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Generating Singular Signals by Filtering Bernoulli Correlated Inputs
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Singular random signals can be obtained at the output of some linear filters when the input is a Bernoulli white noise. It is shown that this whiteness assumption can be relaxed and some examples of colored Bernoulli signals generating singularity by filtering are presented. Computer experiments are realized in order to verify these results.

I. INTRODUCTION

Singular random signals have been recently presented and analyzed in [START_REF] Picinbono | Singular random signals[END_REF]. A signal x k is said to be singular if the random variables (RV) x k are singular for any k. This means that the marginal distribution function (DF) F (x) of x k is continuous but has a derivative equal to zero almost everywhere. Usually these RVs are considered as mathematical curiosities and one of the main purposes of [START_REF] Picinbono | Singular random signals[END_REF] was to show that, on the contrary, they are very common. In particular the output x k of a linear filter generated by the input signal w k is singular if the filter satisfies some simple conditions concerning its poles and if w k is discrete-valued and strictly white, or is a sequence of independent and identically distributed (IID) random variables (see p. 254 of [START_REF] Picinbono | Random Signals and Systems[END_REF]). This whiteness assumption is introduced in almost all the studies on this question [START_REF] Picinbono | Singular random signals[END_REF], [START_REF] Lukacs | Characteristic Functions[END_REF], [START_REF] Wittke | Infinite series of interference variables with Cantor-type distributions[END_REF], [START_REF] Naraghi-Pour | On the continuity of the stationary state distribution of DPCM[END_REF], [START_REF] Smith | Error probabilities on fading channels with intersymbol interference and noise[END_REF]. Our purpose is to relax this assumption and to show that some correlated inputs can also generate singular signals.

II. THEORETICAL ANALYSIS

The starting point of the analysis is the Lebesgue decomposition theorem. It says that the DF F (x) of a random variable (RV) X can be expressed in an unique way as F (x) = a 1 F c (x) + a 2 F d (x) + a 3 F s (x), a i ≥ 0, a 1 + a 2 + a 3 = 1.

(

) 1 
In this equation the three functions F i (x) are DFs and F c (x), F d (x), and F s (x) are the continuous, discrete and singular components of F (x) respectively. If a 1 = 1, the RV is continuous and its PDF is the derivative of F c (x). If a 2 = 1, X is a discrete RV. If, finally, a 3 = 1, the RV X is singular.

The spectrum S F of a RV X is the set of the points of increase of its DF F (x). Its Lebesgue measure L(S F ) is called the spectral measure (SM) of X. If the SM is zero, the continuous part in (1) is zero, or a 1 = 0. Then the RV is either discrete (a 3 = 0), or singular (a 2 = 0 ), or a mixture of a discrete and a singular parts. As a consequence in order to show that a RV is singular it suffices to show that its SM is zero and that there is no discrete part in the Lebesgue decomposition of its DF.

Let now F be a causal filter and h k its impulse response. The output x k generated by the input

w k is x k = ∞ i=0 h i w k-i .
In order to simplify the presentation we shall study only symmetric Bernoulli input signals w k . This means that w k takes only the values ±1 with equal probabilities. The extension to signals with more than two discrete values introduces only complexities of notations. The symmetry assumption of w k implies that x k is also symmetric, which means that x k and -x k have the same DF which is the DF of the RV

X = ∞ k=0 h k w k . (2) 
Let F S be the set of filters satisfying the following conditions:

(a) They are dynamical, which means that they are causal, stable, and that their transfer function H(z) is a rational function.

(b) They have an infinite impulse response (IIR), which means that there is at least one nonzero pole.

(c) Their poles are inside the circle of singularity introduced in [START_REF] Picinbono | Singular random signals[END_REF]. It has the same center as the unit circle and its radius is 1/2.

The exponential filter k k = a k belongs obviously to this set if 0 < |a| < 1/2. The main result used below is contained in the following theorem partially indicated in [START_REF] Picinbono | Singular random signals[END_REF].

