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Abstract

Singular random signals can be obtained at the output of some linear filters when the input is a

Bernoulli white noise. It is shown that this whiteness assumption can be relaxed and some examples

of colored Bernoulli signals generating singularity by filtering are presented. Computer experiments are

realized in order to verify these results.
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I. INTRODUCTION

Singular random signals have been recently presented and analyzed in [1]. A signal xk is said to be

singular if the random variables (RV) xk are singular for any k. This means that the marginal distribution

function (DF) F (x) of xk is continuous but has a derivative equal to zero almost everywhere. Usually

these RVs are considered as mathematical curiosities and one of the main purposes of [1] was to show

that, on the contrary, they are very common. In particular the output xk of a linear filter generated by

the input signal wk is singular if the filter satisfies some simple conditions concerning its poles and if

wk is discrete-valued and strictly white, or is a sequence of independent and identically distributed (IID)

random variables (see p. 254 of [2]). This whiteness assumption is introduced in almost all the studies

on this question [1], [3], [4], [5], [6]. Our purpose is to relax this assumption and to show that some

correlated inputs can also generate singular signals.

II. THEORETICAL ANALYSIS

The starting point of the analysis is the Lebesgue decomposition theorem. It says that the DF F (x) of

a random variable (RV) X can be expressed in an unique way as

F (x) = a1Fc(x) + a2Fd(x) + a3Fs(x), ai ≥ 0, a1 + a2 + a3 = 1. (1)

In this equation the three functions Fi(x) are DFs and Fc(x), Fd(x), and Fs(x) are the continuous,

discrete and singular components of F (x) respectively. If a1 = 1, the RV is continuous and its PDF is

the derivative of Fc(x). If a2 = 1, X is a discrete RV. If, finally, a3 = 1, the RV X is singular.

The spectrum SF of a RV X is the set of the points of increase of its DF F (x). Its Lebesgue measure

L(SF ) is called the spectral measure (SM) of X . If the SM is zero, the continuous part in (1) is zero,

or a1 = 0. Then the RV is either discrete (a3 = 0), or singular (a2 = 0 ), or a mixture of a discrete and

a singular parts. As a consequence in order to show that a RV is singular it suffices to show that its SM

is zero and that there is no discrete part in the Lebesgue decomposition of its DF.

Let now F be a causal filter and hk its impulse response. The output xk generated by the input wk

is xk =
∑∞

i=0 hiwk−i. In order to simplify the presentation we shall study only symmetric Bernoulli

input signals wk. This means that wk takes only the values ±1 with equal probabilities. The extension

to signals with more than two discrete values introduces only complexities of notations. The symmetry

assumption of wk implies that xk is also symmetric, which means that xk and −xk have the same DF

which is the DF of the RV

X =
∞∑

k=0

hkwk. (2)
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Let FS be the set of filters satisfying the following conditions:

(a) They are dynamical, which means that they are causal, stable, and that their transfer function H(z)

is a rational function.

(b) They have an infinite impulse response (IIR), which means that there is at least one nonzero pole.

(c) Their poles are inside the circle of singularity introduced in [1]. It has the same center as the unit

circle and its radius is 1/2.

The exponential filter kk = ak belongs obviously to this set if 0 < |a| < 1/2. The main result used

below is contained in the following theorem partially indicated in [1].

Theorem 1. Let wk be the input of a filter F belonging to FS and xk the corresponding output. If wk

is a Bernoulli symmetric signal then the SM of xk is zero.

Proof. The filter F is defined by its transfer function H(z) or its impulse response hk. Let F ′ be the

filter with the impulse response gk = 2khk. It is obvious that its transfer function is G(z) = H(z/2).

Then if the poles of F are zi, those of F ′ are 2zi. The assumption that the poles of F are inside the

circle of singularity implies therefore that the poles of F ′ are inside the unit circle, or that F ′ is stable

and then
∑∞

k=0 |gk| < +∞. Let XN and RN be the finite sum and the rest defined by XN =
∑N

k=0 hkwk

and RN =
∑∞

k=N+1 hkwk. Since wk = ±1 we have |RN | ≤ ρN with ρN =
∑∞

k=N+1 |hk|. As XN can

take at the maximum 2N+1 values, the SM S of X satisfies S ≤ 2N+1ρN . This is valid for all N . Then

S ≤ 2 limN→∞(2NρN ). But we have

2NρN = 2N
∞∑

k=N+1

|hk| <
∞∑

k=N+1

2k|hk| =
∞∑

k=N+1

|gk|, (3)

and the limit for N → ∞ is 0 because
∑∞

k=0 |gk| < +∞. This implies that the SM of X is 0, or a1 = 0.

It is shown in [1] that if the input signal is white, which means that the wk are IID symmetric Bernoulli

RVs, then there is no discrete component in the DF of X , or a2 = 0, and this implies that X is singular.

