N
N

N

HAL

open science

A case study: Influence of Dimension Reduction on
regression trees-based Algorithms -Predicting

Aeronautics Loads of a Derivative Aircraft

Edouard Fournier, Stéphane Grihon, Thierry Klein

» To cite this version:

Edouard Fournier, Stéphane Grihon, Thierry Klein. A case study: Influence of Dimension Reduction
on regression trees-based Algorithms -Predicting Aeronautics Loads of a Derivative Aircraft. 2018.

hal-01700314v1

HAL Id: hal-01700314
https://hal.science/hal-01700314v1

Preprint submitted on 3 Feb 2018 (v1), last revised 15 Nov 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01700314v1
https://hal.archives-ouvertes.fr

A case study : Influence of Dimension
Reduction on regression trees-based Algorithms
- Predicting Aeronautics Loads of a Derivative

Aircraft

Edouard Fournier*!?3, Stéphane Grihon'?, and Thierry Kleint 13

nstitut de mathématique, UMR5219; Université de Toulouse;
CNRS, UPS IMT, F-31062 Toulouse Cedex 9, France
2Airbus France 316, Route de Bayonne, Toulouse France.
SENAC - Ecole Nationale de 1’Aviation Civile, Université de
Toulouse, France

Abstract

In aircraft industry, market needs evolve quickly in a high competitive-
ness context. This requires adapting a given aircraft model in minimum
time considering for example an increase of range or the number of passen-
gers (cf A330 NEO family). The computation of loads and stress to resize
the airframe is on the critical path of this aircraft variant definition: this
is a consuming and costly process, one of the reason being the high dimen-
sionality and the large amount of data. This is why Airbus has invested
since a couple of years in Big Data approaches (statistic methods up to
machine learning) to improve the speed, the data value extraction and the
responsiveness of this process. This paper presents recent advances in this
work made in cooperation between Airbus, ENAC and Institut de Mathé-
matiques de Toulouse in the framework of a proof of value sprint project.
It compares the influence of three dimensional reduction techniques (PCA,
polynomial fitting, combined) on the extrapolation capabilities of Regres-
sion Trees based algorithms for loads prediction. It shows that AdaBoost
with Random Forest offers promising results in average in terms of accu-
racy and computational time to estimate loads on which a PCA is applied
only on the outputs.
Keywords:
Regression trees-Aeronautics-Dimensional reduction-Extrapolation MSC
Classification:
62J02, 62-07, 63P30

*edouard.fournier@airbus.com
Tstephane .grihon@airbus.com
ithierry .klein@math.univ-toulouse.fr

1 Introduction

In aircraft industry, market needs evolve quickly in a high competitiveness con-
text. This requires adapting a given aircraft model in minimum time consider-
ing for example an increase of range or of the number of passengers such as the
A330 family in|Airbus (2017). In our case study, variants concern the maximum
take-off weight of a given aircraft model. Depending on the configuration, the
computation of loads and stress, as defined in [Hoblit| (1988]); Hjelmstad| (2005)),
to resize the airframe is on the critical path of this aircraft variant definition:
this is a time consuming (approximately a year for a new aircraft variant) and
costly process, one of the reason being the high dimensionality and the large
amount of data. Big Data approaches such as defined by (Gandomi and Haider
(2015) is mandatory to improve the speed, the data value extraction and the
responsiveness of the overall process. This study has been realized during a
proof of value sprint project within Airbus to demonstrate the usefulness of
statistics and machine learning approaches in the Engineering field. In a pre-
vious internal project, it has been shown that the family of regression trees
Breiman et al.| (1984) works well to predict loads for different aircraft missions
in an interpolation context. Thus, we can formulate our problem in this way: is
it possible to use dimensional reduction and regression trees-based algorithms
to predict loads in an extrapolation context (i.e outside the design space of a
certain weight variant) to improve the actual process?

1.1 Industrial context

An airframe structure is a complex system and its design is a complex task
involving today many simulation activities generating massive amounts of data.
Such is the case of the process of loads and stress computations for an aircraft
(that is to say the calculations of the forces and the mechanical strains suffered
by the structure) and can be represented as follow:

This overall process is run to identify load cases (i.e aircraft mission and con-
figurations: maneuvers, speed, loading, stiffness...), that are critical in terms of
stress endured by the structure and, of course, the parameters which make them
critical. The final aim is to callibrate the load to reduce the weight of the struc-
ture. Typically for an overall aircraft structure, millions of load cases can be
generated and for each of these load cases millions of structural responses (i.e
how structural elements react under such conditions) have to be computed. As
a consequence, computational times can be significant.

