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DETECTION OF ANOMALOUS VIBRATIONS IN AN
AIRCRAFT GAS TURBINE ENGINE

EUSTACHE BESANÇON1, ANDREA BONDESAN2,AURÉLIEN CITRAIN,3 AND MARWA DRIDI4

Abstract. We consider the compressor disk of a gas turbine engine composed of 13 blades showing
anomalous vibrations around the normal vibratory modes. We use a statistical approach to study the
correlation between the anomalous vibrations and the geometrical properties of the blades. We eventually
detect the defective blade and provide a mathematical and numerical justification of this choice.

1. Introduction

An aircraft gas turbine engine is the component of the propulsion system for an aircraft that
generates mechanical power from chemical energy. It is formed by an upstream rotating compressor
coupled to a downstream turbine, and a combustion chamber in between. The compressor part
of the propulsion system is made up of stages that consist of rotating bladed disks and stationary
stators, or vanes. As the air moves through the compressor, accelerated by an initial centrifugal
force, its temperature and pressure increase, until it reaches the combustion chamber where it is
used to ignite the fuel sprayed inside, generating a high-temperature flow. This high-temperature
high-pressure gas enters a turbine where it expands down to the exhaust pressure, producing a
shaft work output in the process that is used in part to propulse the aircraft and in part to drive
the compressor, in order to restart the process.

The main problem that we want to solve is the following. A new aircraft turbine engine is
conceived, built and finally tested in order to study its efficiency. Inside the engine, a compressor
disk composed of 13 blades shows a malfunction in each test that is made: while the engine
is activated and the compressor disk rotates, by means of a tip-timing analysis, an anomalous
vibration is detected for one of the blades (see Figures 3 and 4). Since the engine is a closed
environment, we are not able to identify the defective blade in an easy way. In fact, if we number
the blades in ascending order from 1 to 13 during each test, we can only deduce that one blade (and
always the same) produces the anomalous vibration, but we cannot establish its correct position
in the numbering (since we could have a circular shift of the blades from one test to the other).
Nevertheless, fundamental geometrical properties (94 distinct measures of thickness for each blade,
as in Figure 1, and main geometrical data on leading and trailing edges, as in Figure 2) are available
for each of the blades and the idea is to find a way to link these data to the vibrations in all their
possible circular shifts, in order to understand which one is the most probable (i.e. which one is
the defective blade). We will solve this problem making use of well known statistical techniques.

The purpose of multivariate statistical analysis is to simultaneously analyse multiple measure-
ments on a population of individuals or objects of interest. It is commonly assumed that there
exists a direct relationship between each object under investigation and the set of observations
represented by the values of the variables being measured, i.e. that it is possible to tell precisely
for each measurement, to which individual it belongs. If this assumption is broken, for instance
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because of technical constraints on the way data are being measured, statistical literature gives
little attention to how statistical methods can still be applied. This article focuses on an instance
where this link is broken but where the type of relationship between the objects under investigation
and the variables being measured is known: there exists a circular rotation between the lines of
the array of variables and the set of objects. We devise a procedure which enables to identify the
right rotation and to ultimately relate the observations to the objects under investigation.

Our work is organized as follows. In Section 2 we perform a principal component analysis and
we settle a suitable statistical test on our data to identify the defected blade. In Section 3 we justify
mathematically and numerically our former analysis, giving a complete answer to the problem.

2. Preliminary analysis: PCA and statistical tests

We begin introducing the following useful notation. We will refer to the numbering of the vibrations
in Figure 4 as S0, the ‘S’ standing for (circular) “shift”; any possible circular shift of 1 ≤ n ≤ 12
positions of the vibrations will be denoted Sn, meaning that the vibration 1 in S0 becomes vibration
13− (n− 1) in Sn (we stop at n = 12 since we easily check that S13 = S0).

The problem then becomes to understand which of the circular shifts Sn, for 0 ≤ n ≤ 12,
corresponds to the geometrical data known for the blades (ordered as in S0). To do this, we will
perform a statistical analysis studying their correlation.