Our purpose is to investigate whether, (and if so, under what conditions), the whiteness assumption can

be relaxed. We assume then that the wks are still symmetric Bernoulli, but not necessarily independent.

Let XN be the partial sum defined by

XN =
N∑

k=0

hkwk. (4)

It takes at the maximum 2N+1 distinct values vN
i . From these values we can construct a tree of

representation analyzed in [1]. To each value vN
i at the step N we associate a node V N

i of this tree

and when passing from N to N + 1 each node V N
i generates two distinct nodes defined by . The nodes

V 0
1 and V 0

2 defined by −v0
1 = v0

2 = |h0| are generated from an origin node V which does not correspond
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to a value of XN . A node V N
i is said to be single if it is generated by only one node V N−1

j(i) . In the

opposite case it is multiple. If all the nodes are single the number of distinct nodes V N
i is 2N+1, and

we assume that this is satisfied in what follows. This assumption is verified for the exponential filter

where hk = ak when 0 < |a| < 1/2 and also for all the filters such that there is no crossing between the

branches of the tree, as analyzed in [1].

This assumption of single nodes depends uniquely on the filter. The set of filters F having this property

is called FD. Most of the following results are related to filters belonging to the set FSD = FS ∩ FD.

The exponential filter hk = ak belongs obviously to this set if 0 < |a| < 1/2.

The assumption of single nodes means in particular that for any N and i there is a unique path going

from V to V N
i . Let iNk (i), 0 ≤ k ≤ N , be the indices j defining the nodes V k

j of this path. These nodes

can then be written V k
iN

k
(i) and the index iNk (i) characterizes the unique node of the tree at the step k

located on the path going from V to V N
i .

The problem is to calculate the probabilities

pN (i)
4
= P [xN = vN

i ] , 1 ≤ i ≤ 2N+1. (5)

When the wks are IID this probability is 1/2N+1. When they are no longer independent, its calculation

is much more complicated.

For this we introduce the conditional probability

pN (i, j)
4
= pN [xN = vN

i |xN−1 = vN−1
j ], (6)

called also transition probability in the tree. It has two fundamental properties for the analysis that

follows.

The first comes from its normalization specified for all j by
∑2N+1

i=1 p(i, j) = 1. However a node V N−1
j

of the tree of construction generates only two nodes V N
i characterized by the indices i+(j) and i−(j)

and, according to (4), corresponding to the values vN
i±

(j) = vN−1
j ± hN . As a consequence for a given

j there are only two terms in the previous sum and we have

pN [i+(j), j] + pN [i−(j), j)] = 1. (7)

The second starts from the fact that for any node V N
i there is only one node V N−1

j(i) at the step N−1 of

the tree generating V N
i at the step N . Thus pN (i, j) is zero except when j = j(i), and the only nonzero

values of pN (i, j) are

qN(i)
4
= pN [i, j(i)] (8)
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for N > 0 and q0(i) = 1/2.

It results from (6) and from the unicity of the path between V and V N
i that

pN [(xN = vN
i ) ∩ (xN−1 = vN−1

j )] = pN−1(j) . pN (i, j) δ[j − j(i)], (9)

where δ[k] is the Kronecker delta symbol equal to 1 if k = 0 and 0 otherwise. By a summation on j,

which contains only one term, we obtain

pN (i) = pN−1[j(i)] qN (i). (10)

By repeating this at all the nodes of the unique path between V and V N
i characterized by the indices

iNk (i) we obtain

pN (i) =
N∏

k=0

qk[i
N
k (i)]. (11)

When the RVs wk are IID we have of course qN [iNk (i)] = 1/2, and we find again that the values vN
i

have equal probabilities 1/2N+1.

The probabilities pN (i) of (11) are normalized, or
∑

i pN (i) = 1, where the sum is extended to all the

indices i from 1 to 2N+1. This property is valid for N = 0 because q0(i) = 1/2. Suppose that it is valid

at the step N − 1. Since each node V N−1
j generates only two nodes V N

i−(j) and V N
i+(j) the result comes

from (7).

The relation (11) is the basis of the following analysis of the singularity. Indeed if the SM of X is

zero and if all the pN (i) tend to 0 when N → ∞, there is no value v∞
i with a finite probability, and

this means that the RV X cannot have a discrete component and then is singular. This can be specified

by the following theorem.

Theorem 2. Let X be the RV defined by (2) where hk is the impulse response of a filter belonging

to FSD and wk a sequence of Bernoulli RVs. If the transition probabilities qN(i) defined by (8) satisfy

0 < qN (i) < B < 1, (12)

then the RV X is singular, or a1 = a2 = 0.

Proof. As F belongs to FSD the SM of X is zero, according to Theorem 1. It remains to show that

a2 = 0. This is a direct consequence of (11) and (12) because pN (i) < (1/2)BN , which tends to zero

when N → ∞.