Theorem 1. Let w k be the input of a filter F belonging to F S and x k the corresponding output. If w k is a Bernoulli symmetric signal then the SM of x k is zero.

Proof. The filter F is defined by its transfer function H(z) or its impulse response h k . Let F be the filter with the impulse response

g k = 2 k h k . It is obvious that its transfer function is G(z) = H(z/2).
Then if the poles of F are z i , those of F are 2z i . The assumption that the poles of F are inside the circle of singularity implies therefore that the poles of F are inside the unit circle, or that F is stable and then ∞ k=0 |g k | < +∞. Let X N and R N be the finite sum and the rest defined by

X N = N k=0 h k w k and R N = ∞ k=N +1 h k w k . Since w k = ±1 we have |R N | ≤ ρ N with ρ N = ∞ k=N +1 |h k |.
As X N can take at the maximum 2 N +1 values, the SM S of X satisfies S ≤ 2 N +1 ρ N . This is valid for all N . Then S ≤ 2 lim N →∞ (2 N ρ N ). But we have

2 N ρ N = 2 N ∞ k=N +1 |h k | < ∞ k=N +1 2 k |h k | = ∞ k=N +1 |g k |, (3) 
and the limit for N → ∞ is 0 because ∞ k=0 |g k | < +∞. This implies that the SM of X is 0, or a 1 = 0. It is shown in [START_REF] Picinbono | Singular random signals[END_REF] that if the input signal is white, which means that the w k are IID symmetric Bernoulli RVs, then there is no discrete component in the DF of X, or a 2 = 0, and this implies that X is singular.

Our purpose is to investigate whether, (and if so, under what conditions), the whiteness assumption can be relaxed. We assume then that the w k s are still symmetric Bernoulli, but not necessarily independent. Let X N be the partial sum defined by

X N = N k=0 h k w k . ( 4 
)
It takes at the maximum 2 N +1 distinct values v N i . From these values we can construct a tree of representation analyzed in [START_REF] Picinbono | Singular random signals[END_REF]. To each value v N i at the step N we associate a node V N i of this tree and when passing from N to N + 1 each node V N i generates two distinct nodes defined by . The nodes V 0 1 and V 0 2 defined by -v 0 1 = v 0 2 = |h 0 | are generated from an origin node V which does not correspond DRAFT August 15, 2006 to a value of X N . A node V N i is said to be single if it is generated by only one node V N -1 j(i) . In the opposite case it is multiple. If all the nodes are single the number of distinct nodes V N i is 2 N +1 , and we assume that this is satisfied in what follows. This assumption is verified for the exponential filter where h k = a k when 0 < |a| < 1/2 and also for all the filters such that there is no crossing between the branches of the tree, as analyzed in [START_REF] Picinbono | Singular random signals[END_REF].

This assumption of single nodes depends uniquely on the filter. The set of filters F having this property is called F D . Most of the following results are related to filters belonging to the set

F SD = F S ∩ F D . The exponential filter h k = a k belongs obviously to this set if 0 < |a| < 1/2.
The assumption of single nodes means in particular that for any N and i there is a unique path going

from V to V N i . Let i N k (i), 0 ≤ k ≤ N
, be the indices j defining the nodes V k j of this path. These nodes can then be written V k i N k (i) and the index i N k (i) characterizes the unique node of the tree at the step k located on the path going from V to V N i . The problem is to calculate the probabilities

p N (i) = P [x N = v N i ] , 1 ≤ i ≤ 2 N +1 . (5) 
When the w k s are IID this probability is 1/2 N +1 . When they are no longer independent, its calculation is much more complicated.

For this we introduce the conditional probability

p N (i, j) = p N [x N = v N i |x N -1 = v N -1 j ], (6) 
called also transition probability in the tree. It has two fundamental properties for the analysis that follows.