For a derivative aircraft, we can give some rough order of magnitudes in
terms of quantities of produced data: External loads (10° of bytes); Weights:
number of elements (10% of bytes); Internal loads: number of components by
the number of external loads by the number of elements (10! of bytes); Re-
serve Factors: number of internal loads by the number of failure modes (102

Flight Control
System
External loads
-{ Weights
» Stiffness }- % ! !l"! g ‘

Finite element Strength Sizin:
L{ analysis Internal loads H analygls } ’{ propenges A

1 -‘7

Structural optimization

‘ Geometry |

‘ Aerodynamic }
\
|

‘ Mission

Figure 1: Flowchart for loads and stress analysis process

of bytes). Hence, we easily reach 10'® to 10%! of bytes for a single derivative
aircraft.

In an effort to continuously improve methods, tools and ways-of-working,
Airbus has invested a lot in digital transformation and the development of in-
frastructures allowing to treat data (newly or already produced). The objec-
tive here is to exploit and adapt Machine Learning and optimization tools in
the right places of the computational process. As pointed by [Manyika and al
, these techniques cover a large number of fields such as Internet and
Business Intelligence but they can also benefit to the manufacturing industry
(here aeronautics). The main industrial challenge for Airbus is to reduce lead
time in the computation of loads and preliminary sizing of an airframe.

1.2 A simplistic load and stress model computation pro-
cess example

In order to illustrate the process exposed in the previous subsection, let consider
a simplistic load model completed with equations calculating thickness used to

correct the weight distribution of a wing structure similar to |[Doherty| (2009)
(Figure 2).

The structure contains a fuel tank at the wing tip with the dimensions spec-
ified above. The length of the wing is L, the chord length at wing root is Co and
at the tip Ct. As a consequence, there are three different types of loads which
affect the wing: the aerodynamic lift Q; ¢+ (i.e the force which allows the aircraft
to lift off and to maintain altitude) which depends on the length of the wing,
the load factor and the total weight of the aircraft; the loads concerning the fuel
& fuel tank weight @ fye; depending on the fuel weight and the dimension of the

Cof { Wing
- L-Lf L
L Fuselage e T 3

Lf

Figure 2: Scheme of the wing structure considered in the load model

fuel tank; and the loads due to the wing structure Quingstructure weight and the
dimension of the wing. By adding these three types of loads, and providing the
weight of the wing structure, the weights of the tank and the fuel contained, as
well as the total weight of the aircraft and the load factor; Qpta; provides the
basis for calculating the shear force V' (unaligned and opposed forces internal
to the material) and bending moment M (the reaction induced (bending) when
an external force or moment is applied) of the wing. The relation between these
quantities is :

V(z)=— fOL Q(z)dx
M(x) = fOL V(x)dx

where z is the position along the wing. We consider that the wing is repre-
sented by a box of the form as shown in Figure 3.

We can complete equations calculating thickness. Indeed, by considering the
box has height h(z) supposed linearly decreasing along the span, considering we
must not exceed an allowable of ¢,,,, tension and compression. Considering
the fluxes in the wing covers are given by N(z) = #ggz) thus we have the

thickness distribution defined by:

_ M(z)
t((E) - h(a:)C(zw)amaz
And by integrating we get the weight of the cover given by:

L M (x
Weover = 2f0 mdl‘

Clx)

T tlx)

QU

Figure 3: Form of the box

Indeed, by considering that the box takes the form above, by integrating
t(xz)C(z) along = and by multiplying by 2p, where p is the density of the ma-
terial used to fabricate wing panels, we get the weight of the wing cover. More
precisely, we obtain the minimum weight of the wing cover able to resist an
allowable 0,4, tension and compression. We assume that Weoper = 7T0%Wping.
then we can extract the minimum weight of the wing structure able to resist an
allowable 0,,,, tension and compression.

1.3 Data presentation

The data we have at our disposal are the aircraft parameters (features) which
are used in the computing chain for calculating loads (outputs which corre-
spond to moments and forces). We have data coming from the weight variant
238 touns (aircraft parameters and loads distribution along the wing); and we
would like to predict those of the 242t and other weight variants (247t and 251t).