Comments. Note that this theorem introduces only a sufficient condition of singularity. Note also that

it can be applied for white input because in this case qN (i) = 1/2. The condition F ∈ FSD is satisfied
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by a large class of filters and some are presented in [1]. However the question of characterizing all the

dynamical filters belonging to FSD remains open. As a matter of fact it is possible to extend this theorem

to the case where some nodes are not single, but this introduces other conditions that cannot be presented

in this paper.

III. EXAMPLES

Application of condition (12) requires the calculation of the probabilities qN (i) defined by (8) and

related to the transitions probabilities pN (i, j) defined by (6). For this it is interesting to express these

probabilities in terms of those of the RVs wk. For this note first that for a given vN−1
j , or a given node

V N−1
j , there is only one path coming from V to V N−1

j , or one sequence of values of wk, 0 < k ≤ N −1.

Let us denote this sequence as SN−1(j). The transition probability pN (i, j) is simply related to the

conditional probabilities of the wk by

pN [i±1(j), j] = P [wN = ±1|SN−1(j)], (13)

where i+(j) and i−(j) are the two indices i defining the two nodes V N
i generated by the node V N−1

j .

Note that the probabilities (13) are now transition probabilities in time.

These expressions are especially interesting in the case where the input wk is a Bernoulli symmetric

Markovian signal. Let us remind that a symmetric Bernoulli Markovian signal of order P is a signal

taking the values ±1 with equal probabilities and which can be expressed as

wk = f(wk−1, wk−2, ..., wk−P ,bk), (14)

where bk is a vectorial white noise. It is clear that the conditional DF of wk at time k, conditionally to

the whole past, depends only on wk−1, wk−2, ..., wk−P . The function f(.) and the noise bk must satisfy

conditions ensuring that if the wls, k −P ≤ l ≤ k− 1 are symmetric Bernoulli signals, wk has the same

property. We shall present in the next Section examples of such signals that can be realized in computer

experiments.

The Markov assumption means that the sequence SN−1(j) in (13) can be replaced by a sequence using

only the past of order P . This can be written

pN [i±(j), j] = P [wN = ±1|wN−1, ..., wN−P ]. (15)

Since the RVs wk take only the values ±1, there are only at most 2P distinct values of pN [i±(j), j]. If

we assume that the signal is not predictable there is no value of pN equal to 1. Then the bound of (12)
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is simply the maximum value of the finite number of transition probabilities pN (i, j). Then Theorem 2

can be applied and the RV X is singular.

It is interesting to present examples of signals for which Theorem 1 can be applied but not Theorem

2. In this case the spectral measure is zero, or a1 = 0, but the RV X is not purely singular, or a3 6= 1.

We shall first present a case where it is purely discrete, or a2 = 1.

This especially appears when the symmetric Bernoulli signal wk is predictable. A predictable signal of

order P is defined by (14) where bk = 0. This means that at each k, wk can be estimated without error

in terms of its past P values. As a consequence wk is also completely defined from its P first values, or

wk = h(w0, w1, ..., wP−1). (16)

The simplest example of such a Bernoulli signal is wk = w0(−1)k , where w0 is a Bernoulli symmetric

RV. Here P = 1.

It is clear that if wk is predictable, then the RV X of (2) is discrete, or a2 = 1. Indeed since the RVs

wi take only 2 values, X takes at the maximum 2P distinct positive values which means that it is a

discrete RV.

In the case of the signal wk = w0(−1)k used with the exponential filter defined by hk = ak, we have

X = w0/(1 + a) and it takes only the two values ±1/(1 + a) with equal probabilities.

It is clear that conditions of Theorem 2 are not satisfied for predictable signals because most of the

transitions probabilities pN (i, j) are equal to 1 or 0 in such a way that there is only a finite number of

paths going from V to infinity and giving values of X with nonzero probabilities.

Finally it is of interest to note that conditions of Theorem 1 can lead to a RV X with a DF mixture

of discrete and singular part, or a1 = 0 and 0 < a2 < 1. We shall present in the next section an example

of such a situation.

IV. EXPERIMENTS

Our purpose is now to verify the previous theoretical results by some computer experiments. The

principle of these experiments is the same as the one used in [1]. In order to analyze the singularity of a

signal xk we realize histograms at different scales of a very large number of its values. The singularity

is illustrated by the fact that the histograms introduce a fractal structure. This means that they have the

same form whatever the scale of analysis. This shows, with the limited precision of any experiment, the

lack of derivative.

