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A ROBUST ASYMPTOTIC OBSERVER FOR BATCH
PROCESSES WITH SINGLE BIOGAS MEASUREMENT

Denis Dochain
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Alain Rapaport
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Abstract. In this paper we propose an observer for a dynamical system for
which the boundary of its domain is not observable, and trajectories converge
to this boundary. The proposed case study, a bioreactor in batch operating
conditions with a single microbial reaction and gas production, is standard and
largely encountered in practical situations. We show also how to extend this
observer to obtain an observer in higher dimension that is robust with respect
to unbiased noise.
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1. Introduction

The state observation of nonlinear systems is a wide and active research area
resulting in a large scientific publications on the subject. Let us point out a few
(e.g. [3] [5], [6]) as well as the interesting and nicely survey paper by Krener [7]. In
the present paper, we would like to address a state observation issue that, as far as
we know, has not yet been addressed, i.e. the problem of the on-line reconstruction
of the variables of a nonlinear system for which there is a loss of observability on
the boundary of its domain. We shall indeed concentrate on a biological model
with one biomass x, one substrate s and gaseous outflow rate y measured on-line
when the initial condition (x0, s0) is unknown. Incidentally the design of the state
estimate takes advantage of the fundamental reaction invariant property of reaction
systems ([4]).

The paper is organized as follows. Section 2 introduces the dynamical model of
the biological system. Section 3 provides an analysis of the observability properties
of the system under study. An asymptotic observer is derived in Section 4 while
Section 5 gives a Luenberger observer for the purpose of comparison. Section 5 pro-
vides numerical simulations to illustrate the performance of the proposed observer
as well as its comparison with the Luenberger observer designed in Section 5.

2. Dynamical model

Let us consider the dynamical model of a simple microbial growth reaction in a
batch reactor (see e.g. [1]):

(1)
{
ẋ = µ(s)x
ṡ = −µ(s)x

1
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where x and s stand for the concentrations in biomass and substrate, respectively.
Without loss of generality, we assume that the yield coefficient of the transforma-
tion of the substrate into biomass is equal to 1. The specific growth rate function
µ(·) satisfies the usual assumption:

Hypothesis 1. µ(·) is an analytic function which is increasing and concave on R+

and such that µ(0) = 0.

For convenience, we denote the number

µ̄ = max
s>0

µ(s)

(that could be finite or not). In the present work, we consider that a gaseous
by-product flow rate, such as bio-gas (e.g. [2]), is measured on-line as a quantity
proportional to the output variable

y = µ(s)x.

Typically, if often happens in batch bio-processes that the initial quantities of reac-
tants (x0, s0) are unknown and the bio-gas production is the only available measure-
ment during the reaction. As the solutions of (1) clearly satisfy lims→+∞ s(t) = 0,
the initial quantity of substrate can be recovered as

s0 = lim
t→+∞

∫ t

0

y(τ)dτ

However the main interest is usually to estimate the total production of biomass,
that is limt→+∞ x(t). The purpose of the present work is the present a simple and
reliable methodology to estimate the x concentration.

3. Observability analysis

Equivalently, one can consider the dynamics in the (z, s) coordinates with z =
x+ s

d

dt

[
z
s

]
= f(z, s) =

[
0

−µ(s)(z − s)

]
(2)

y = h(z, s) = µ(s)(z − s)(3)

on the positive cone
C := {(z, s) ∈ R2 | z > s > 0}

Lemma 1. Under Hypothesis 1, the system (2)-(3) is differentially observable on
C, but not on its boundary.

Proof. On the open cone C, one has µ(s) > 0 and can write

Lfh(z, s) = −[µ′(s)(z − s)− µ(s)]µ(s)(z − s)

= −
(
µ′(s)

µ(s)
h(z, s)− µ(s)

)
h(z, s).(4)

For a given non-negative number y, we define the function

ϕy(s) = µ(s)− µ′(s)

µ(s)
y
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whose derivative is

ϕ′y(s) = µ′(s)−
(
µ′′(s)

µ(s)
− µ′(s)2

µ(s)2

)
y.

Under Hypothesis 1, ϕ′y(s) is positive for any s, and therefore the inverse ϕ−1y is
well defined from ϕ(R+) to R+. As h(z, s) > 0 on C, one can write

s = ϕ−1h(z,s)

(
Lfh(z, s)

h(z, s)

)
z =

h(z, s

µ(s)
+ s

and conclude that the map [
z
s

]
7→
[

h(z, s)
Lfh(z, s)

]
is injective on C, that is the system is differentially observable on C.