24 aircraft (A.C.) parameters play the role of features (lying in R) and we
would like to predict loads (outputs) which are in R¥. To simplify, we will focus
on predicting bending moment along the wing which is, in our data, represented
by a vector of size k = 29. The data base is mainly constituted by gusts (90% of
all load cases) and we will focus on them. To begin, we shall focus on the 238t
and 242t data before generalizing our results to other weight variants. Before
going any further, follows a quick summary of the size of our different datasets:

| 238t(Train&Test) |

242t(Validation)

|

Dimension data features

28391 rows x 24 col.

28391 rows x 24 col.

Dimension data outputs

28391 rows x 29 col.

28391 rows x 29 col.

Table 1: Description of the datasets

In a more formal way, let be the 238t database of features defined by
X = (X',..,X?) where X7 are quantitative variables (i.e a A.C. parame-
ter), and X7 = (27, ...,3g59;)7. The 238t database of outputs is then defined

by Y = (Y1, Y?) and Y7 = (4], .., ylggo1)”

. Here follows a description of

the aircraft parameters X (inputs) we have at our disposal in the training data

base 238t:
Description Distribution type \ Mean \ Std \ Min Max
Defl. Left inboard Elevator Gaussian 0.015 0.034 | -0.116 0.108
Stabilizer Setting Mixture of Gaussian (2 modes) | -0.033 | 0.023 | -0.093 | 0.0033
Defl. Spoiler 1 Left Wing Bi Modal -0.221 0.218 | -0.436 0
Defl. Spoiler 2 Left Wing Mixture of Gaussian (2 modes) | -0.266 | 0.262 | -0.755 | 0.230
Defl. Spoiler 3 Left Wing Mixture of Gaussian (2 modes) | -0.266 | 0.262 | -0.755 | 0.230
Defl. Spoiler 4 Left Wing Mixture of Gaussian (2 modes) | -0.266 | 0.262 | -0.755 | 0.230
Defl. Spoiler 5 Left Wing Mixture of Gaussian (2 modes) | -0.266 | 0.262 | -0.755 | 0.230
Defl. Spoiler 6 Left Wing Mixture of Gaussian (2 modes) | -0.266 | 0.262 | -0.755 | 0.230
Defl. Low speed outer Aileron quadrimodal -0.028 0.0563 | -0.157 0
Lower part Rudder Deflection Gaussian 0 0.011 -0.072 0.072
Total A.C. Mass Multimodal 195738 | 35428 | 135093 | 238000
Mach Number Multimodal 0.716 0.19 0.372 0.93
True Airspeed Multimodal 223 50 126 282
Altitude Multimodal 6270 4519 0 12634
x-location of ¢g in % amc Multimodal 0.297 0.114 0.140 0.42
Thrust(calculated) Multimodal 131442 | 157160 0 415495
X-Load Factor Gaussian -0.020 0.107 -0.3 0.261
Y-Load Factor Gaussian 0 0.08 -0.306 0.307
Z-Load Factor Gaussian 1.024 0.43 -0.701 2.643
Fuel Tank mass TANKI1L Multimodal 392 1030 0 4341
Fuel Tank mass TANK2L Multimodal 13008 12721 0 36295
Fuel Tank mass TANK3L Multimodal 1883 1377 0 3087
Fuel Tank mass TANKI1L Multimodal 945 1029 0 2592
Left inner engine thrust Multimodal 65721 78579 0 207747

Table 2: Description of the 238t dataset

The bending moment is calculated at 29 points along the wing - each point
represents a station and stations are not equidistant (two more stations are
located in the center wing box; we prefer to focus here on stations of the wing
only). Thus Y* represents the values of the bending moment taken at the
kth station. Through a change of coordinate system (aircraft system to wing
system), we can easily plot bending moments as follow:

9000000

8000000

7000000

6000000

5000000

4000000

Bending Moment

3000000

2000000

1000000

0
0 5 10 15 2 2
From the wing root to the wing tip

Figure 4: Bending moments along the wing for different load cases

1.4 Industrial problem

Aircrafts (A.C.) have been developed for different maximum take-off weight
(which is one of the many aircraft parameters used in the computing chain to
calculate the loads). Because the computation process exposed above for a new
aircraft variant (a new weight variant in our case) can reach easily a year, the
use of meta-models, optimization and statistic approaches such defined by
|domi and Haider| (2015) is mandatory to improve the speed and responsiveness
of the overall process.