Since we are dealing with a lot of data, we first need to understand which ones contain most
of the statistical information. Namely, we carry out a Principal Component Analysis (PCA) to
identify possible useless data that can be ignored. In fact, Figure 5 shows that almost 80% of
the cumulative variance is explained by the first principal component calculated by the PCA test,
meaning that F1 accounts for the most variability in the data. In particular, if we analyse this first
eigenvector we observe that the most important weigth of informations comes from the thicknesses:
from Figure 6 we immediately see that for F1 the thicknesses are concentrated in the far right region
of the circle where the weight is close to 1, while the other geometrical variables are diffused inside
the circle with a negligible weight. As a consequence, we decided to focus our attention only on
the geometrical data coming from the 94 points of thickness on the blades.

The next step in order to identify the defective blade is then to choose an adapted non-
parametric statistic to measure the correlation between these thicknesses and the vibrations in
all the possible circular shifts Sn.

To do so, we take the correlation coefficient to be the most likely to fit our data. Given the
complexity of the interactions between all the blades in the disk, one of the first observations
we have made is that the relation between vibrations and thicknesses is certainly nonlinear and
moreover the set of vibrations does not follow a Gaussian distribution, which means that correlation
coefficients like Pearson’s r are not adapted to our situation and we need to take a look at a rank
correlation coefficient (RCC).

Among all possible RCCs the largest used is Spearman’s ρ, but it fails to give a good measure
of correlation when dealing with a lot of (nearly) equivalent data, which is the case for most of the
variables in our data set. This is why our choice falls on Kendall’s τ RCC, firstly introduced by
Maurice G. Kendall in 1938 in [4]. In fact, Kendall’s τ has been classically used to test the sig-
nificance of cross-correlation between two variables X and Y when their distributions significantly
deviate from the normal law.

Following [3], we know that Kendall’s τ is a statistic defined as the difference between the
probabilities of concordance and discordance between two observed variables X and Y , namely

τ = P(yi < yj |xi < xj)− P(yi > yj |xi < xj).
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When dealing with finite sample of observations we only need an estimate for this statistic and
one possible choice is the following.

Definition 2.1. For a sample of n observations of X and Y ,
{
(x1, y1), . . . , (xn, yn)

}
, an estimate

t for τ can be defined as

t =
2T

n(n− 1)
, (1)

where the statistic T is given by

T =
∑
i<j

sign(xj − xi)sign(yj − yi).

In other words, the estimate t measures the quantity

t =
nc − nd
n0

,

where, for two pairs (xi, xj) and (yi, yj), nc denotes the number of concordant pairs (i.e. xi <
xj , yi < yj or xi > xj , yi > yj), nd denotes the number of discordant pairs (i.e. xi < xj , yi > yj
or xi > xj , yi < yj) and n0 =

(
n
2

)
denotes the number of all possible pair combinations.

Remark 2.2. The range of Kendall’s coefficient is t ∈ [−1, 1], which means that

• if the agreement between the two rankings is perfect (the rankings are the same), the coefficient
has value 1,

• if the disagreement between the two rankings is perfect (one ranking is the reverse of the
other), the coefficient has value −1,

• if X and Y are independent, then the coefficient is expected to be approximately zero.

We are now able to set a statistical test using Kendall’s coefficient. Under the classical null
hypothesis of independence between the two random variables X and Y , the test reads

• H0 : The variables X and Y are independent (no correlation between the samples).

• H1 : The variables X and Y are dependent (correlation between the samples).

From the computation of all Kendall’s coefficients between the eigenvector F1 (coming from the
PCA test) and the vibrations (coming from all the possible circular shifts of the blades in the disk)
we observe that two particular circular shifts show strong correlation between their corresponding
vibrations and the vector F1. We summarize in Table 1 the most relevant computations.

Kendall’s t p-value
S1 (Blade 10) 0.452 0.04
S6 (Blade 5) 0.452 0.04

Table 1: Correlation between F1 and the vibrations in the circular shifts S1 and S6.