On the boundary of C, one has Lfih ≡ 0 for any integer i and therefore the
system is not differentially observable on ∂C. �

One can note that the boundary z = s (that is x = 0) of the cone C is invariant
but repulsive for the dynamics, while the boundary s = 0 is attractive. Therefore
for any initial condition with z0 > s0 (that is x0 > 0), the solution converges to the
boundary s = 0 where the system is no longer observable. This feature prevents
classical constructions of nonlinear observers, such as the high-gain observer, that
requires the (differential) observability on a compact invariant set (which here has
to contain s = 0).

4. An asymptotic observer

We first show that the system is detectable from any positive initial condition.

Proposition 1. Assume that one as y(0) > 0, then one has

lim
t→+∞

s(t) = 0, lim
t→+∞

x(t) = z

where

(5) z =
y(t)

µ
(∫ +∞

t
y(τ)dτ

) +

∫ +∞

t

y(τ)dτ

for any t ≥ 0.

Proof. When y(0) > 0, one has x0 > 0 and s0 > 0. Clearly, the solution of (1)
fulfills (x(t), s(t))→ (z, 0) when t tends to +∞, where z = x0 + s0. Therefore, one
can write

s(t) =

∫ +∞

t

y(τ)dτ

at any time t ≥ 0, and then one also

x(t) =
y(t)

µ
(∫ +∞

t
y(τ)dτ

) .
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Finally, one obtains

z = x(t) + s(t) =
y(t)

µ
(∫ +∞

t
y(τ)dτ

) +

∫ +∞

t

y(τ)dτ

�

One can then consider the following observer.

Proposition 2. For any initial condition (x0, x0) with x0 > 0 and s0 > 0, the
following observer

(6)

 v̇ = y(t), v(0) = 0

x̂ =
y(0)

µ(v)
+ v

fulfills
lim

t→+∞
x̂(t)− x(t) = 0

Moreover, when the function µ is increasing, the error x̂−x is decreasing with time.

Proof. Note that for t > 0, the solution of (6) is given by the expression

(7) x̂(t) =
y(0)

µ
(∫ t

0
y(τ)dτ

) +

∫ t

0

y(τ)dτ

The convergence of the observer is then a simple consequence of Proposition 1. The
time derivative of the x-error is determined straightforwardly as

d

dt
(x̂− x)(t) = −y(t0)

µ′
(∫ t

t0
y(τ)dτ

)
[
µ
(∫ t

t0
y(τ)dτ

)]2 y(t) < 0

which shows the monotonic behavior of the error, when the function µ is increasing
�

Remark 1. The fact that the error x̂ − x is decreasing with time guarantees that
x̂(t) is a guaranteed upper estimation of x(t) at any time t and that the estimator
does not oscillate as it could happen with high-gain observers.

5. A robust asymptotic observer

We consider that the measurement is now given by

yobs(t) = y(t) + p(t)

where p(·) is a disturbance. The drawback of the observer presented in Proposition
2 is its lack of robustness with respect to the initial error p(t0) (because the initial
measurement y(t0) is not forgotten, differently to “classical” observers). Even when
the disturbance p(·) is unbiased, one can easily check that the observer ẑ(·) given
in (6) with y(·) replaced by yobs(·) presents an asymptotic bias:

(8) lim
t→+∞

x̂(t)− x =
p(t0)

µ
(∫ +∞

t0
y(τ)dτ

)
We consider the following stronger assumption on the bias of the disturbance

p(·).
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Hypothesis 2. There exists T < +∞ such that

1

T

∫ t+T

t

p(τ)dτ = 0, ∀t > 0

We show that under this assumption, it is possible to derive an observer without
asymptotic bias.

Proposition 3. For any p(·) that satisfies Hypothesis 2, the following estimator

(9) x̂(t) =

∫ t0=T

t0=0

{
yobs(t0) +

∫ t

t0

yobs(τ)dτ.µ

(∫ t

t0

yobs(τ)dτ

)}
dt0∫ t0=T

t0=0

µ

(∫ t

t0

yobs(τ)dτ

)
dt0

which is defined for t > T , is unbiased.

Proof. First note that, due to Hypothesis 2, one has∫ t0=T

t0=0

yobs(t0)dt0 =

∫ t0=T

t0=0

y(t0)dt0

and ∫ +∞

t0

yobs(τ)dτ =

∫ +∞

t0

y(τ)dτ, ∀t0 ∈ [0, T ]

Moreover, from equation (5), one has

µ

(∫ +∞

t0

y(τ)dτ

)
z = y(t0) +

∫ +∞

t0

y(τ)dτ.µ

(∫ +∞

t0

y(τ)dτ

)
, ∀t0 ∈ [0, T ]