From this standpoint, we can expose the following problem: for each combi-
nation of A.C. parameters corresponding to a load case, and each load case being
categorized into a load condition (family of load cases — gusts or maneuvers),
can we give an estimation of the loads for different A.C. parameters for new
weight variants (242t, 247t and 251t) knowing the loads of the weight variant
238t7

The mathematical problem of this project is an extrapolation problem. Is
it possible to ‘extrapolate’ loads of the 242 tons, 247t and 251t knowing loads
of the 238t by using machine learning? To be more precise, can we find a func-
tion depending on aircraft parameters that allows us to estimate/extrapolate to
242t and other weight variants by learning from those of the 238t? In a pre-
vious project concerning loads, it has been shown that the family of regression
trees works well on the data we have to deal with. As a consequence, different
algorithms based on decision trees will be investigated. Besides, because of the
dimension of our outputs, how do dimensional reduction techniques affect the

capability of extrapolation of machine learning algorithms based on regression
trees?

This paper is organized as follow: the following part relates to the three
dimensional reduction techniques we have used, the third exposes the different
algorithms based on regression trees and the last part outlines our results before
we conclude.

2 Three Dimensional Reduction Techniques

Because the outputs are vectors, it is mandatory to test several dimensional
reduction techniques to improve the efficiency and speed of the modeling process.
In the first part, we shall discuss about the principal components analysis. In
the second part, we will consider a polynomial fitting, and in the last part we
will mix both methods. These dimensional reduction techniques will reduce the
dimension of the output space. Each technique has been used on the 238t, and
these allow us to reverse the technique to come back to the original output space
easily.

2.1 Principal Components Analysis

In few words, the Principal Components Analysis (PCA), developed by |Pearson
(1901) and formalized by Hotelling| (1993) is a statistical method used to com-
press a matrix n x p of quantitative variables into a smaller rank matrix. This
method uses the variance-covariance matrix (or correlation matrix) to extract
important factors (few in general) to represent observations in a smaller sub-
space. As a consequence, each observation is represented by coordinates into
new components linked to these factors (this approach is similar to the SVD
decomposition).

We apply the PCA in the space defined by the outputs (centered and re-
duced), and here is the decline of the variance explained by each component as
well as the cumulative percentage of the explained variance:

Few components (6) explain 99.99% of the total variance. When we look
closer at the correlation of the original variables with the principal components,
we see that all features have a similar correlation coefficient with the two first
principal components.

2.2 Polynomial fitting

Because the outputs we are trying to predict are vectors/curves, we can sum-
marize the information of each curve by fitting a polynomial function instead.
Indeed, each curve represents the bending moment along the wing and we can

Cumulative % of variance explained vs number of components

100

3

% of variance explained
&

0 - —

2 4 6]
Number of components

Figure 5: Cumulative percentage of the explained variance

clearly see that the curve has a quadratic form.

As a consequence, we consider that it exists a polynomial function p of degree
d such as:

p(z) = apr? + ... + aq

The coefficients ag, ..., aq are obtained by minimizing the squared error by
the least squares method.

Nevertheless, a discontinuity always appears at the 12th station along the
wing. Consequently, we should fit a polynomial on the first part of the curve
and another on the second. In order to choose properly the degree of each poly-
nomial, we must assess the quality of the fit.

The optimal couple of degrees would be 2 for the first polynomial and 2 for
the second polynomial as well. The dimension of the output space would be 6
instead of 29.

2.3 Polynomial fitting & Principal Components Analysis

By first applying polynomial fitting on the curves and then applying a PCA on
the coefficients of the polynomials, we can decrease one more time the dimension
of the output space from 6 to 4.

By keeping 4 principal components, the output space goes from 6 to the
4 dimensions and the precision is greater than 99.9% for at least 99% of the

observations. Here follows the decline of the explained variance per component
as well as the cumulative percentage of the explained variance:

Cumulative % of variance explained vs number of components

100

3 4
Number of components

Figure 6: Cumulative percentage of the explained variance

In the following, we shall test the different dimensional reduction techniques
above which will be compared to no dimensional reduction.

