowing effect (brighter areas near the external edges) under a 

rather diffuse lighting.  

The observation angle, not analyzed in this study, would also 

have an influence on the perceived radiance, especially at grazing 

angle where only the areas closest to external edge of one panel are 

observed, the other areas being masked by the other panel. 

Masking ca be treated by defining a similar Boolean function as 

for shadowing.  

6. Conclusions 

In this paper, we analyzed the interreflection effects occurring 

in concave surfaces under various illumination geometries, from 

collimated to perfectly diffuse lightings, through the simple case of 

V-cavities of infinite length made of a Lambertian material. 

Interreflections are known to increase the radiance exhibited by the 

concavities or the corners of the surface, but this stands mainly for 

a collimated illumination. In case of diffuse lighting, shadowing 

tends to decrease the irradiance of the surface in the concavities or 

corners, and therefore to make them darker than would be a flat 

surface of the same material. The reflectance of the material and 

the angle of the corner have also a strong impact on the 

competition between the interreflection effect and the shadowing 

effects, which can result in a higher radiance near the fold of the 

cavity than near its external edges, or in the opposite situation. An 

extension of the model presented here to V-cavities of finite-length 

would be interesting for practical applications, such as the creation 

of color charts with V-shaped color patches [17] whose potential to 

increase the accuracy of the color calibration of cameras has been 

recently shown by assuming collimated illumination. This model 

could help to see whether similar color calibration performance 

can be achieved when the illumination geometry contains diffuse 

light.   
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