The first comes from its normalization specified for all j by 2 N +1 i=1 p(i, j) = 1. However a node V N -1 j of the tree of construction generates only two nodes V N i characterized by the indices i + (j) and i -(j) and, according to (4), corresponding to the values

v N i± (j) = v N -1 j ± h N .
As a consequence for a given j there are only two terms in the previous sum and we have

p N [i + (j), j] + p N [i -(j), j)] = 1. (7) 
The second starts from the fact that for any node V N i there is only one node V N -1 j(i) at the step N -1 of the tree generating V N i at the step N . Thus p N (i, j) is zero except when j = j(i), and the only nonzero values of p N (i, j) are

q N (i) = p N [i, j(i)] (8) 
for N > 0 and q 0 (i) = 1/2.

It results from [START_REF] Smith | Error probabilities on fading channels with intersymbol interference and noise[END_REF] and from the unicity of the path between V and

V N i that p N [(x N = v N i ) ∩ (x N -1 = v N -1 j )] = p N -1 (j) . p N (i, j) δ[j -j(i)], (9) 
where δ[k] is the Kronecker delta symbol equal to 1 if k = 0 and 0 otherwise. By a summation on j, which contains only one term, we obtain

p N (i) = p N -1 [j(i)] q N (i). (10) 
By repeating this at all the nodes of the unique path between V and V N i characterized by the indices

i N k (i) we obtain p N (i) = N k=0 q k [i N k (i)]. (11) 
When the RVs w k are IID we have of course q N [i N k (i)] = 1/2, and we find again that the values

v N i have equal probabilities 1/2 N +1 .
The probabilities p N (i) of (11) are normalized, or i p N (i) = 1, where the sum is extended to all the indices i from 1 to 2 N +1 . This property is valid for N = 0 because q 0 (i) = 1/2. Suppose that it is valid at the step N -1. Since each node V N -1 j generates only two nodes V N i-(j) and V N i+(j) the result comes from (7).

The relation (11) is the basis of the following analysis of the singularity. Indeed if the SM of X is zero and if all the p N (i) tend to 0 when N → ∞, there is no value v ∞ i with a finite probability, and this means that the RV X cannot have a discrete component and then is singular. This can be specified by the following theorem.

Theorem 2. Let X be the RV defined by (2) where h k is the impulse response of a filter belonging to F SD and w k a sequence of Bernoulli RVs. If the transition probabilities q N (i) defined by (8) satisfy

0 < q N (i) < B < 1, (12) 
then the RV X is singular, or a 1 = a 2 = 0.

Proof. As F belongs to F SD the SM of X is zero, according to Theorem 1. It remains to show that a 2 = 0. This is a direct consequence of (11) and (12) because p N (i) < (1/2)B N , which tends to zero when N → ∞.

Comments. Note that this theorem introduces only a sufficient condition of singularity. Note also that it can be applied for white input because in this case q

N (i) = 1/2. The condition F ∈ F SD is satisfied DRAFT August 15, 2006
by a large class of filters and some are presented in [START_REF] Picinbono | Singular random signals[END_REF]. However the question of characterizing all the dynamical filters belonging to F SD remains open. As a matter of fact it is possible to extend this theorem to the case where some nodes are not single, but this introduces other conditions that cannot be presented in this paper.

III. EXAMPLES

Application of condition (12) requires the calculation of the probabilities q N (i) defined by (8) and related to the transitions probabilities p N (i, j) defined by [START_REF] Smith | Error probabilities on fading channels with intersymbol interference and noise[END_REF]. For this it is interesting to express these probabilities in terms of those of the RVs w k . For this note first that for a given v N -1 j , or a given node

V N -1 j
, there is only one path coming from

V to V N -1 j , or one sequence of values of w k , 0 < k ≤ N -1.
Let us denote this sequence as S N -1 (j). The transition probability p N (i, j) is simply related to the conditional probabilities of the w k by

p N [i ±1 (j), j] = P [w N = ±1|S N -1 (j)], (13) 
where i + (j) and i -(j) are the two indices i defining the two nodes V N i generated by the node V N -1 j .