In order to verify results of the previous section we shall introduce a procedure to generate by computer

Bernoulli Markovian signals. They are defined as follows. Let uk be a strictly white noise taking only
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the values 0 or 1 with probabilities 1−p and p respectively. Similarly let vk be a Bernoulli strictly white

noise taking the values ±1 with the same probabilities 1/2 and independent of uk. Consider now the

signal

wk = ukwk−1 + ūkvk, , k ≥ 1, (17)

where ūk = 1 − uk. It has the form (14) where P = 1 and bk = [uk, vk].

It is obvious that if wk−1 takes only the values ±1 with probabilities 1/2, wk has the same property.

It can be shown that, whatever the values of w1, wk tends to have this property and that the covariance

function γk of wk is p|k|, so it is an exponential covariance function. For p = 0, uk = 0, and wk is the

white noise vk with a zero covariance function. On the other hand if p = 1, uk = 1 and wk = w0, which

introduces constant covariance function or long range memory.

In the experiments presented below we use an exponential filter often mentioned in the previous analysis

and also used in [1]. Its input-output relationship can be written in a recursive form with the recursion

xk = axk−1 + wk, where wk is given by (17). In Fig. 1 we present histograms obtained when the input

wk is white, or when p = 0. The experiment is realized with 107 samples and a = 1/3. The fractal

structure appears very clearly. In Fig. 2 we present the same histograms realized with correlated inputs

defined by the linear Markovian model (17) with p = 0.5. The fractal structure remains valid but the

main difference is the fact that the number of samples recorded in each cell of the histograms have much

stronger variations than in the case of white inputs. This can be explained theoretically but the analysis

cannot be presented here.

Note that when the input is white the histograms are symmetric with respect to their centers. This is

no longer true when Markovian inputs are used, except for the histogram centered at 0 because X is

symmetric and its histograms are symmetric with respect to 0. This is why only histograms of positive

values of xk are represented.

We shall now consider experiments in which the DF of the output xk is a mixture of discrete and

singular parts. For this consider again the signal uk = u0(−1)k and a white signal vk taking the values

±1 with equal probabilities and independent of u0. Suppose now that wk is equal either to uk or to

vk for all k with the probabilities α and 1 − α respectively. This implies that its covariance function is

γk = α(−1)k + (1 − α)δ[k]. The DF of the RVs X is F (x) = αFd(x) + (1 − α)Fs(x). Applying this

signal again at the input to the exponential filter hk = ak with a < 1/2 yields an output signal taking

the values ±1/(1 + a) with probability α and being singular with probability 1 − α.

Results of computer experiments on this signal are presented in Figures 3 and 4. In these experiments
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a = 1/3, as in Figs. 1 and 2, and α = 0.5. This implies that xk takes the values ±0.75 with probability

0.25, which means that its DF is discontinuous for x = ±0.75 and the amplitude of the discontinuity

is 0.25. The first histogram of Fig. 3 exhibits these two discontinuities characterized by two lines at the

points ±0.75. One of these lines disappears in the second histogram of this figure and there is no longer

a line in the last two histograms. The fractal structure introducing a singular component appears clearly

in these histograms. In order to verify whether or not the discontinuity of the DF is an experimental

artefact, we present in Fig. 4 four histograms isolating the point 0.75 with cells of decreasing widths. In

the first histogram we observe still a residual contribution of the singular part of the DF. There is however

a line at 0.75 and the fact that its amplitude is constant indicates clearly that there is effectively a discrete

component. As the experiment uses 106 samples, the discontinuity corresponding to the probability 0.25

must be of the order of 2.5.105 , which clearly appears in the four histograms. This shows that the signal

xk is effectively a mixture of a discrete-valued signal and a singular signal.

V. CONCLUSION

When the input of a linear filter satisfying some conditions concerning essentially the location of its

poles with respect to the circle of singularity is a Bernoulli white noise, the output can be singular.

This assumption of whiteness can however be partially relaxed while maintaining the singularity of the

output. Some sufficient conditions ensuring the singularity with colored inputs have been established.

These conditions are obviously satisfied not only by white noise but also by a large class of correlated

signals. It is especially the case of Markovian signals of finite order. The theoretical analysis also shows

that the output generated by colored inputs can be a mixture of a discrete and a singular distribution. In

particular if the input signal is predictable it was shown that the output of the filter is simply a discrete

random variable. Computer experiments in order to verify the theoretical results have been realized and

discussed. For this purpose a specific model of linear Markovian signal of order one was introduced

and the experimental results are in complete agreement with the theory. Finally a model of Bernoulli

input ensuring that the output contains a discrete and a singular part was introduced and here also the

experimental results are in perfect agreement with the theory.
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Figures captions

Fig. 1. Histograms of xk at different scales. a = 1/3; p = 0.

Fig. 2. Histograms of x at different scales. a = 1/3; p = 0.5.

Fig. 3. Mixture discrete-singular, α = 0.5. Fractal part of the histogram.

Fig. 4. Mixture discrete-singular, α = 0.5. Analysis of the neighborhood of 0.75.
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