Integrating this last inequality between t0 = 0 and t0 = T , one obtains∫ t0=T

t0=0

µ

(∫ +∞

t0

y(τ)dτ

)
dt0.z

=

∫ t0=T

t0=0

y(t0)dt0 +

∫ t0=T

t0=0

∫ +∞

t0

y(τ)dτ.µ

(∫ +∞

t0

y(τ)dτ

)
dt0

or equivalently

z =

∫ t0=T

t0=0

y(t0)dt0 +

∫ t0=T

t0=0

∫ +∞

t0

y(τ)dτ.µ

(∫ +∞

t0

y(τ)dτ

)
dt0∫ t0=T

t0=0

µ

(∫ +∞

t0

y(τ)dτ

)
dt0

which proves that one has
lim

t→+∞
x̂r(t) = z

and we conclude by Proposition (1). �

Remark 2. The observer (9) is not an averaging of the observer proposed in Propo-
sition 2, which can be equivalently written in the integral form (7). It is neither the
expression (7) evaluated on an average of the measurements.
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6. Numerical computation of the robust observer

The robust observer given in Proposition 3 requires an integration on t0 and
therefore cannot be written as a solution of dynamical system in finite dimension.
However, the integrals

I(t0, t) =

∫ t

t0

yobs(τ)dτ, t > t0

can be determined for N discrete values of t0 = 0, h, 2h, · · · , T − h with h = T/N ,
by integrating the variables vi solutions of the system of N differential equations

v̇i = yobs(t)1{t>(i−1)h}(t), vi(0) = 0 (i = 1 · · ·N)

where 1A(·) denotes the indicator function of a set A. Clearly, one has

vi(t) = I((i− 1)h, t), t > (i− h)h (i = 1 · · ·N)

Then, the integrals of γ(I(t0, t)) from t0 = 0 to t0 = T , where γ(·) is any smooth
function are approximated by∫ t0=T

t0=0

φ(I(t0, t)) ' h
N∑
i=1

γ(vi(t)), t > T

and we obtain the following approximation of the observer (9) in a form of a finite
dimensional system:

(10)



v̇i = yobs(t)1{t>(i−1)h}(t), vi(0) = 0 (i = 1 · · ·N)

x̂(t) =

N

T
v1(T ) +

N∑
i=1

vi(t)µ(vi(t))

N∑
i=1

µ(vi(t))

, t > T

Remark 3. In practice, one can choose T large enough compared to the inverse of
the fundamental frequency and first harmonics of the Fourier decomposition of the
noise.

7. Consideration of an Luenberger observer

As we aim at reconstructing the biomass x, we write the system (1) in (x, y)
coordinates as follows

(11)
{
ẋ = y
ẏ = φ(x, y)y

with
φ(x, y) = −µ′ ◦ µ−1

(y
x

)
x+

y

x
Notice that µ−1 is well defined on [0, µ̄] under the Hypothesis 1. However, the map
φ has a singularity at x = 0, but solutions of (1) satisfy x(t) ≥ x0 at any t > 0
and therefore avoid this singularity for any initial condition with x0 > 0. For the
construction of an observer, one has to extend this dynamics for values of x that
are non positive or such that y/x is larger than µ̄. Let ε be a positive number, and
consider the map

φ̃(x, y) = φ(max(x, ε, y/µ̄), y)
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which coincides with φ along any solution of (11) with x0 ≥ ε. Moreover φ̃ is
Lipschitz continuous on R × R+. We can then consider a Luenberger observer [8]
in the (x, y) coordinates for the dynamics with φ replaced by φ̃:

(12)
{

˙̂x = y +G1(ŷ − y(t))
˙̂y = φ̃(x̂, y(t))y(t) +G2(ŷ − y(t))

Let us write the error equation as follows:

d

dt

[
ex
ey

]
=

[
0 G1

δ(t)y(t) G2

]
︸ ︷︷ ︸

A(t)

[
ex
ey

]

where

δ(t) =

∣∣∣∣∣∣∣
φ̃(x̂(t), y(t))− φ(x(t), y(t))

x̂(t)− x(t)
if x̂(t) 6= x(t)

∂xφ(x(t), y(t)) if x̂(t) = x(t)

Under Hypothesis 1, the derivative µ′ is bounded on R+ and then the map x 7→
φ̃(x, y) has linear growth for any y ∈ R+. As y(·) is bounded, δ(·) is thus bounded
whatever is the solution x̂(·).

Therefore, as one has limt→+∞ y(t) = 0, we obtain

lim
t→+∞

A(t) = Ā =

[
0 G1

0 G2

]
which is not a Hurwitz matrix. The asymptotic convergence of the error towards
0 is thus not guaranteed and the the choice the gains G1, G2 does not allow the
assign the speed of convergence, as this will be shown with numerical simulations
in the next section.

8. Numerical simulations

We consider first the asymptotic observer (2).