Note that the probabilities (13) are now transition probabilities in time.

These expressions are especially interesting in the case where the input w k is a Bernoulli symmetric Markovian signal. Let us remind that a symmetric Bernoulli Markovian signal of order P is a signal taking the values ±1 with equal probabilities and which can be expressed as The Markov assumption means that the sequence S N -1 (j) in (13) can be replaced by a sequence using only the past of order P . This can be written

w k = f (w k-1 , w k-2 , ..., w k-P , b k ), (14) 
p N [i ± (j), j] = P [w N = ±1|w N -1 , ..., w N -P ]. (15) 
Since the RVs w k take only the values ±1, there are only at most 2 P distinct values of p N [i ± (j), j]. If we assume that the signal is not predictable there is no value of p N equal to 1. Then the bound of (12)

August 15, 2006 DRAFT is simply the maximum value of the finite number of transition probabilities p N (i, j). Then Theorem 2 can be applied and the RV X is singular.

It is interesting to present examples of signals for which Theorem 1 can be applied but not Theorem 2. In this case the spectral measure is zero, or a 1 = 0, but the RV X is not purely singular, or a 3 = 1.

We shall first present a case where it is purely discrete, or a 2 = 1.

This especially appears when the symmetric Bernoulli signal w k is predictable. A predictable signal of order P is defined by ( 14) where b k = 0. This means that at each k, w k can be estimated without error in terms of its past P values. As a consequence w k is also completely defined from its P first values, or

w k = h(w 0 , w 1 , ..., w P -1 ). ( 16 
)
The simplest example of such a Bernoulli signal is w k = w 0 (-1) k , where w 0 is a Bernoulli symmetric RV. Here P = 1.

It is clear that if w k is predictable, then the RV X of ( 2) is discrete, or a 2 = 1. Indeed since the RVs w i take only 2 values, X takes at the maximum 2 P distinct positive values which means that it is a discrete RV.

In the case of the signal w k = w 0 (-1) k used with the exponential filter defined by h k = a k , we have X = w 0 /(1 + a) and it takes only the two values ±1/(1 + a) with equal probabilities.

It is clear that conditions of Theorem 2 are not satisfied for predictable signals because most of the transitions probabilities p N (i, j) are equal to 1 or 0 in such a way that there is only a finite number of paths going from V to infinity and giving values of X with nonzero probabilities.

Finally it is of interest to note that conditions of Theorem 1 can lead to a RV X with a DF mixture of discrete and singular part, or a 1 = 0 and 0 < a 2 < 1. We shall present in the next section an example of such a situation.

IV. EXPERIMENTS

Our purpose is now to verify the previous theoretical results by some computer experiments. The principle of these experiments is the same as the one used in [START_REF] Picinbono | Singular random signals[END_REF]. In order to analyze the singularity of a signal x k we realize histograms at different scales of a very large number of its values. The singularity is illustrated by the fact that the histograms introduce a fractal structure. This means that they have the same form whatever the scale of analysis. This shows, with the limited precision of any experiment, the lack of derivative.

In order to verify results of the previous section we shall introduce a procedure to generate by computer the values 0 or 1 with probabilities 1 -p and p respectively. Similarly let v k be a Bernoulli strictly white noise taking the values ±1 with the same probabilities 1/2 and independent of u k . Consider now the signal

w k = u k w k-1 + ūk v k , , k ≥ 1, (17) 
where ūk = 1 -u k . It has the form (14) where

P = 1 and b k = [u k , v k ].
It is obvious that if w k-1 takes only the values ±1 with probabilities 1/2, w k has the same property.