In particular, we obtain that the p-values corresponding to the circular shifts S1 and S6 are
lower than 0.1, which allows to ensure that in these two cases hypothesis H0 can be rejected in
favour of hypothesis H1, that is to say, we have correlation between F1 and the vibrations.
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The last step is to infer which of the two circular shifts S1 and S6 is the correct one. Going back
to the PCA test, we recall that the most important contributions to the principal component F1

came from the thicknesses of the blades. This is why we decided to perform another Kendall’s test,
this time trying to understand the correlation between the vibrations in the two circular shifts S1

and S6 and each of the 94 sets of thicknesses. Doing so, the aim is to localize a strong correlation
between vibrations and thicknesses in a precise area of the defective blade, allowing not only to
conclude which of the two remaining circular shifts is the correct one (i.e. which of the 13 blades
is the defective one), but also to understand the problem causing the anomalous vibration.

Studying the variation of Kendall’s coefficient over the defective blade in each circular shift
Sn, 0 ≤ n ≤ 12, we easily check that the maximum of t (with a value of t = 0.71) is reached for
S1 on the points of thickness 24 and in the close surrounding area, leading us to deduce that the
anomalous vibration is produced by blade 10 (see Figure 11).

A nice visual description of these variations is given in Figures 7, 8, 9 and 10. The defective blade
is represented in every possible circular shift, where each of its 94 points of thickness is coloured
depending on the value of Kendall’s coefficient assumed in that particular point: points coloured
in yellow (respectively green/blue) show a strong agreement (respectively independence/strong
disagreement) between thicknesses in those points and vibrations in the corresponding circular
shift. In other words, the points coloured in yellow exhibit the maximum values of Kendall’s
coefficient and we immediately see that the area with the highest values of t is localized on the
defective blade for the circular shift S1, this phenomenon strongly appearing only in this case.

The statistical analysis presented in this section allows to infer that the blade producing the
anomalous vibration is actually blade 10 (circular shift S1), the problem coming from the defective
area around the point 24 of thickness.

We conclude our study in the next section, providing a mathematical and numerical justification
of our study.

3. Mathematical and numerical validation

We are interested in justifying mathematically the fact that the anomalous vibration comes from
blade 10 (corresponding to the circular shift S1) in the area surrounding the point 24 of thickness.
To do so, the correct approach is certainly the probabilistic one. As a consequence, we start
choosing a suitable distribution for Kendall’s t, since it is the only statistical tool we used in the
previous section to study the problem.

Following [3], under the null hypothesis that the two series X and Y are independent, and
assuming that observations in each time series are independent, the mean and the variance of T
in (1) are given by

E(T ) = 0, Var(T ) =
n(n− 1)(2n+ 5)

18
and accordingly, the mean and the variance of t are

E(t) = 0, Var(t) =
2(2n+ 5)

9n(n− 1)
. (2)

The authors in [3] show that the distribution of T (and accordingly that of t) tends to normality
as the number of observations becomes large enough. In particular, for n > 10, the normal curve
gives a satisfactory approximation of the distributions of T and t.

The problem becomes now to establish which is the correct distribution for the maximum value
of Kendall’s coefficients between vibrations and thicknesses. Fortunately, the theory of extreme
value distributions helps us in giving a complete answer to the problem.
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Let us consider a set of N i.i.d. variables {X1, . . . , XN} with common law F and their maximum
value MN = max{X1, . . . , XN}. We introduce the following definitions.

Definition 3.1. We say that a distibution G is of exteme value-type if it has one of the following
forms:

1) G(x) = e−e
−x
, x ∈ R, (Gumbel)

2) G(x) =
{

0 x ≤ 0

e−x
−α

x > 0,
(Fréchet)

3) G(x) =
{
e−(−x)

α

x ≤ 0
1 x > 0,

(Weibull)

for some α > 0.

Definition 3.2. Let F be the common distribution of the i.i.d. variables {X1, . . . , XN}, with
maximum value MN . We say that F belongs to the Max-Domain of Attraction (MDA) of an
extreme value distribution G if there exist two constants aN > 0 and bN ∈ R such that

lim
N→+∞

P
(
MN − bN

aN
≤ x

)
= G(x) ∀ x ∈ R.