8.1. Under Hypothesis 1. We consider the Monod function

µ(s) =
1

1 + s

which satisfies Hypothesis 1 and is often used in microbiology (see Fig. 1).
We have considered the initial condition (s0, b0) = (1.1, 1.5) and have compared

the asymptotic observer with the Luenberger one initialized with (x̂, ŷ) = (1, y(0))
for various gains G1, G2. We found a systematic bias on the asymptotic error of
the Luenberger observer, as depicted on Fig. 2 (for G1 = G2 = −20 that gave the
best result). These simulations show that the innovation ŷ − y of the Luenberger
observer reaches zero while the x error has not yet converged to zero, which explains
its non null asymptotic error.

We have also performed simulations with measurements randomly disturbed by
a white noise proportionate up to 10% of the signal (see Fig. 3). It shows the
good behavior of the asymptotic observer with respect to measurement noise, most
probably because it does not require a multiplicative gain on the measurement as
for the Luenberger observer or any “classical” observers. The asymptotic observer
is mainly affected by the initial error on the measurement.
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Figure 1. Graph of the Monod function
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Figure 2. Comparison of our proposed observer with the Luen-
berger observer in absence of noise (with Monod function)

8.2. In absence of Hypothesis 1. It should be underlined that the asymptotic
observer of Proposition 2 does not require Hypothesis 1 to be fulfilled. In this sec-
tion, we consider two different functions µ(·) that do not satisfy Hypothesis 1, so
that the observability analysis of Section 3 cannot be conducted.
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Figure 3. Comparison of our proposed observer with the Luen-
berger observer with noise (with Monod function)

The Hill function for the specific growth rate writes as follows (see Fig. 4):

µ(s) =
µmaxs

α

Kα
s + sα

(α > 1)
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Figure 4. Graph of the Hill function

This function is increasing but not concave (see Fig. 4). Simulations of Fig. 5
have been ran for µmax = 1, Ks = 0.5 and α = 2.
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Figure 5. Comparison of our proposed observer with the Luen-
berger observer (with Hill function)

The Haldane model for the specific growth rate (see Fig. 6) is given by the
following expression:

µ(s) =
µ0s

Ks + s+ s2

Ki
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Figure 6. Graph of the Haldane function
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This function is non monotonic (see Fig. 6). Therefore the inverse of µ is not
uniquely defined for the construction of the Luenbeger observer in (x, y) coordi-
nates. However, for each positive value m of the function µ, one has µ−1(m) =
{s−(m), s+(m)} with 0 < s−(m) ≤

√
KsKi ≤ s+(m), and as solutions of system

(1) converge to s = 0, we have considered µ−1(m) = s−(m) in the Luenberger
observer (12) (which gives the right inverse a soon as t satisfies s(t) ≤

√
KsKi).

Simulations of Fig. 7 have been ran for µ0 = 1, Ks = 1 and Ki = 0.2.
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Figure 7. Comparison of our proposed observer with the Luen-
berger observer (with Haldane function)

These simulations show that the proposed observer works satisfactorily in sim-
ulation for a large variety of growth functions. One can note that for the Haldane
function, the property of having an upper estimation of the biomass is no longer
satisfied, in accordance with Remark 1.

8.3. Robust observer. We have consider stronger noise of amplitude 5 time
larger. In such cases, the error on the initial measurement y(0) can impact sig-
nificantly the asymptotic bias of the asymptotic observer (2), as shown in (8).
We have compared the robust version of the asymptotic observer proposed in (10)
with T = 0.1 and N = 10, for the same growth functions and parameters of the
simulations presented above (see Fig. 8, 9 and 10.

The simulations show that with a relatively small value of N , the approximated
robust observer can cope quite well with large deviation of initial measurement and
noise.

9. Conclusions

In this work, we have proposed an observer for a system that is not observable
on its set of asymptotic states. To cope with this difficulty, our observer is of a
particular structure which does not use the innovation (i.e. the difference between
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Figure 8. Comparison with the robust asymptotic observer under
strong noise (with Monod function)
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Figure 9. Comparison with the robust asymptotic observer under
strong noise (with Hill function)

the observation predicted by the observer and the real observation) as the usual
observers do. Its convergence speed cannot be freely addressed but we prove its
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Figure 10. Comparison with the robust asymptotic observer un-
der strong noise (with Haldane function)

exact convergence for any initial condition different from a asymptotic state. More-
over we have proposed a robust extension of this observer in higher dimension to
deal with measurement disturbances. Numerical simulations have shown the good
performances of the proposed observer on a biological system of practical interest,
compared to other solutions such as Luenberger observer. Consideration of larger
classes of systems with similar lack of observability will be the matter of a future
work.
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