3 Regression based on Trees

In this section, different algorithms based on decision trees will be investigated.
More precisely, the Classification and Regression Trees have been the source
of numerous ensemble methods such as Bagging, Random Forest, the Gradient
Boosting and AdaBoost and we explain how they work on the data we deal
with. Recall we have at our disposal the 238t database of inputs which contains
X = (X1 ..., X?*) where X/ are quantitative variables (i.e a A.C. parameter),
and outputs are defined by Y = (Y, ..., Y29). For each individual, we observe a
couple Z; = (X;,Y;) where X; = (X},..., X?*) and V; = (Y}},...,Y;**). We have
thus a sample of observations of size n = 28391. The aim is to explain Y by a
function of X. For the sake of simplicity, we will consider the univariate regres-
sion Y* (that is to say the value of the bending moment on the k*" station) by
a function of X.

3.1 Classification and Regression Trees (CART)

Classification and Regression Trees have been formalized by
(1984) and are decision trees. They consist of approximating a function F such

as F: X — Y*. This algorithm considers all of 28391 observations and all of

the 24 inputs. Let us recall how the method works (see (2016)):

10

"The construction of a tree consists in determining a sequence of nodes: a
node is defined by the choice of one of the inputs (also called features) X7 and
a division criteria which induces the partitionning of the sample linked to the
node into two classes; a division criteria is defined by a threshold of the feature
X7 ; the root (also called initial node) corresponds to the full sample. As a con-
sequence, the algorithm needs: a definition of a division criteria; a rule which
tells when a node is terminal (it becomes thus a leaf); and the association of
each leaf to a value of Y*".

"A division (i.e the choice of the feature X7 and its threshold) is said to be
acceptable if none of the two descending nodes is empty. The division criteria
is based on the definition of a function of heterogeneity (the variance of the sub-
sample), the objective being to split the sample into two groups as homogeneous
as possible. The division of the node creates two nodes (left and right). Among
all acceptable divisions, the algorithm keeps the one which minimizes the sum
of the heterogeneity function of the two nodes".

"A tree stops growing to a certain node, which thus becomes a leaf, when it is
homogeneous, or when there is no more acceptable division or when the number
of observations of the sub-sample linked to the node is smaller than a predefined
threshold. Here follows an example of construction of a tree":

ls lo

I3

Iy

ds di
X7

Figure 7: Example of construction of a tree|Wikistat| (2016)) : Nodes are designed
by N, and leaves by [

N; is the node containing all observations of X, and other nodes or leaves
contain a subsample of X. Let called X;, the subsample of X that is contained

by l;. As a consequence, the value of Y* associated to l; is defined by :

11

k n
Y, = #{%’CGQ} S Y ykeryy

The value of Y* associated to each leaf is then the average value of Y*s
associated to the sub-sample of the leaf.

At the end, this algorithm provides a huge tree with many leaves which can
lead to over fitting. To avoid this effect, the tree must be pruned: we have to
extract a sub-tree minimizing a generalization risk from the tree.

3.2 Bagging with regression trees

Bagging is an ensemble method to be applied if one wants to improve the qual-
ities and capabilities of prediction of any algorithm. The following comes from
Breiman| (1996). Let us consider the full sample X of size n = 28391. From
this n-sample, we draw randomly with replacement ¢ n-sized samples from X,
called X; and, for each X;, we train a predictor p; (in our case, a tree-based
algorithm). {p1, ..., pr} is therefore an ensemble of predictors, predictors defined
on different samples and the predictor on the whole training set is then defined
by E[p(x,X})], that is to say the average value of all predictions done by the
predictors defined above. Sampling with replacement is most of the time asso-
ciated to boosting sampling. The method explained above is named Bagging
(stands for Boosting AGGregatING). Bagging improves predictions capabilities
because it introduces differences between training samples which lead to vari-
ability of predictors. Breiman has shown that good candidates to boosting are
classification and regression trees and neural networks.

3.3 Random Forest

Random Forests, introduced by Breiman| (2001)), are based on bootstrap sam-
pling and CART. From the training set X, ¢ n-sized samples X; are drawn with
replacement (bootstrap technique used in the Bagging algorithm as well) and
CARTS are fitted on each X;. When a tree is built, at each node of the tree, we
draw randomly m inputs out of 24 (independently) and the optimal splitting
criteria is defined through these m drawn variables. Trees grow to the maximal
size and are not necessarily pruned.

Each tree is an estimator of the underlying function and built on a variation
of the training set. As a consequence, each estimator leads to different results.
Nevertheless, because of the numbers of estimators, the ensemble of trees (the
forest), leads to a stable model. For a new observation, the prediction is then
the average value of all the predictions of all predictors as in Bagging.