In particular, for a set {X1, . . . , XN} of i.i.d. variables distributed with common standard
normal law F ∼ N (0, 1), the following result holds (see [5], Theorem 1.5.3):

Theorem 3.3. If {Xi}Ni=1 is an i.i.d. standard normal sequence of random variables, then the
asymptotic distribution of MN = max

1≤i≤N
Xi is of Gumbel-type. specifically

lim
N→+∞

P
(
MN − bN

aN
≤ x

)
= e−e

−x
∀ x ∈ R,

with

aN = (2 logN)−1/2

and

bN = (2 logN)1/2 − 1

2
(2 logN)−1/2(log logN + log 4π).

We are interested in applying to our problem the theory that we have presented. To do so,
let us consider the set {ti}94i=1 of all Kendall’s coefficients in a single correlation test on the data
(i.e. for one possible permutation of the vibrations), where ti corresponds to Kendall’s coefficient
between the vibrations and the thicknesses at the points i of each blade in the disk (captured
during the tip-timing analysis).

Reminding that each ti follows a normal distribution ti ∼ N (0, σ2) with σ2 =
62

1404
(using (2)

with n = 13 observations), we deduce from Theorem 3.3 that the random variable

M = max

{
t1
σ
, . . . ,

t94
σ

}
∼ G(x) = e−e

− x−b
a ∀x ∈ R

follows a Gumbel distribution of parameters
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a = (2 log 94)−1/2

and

b = (2 log 94)1/2 − 1

2
(2 log 94)−1/2(log log 94 + log 4π).

Now, we have seen in the previous section that, for the statistical test evaluating the correlation
between vibrations and thicknesses in all the possible circular shifts of the blades in the disk,
Kendall’s coefficients are maximized in the area surrounding the point of thickness 24 on blade 10
(circular shift S1). In particular, the maximum is reached exactly for the point 24 and we have

t24 = 0.71 and
t24
σ
≈ 3.38 (σ ≈ 0.21).

We conclude from our analysis that

P(M ≤ 3.38) = e−e
− 3.38−b

a ≈ 0.96,

which means that the point 24 on blade 10 (circular shift S1) corresponds to the point where
the correlation between vibrations and thicknesses is maximized, with probability almost 1. This
justifies our conclusion at the end of the previous section, allowing us to localize the precise area
of the disk where the defects give rise to the anomalous vibration.

We conclude providing numerical evidence to our mathematical study with a simple test. We
simulate 104 random permutations of the vibrations (thus, not only the circular shifts), evaluating
for each of these permutations the maximum value of Kendall’s coefficient between thicknesses
and vibrations in the particular random sorting. We observe the result in Figure 12: the blue
dots represent the maximum values of t calculated in each of the 104 random permutations of the
vibrations, while the red line represents the maximum value atteined by t in the circular shift S1

for the point 24 of thickness on blade 10. We immediately check that in 96% of the cases the
specific permutation S1 provides the maximal correlation between vibrations and thicknesses.

Figure 1: The 94 points on each blade where the thickness is measured.
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Figure 2: Table containing some of the main geometrical data known on the blades.

Figure 3: Tip-timing analysis: test for the monitoring of blades’ vibrations.
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Figure 4: Vibrations and angular velocities of the blades during a single test: anomalous vibration
detected on the blade 11 (for one of the 13 possible circular shifts of the disk).

Figure 5: The principal components F1 and F2 explain 84.25% of the cumulative variance.
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Figure 6: Weight of the geometrical variables in the first two principal components.

Figure 7: Variation of Kendall’s t over the defective blade in the circular shifts S7, S8, S9, S10.
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Figure 8: Variation of Kendall’s t over the defective blade in the circular shifts S11, S12, S0, S2.

Figure 9: Variation of Kendall’s t over the defective blade in the circular shifts S3, S4, S5, S6.
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Figure 10: Variation of Kendall’s t over the defective blade in the circular shift S1.

Figure 11: Precise area where the defect is localized on blade 10.
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Figure 12: Variation of the maximum of Kendall’s t between vibrations and thicknesses, for 104

random permutations of the vibrations.
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