It can be shown that, whatever the values of w 1 , w k tends to have this property and that the covariance function γ k of w k is p |k| , so it is an exponential covariance function. For p = 0, u k = 0, and w k is the white noise v k with a zero covariance function. On the other hand if p = 1, u k = 1 and w k = w 0 , which introduces constant covariance function or long range memory.

In the experiments presented below we use an exponential filter often mentioned in the previous analysis and also used in [START_REF] Picinbono | Singular random signals[END_REF]. Its input-output relationship can be written in a recursive form with the recursion

x k = ax k-1 + w k
, where w k is given by (17). In Fig. 1 we present histograms obtained when the input w k is white, or when p = 0. The experiment is realized with 10 7 samples and a = 1/3. The fractal structure appears very clearly. In Fig. 2 we present the same histograms realized with correlated inputs defined by the linear Markovian model (17) with p = 0.5. The fractal structure remains valid but the main difference is the fact that the number of samples recorded in each cell of the histograms have much stronger variations than in the case of white inputs. This can be explained theoretically but the analysis cannot be presented here.

Note that when the input is white the histograms are symmetric with respect to their centers. This is no longer true when Markovian inputs are used, except for the histogram centered at 0 because X is symmetric and its histograms are symmetric with respect to 0. This is why only histograms of positive values of x k are represented.

We shall now consider experiments in which the DF of the output x k is a mixture of discrete and singular parts. For this consider again the signal u k = u 0 (-1) k and a white signal v k taking the values ±1 with equal probabilities and independent of u 0 . Suppose now that w k is equal either to u k or to v k for all k with the probabilities α and 1 -α respectively. This implies that its covariance function is

γ k = α(-1) k + (1 -α)δ[k]. The DF of the RVs X is F (x) = αF d (x) + (1 -α)F s (x).
Applying this signal again at the input to the exponential filter h k = a k with a < 1/2 yields an output signal taking the values ±1/(1 + a) with probability α and being singular with probability 1 -α.

Results of computer experiments on this signal are presented in Figures 3 and4. In these experiments a = 1/3, as in Figs. 1 and2, and α = 0.5. This implies that x k takes the values ±0.75 with probability 0.25, which means that its DF is discontinuous for x = ±0.75 and the amplitude of the discontinuity is 0.25. The first histogram of Fig. 3 exhibits these two discontinuities characterized by two lines at the points ±0.75. One of these lines disappears in the second histogram of this figure and there is no longer a line in the last two histograms. The fractal structure introducing a singular component appears clearly in these histograms. In order to verify whether or not the discontinuity of the DF is an experimental artefact, we present in Fig. 4 four histograms isolating the point 0.75 with cells of decreasing widths. In the first histogram we observe still a residual contribution of the singular part of the DF. There is however a line at 0.75 and the fact that its amplitude is constant indicates clearly that there is effectively a discrete component. As the experiment uses 10 6 samples, the discontinuity corresponding to the probability 0.25 must be of the order of 2.5.10 5 , which clearly appears in the four histograms. This shows that the signal

x k is effectively a mixture of a discrete-valued signal and a singular signal.

V. CONCLUSION

When the input of a linear filter satisfying some conditions concerning essentially the location of its poles with respect to the circle of singularity is a Bernoulli white noise, the output can be singular.

This assumption of whiteness can however be partially relaxed while maintaining the singularity of the output. Some sufficient conditions ensuring the singularity with colored inputs have been established.

These conditions are obviously satisfied not only by white noise but also by a large class of correlated signals. It is especially the case of Markovian signals of finite order. The theoretical analysis also shows that the output generated by colored inputs can be a mixture of a discrete and a singular distribution. In particular if the input signal is predictable it was shown that the output of the filter is simply a discrete random variable. Computer experiments in order to verify the theoretical results have been realized and discussed. For this purpose a specific model of linear Markovian signal of order one was introduced and the experimental results are in complete agreement with the theory. Finally a model of Bernoulli input ensuring that the output contains a discrete and a singular part was introduced and here also the experimental results are in perfect agreement with the theory.
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