12

3.4 Gradient Boosting

The gradient boosting, intuited by [Breiman| (1997) and developed by |Friedman
(1999)), is like every other boosting method: it combines weak learners. The
goal stays the same, to explain Y* by a function of X and instead of tuning
parameters of this model, we iteratively add a model to the previous one to
increase its capabilities. The name of "gradient" comes from the fact that the
gradient of the squared error is the negative residual (see [Friedman/ (1999) and
Li (2016)). In our case, we use regression trees (CART). Here follows a simpli-
fied version of the Gradient Boosting Machine algorithm (for more details, see
Friedman (1999))):

Algorithm 1 Simplified Gradient Boosting Machine

1: procedure GBM

2 Fit a decision tree F; on X (resp. Y¥)

3 Compute the error residuals e; = Y* — | (X)
4: for t =2,...,T do:

5: Fit a decision tree F on X (resp. e;—1)

6

7

8

Fy(X) = F1(X) + F(X)
Compute the error residuals e; = Y* — Fy(X)
The model is then the sum of all fitted trees

3.5 AdaBoost

One thing that Bagging does not take into account is that each observation is
not equally susceptible to be drawn randomly from the training set. Most of
the time, we cannot assure this condition. As explained by [Drucker| (1997); ‘in
boosting, the probability of a particular example being in the training set of a
particular machine depends on the performance of the prior machines on that
example”. In other words, if machine (a model) is able to predict and learn
properly an observation, we do not need to learn more about it, but on observa-
tions which are difficult to learn on. Thus, these last ones will be more likely to
be picked in a boosting sample. Adaboost was first introduced by [Freund and
Shapire| (1995} [1996), and the following is a slightly modified version by [Drucker
(1997)) called AdaBoost.R2:

Initially, each observation is assigned by a weight w; =1, ¢ =1,...,n. The
algorithm is defined this way and continues till the average loss L goes under 0.5:

13

Algorithm 2 AdaBoost.R2

1: procedure ADB
2: fort=1,...,T do:
3: The probability that the observation 7 is in the training set is directly

Wi

obtain by p; = S Draw with replacement a n-sized sample X; (and its

corresponding output YF) from the training set X (and Y*).

4: Build a model F; on X; (resp. Yf) by making a weak hypothesis
hy: Xy — YF

5: Pass X to the model to get each predictions F;(X;),i =1,...,n

6: Calculate a loss for each observation. The loss may be of any form

as long as L € [0, 1]

7: Calculate the average loss:L = S Lipi B
8: Assessment of the confidence in the predictor by calculating 5 = %
9: Update the weights w; — w; 81~

10: Outputs of each machine F; are then weighted, and the predictor is the
(weighted) median

Although this algorithm is noise and outliers sensitive, it does not need to
be calibrated. This ensemble technique can be used with Random Forest and
Decision Trees Regressors.

4 Prediction of loads for a new weight variant

4.1 Data preparation

Several options are possible to improve the capability of predictions of machine
learning. For example, some of them are sensible to the homogeneousness of
the data they learn from, or the number of input variables, as well as outliers.
Concerning the last case, we cannot consider outliers because every load cases
have been validated thus we must consider all of them. In the first part, we will
focus on clustering of our load cases of gusts to improve the ML performance.
In the second part, we shall analyze the influence of different dimensional reduc-
tion techniques on the generalization capabilities of several algorithms based on
regression trees.

To improve the capability of machine learning algorithms, clustering has
been performed on the gust cases. To take into account the form of each curve
in the clustering process, the K-means algorithm has been performed on the
data concerning the A.C. parameters as well as the coefficients of polynomials
(respectively of 2nd and 2nd degree). To choose efficiently the number of clus-
ters, a PCA has been performed and in the two first components, two clusters
can be distinguished precisely. In the following, these two clusters will be re-
ferred as Cluster 0 and Cluster 1.

14

Figure 8: (a) Scatter plot of individuals in the two PC; (b)(c): Average, median,
and confidence intervals of bending moments of clusters number 0 and number
1

As we can see above, the average bending moment of the Cluster 0 is more
linear than the one of Cluster 1. Besides, the cluster 1 is constituted by bending
moment which are mainly positive and with higher value at the wing root. By
looking closer at the A.C. parameters, we can see that most of variables have
the same distribution with a slightly different mean value. Nevertheless, some
of them are really different: this is the case for DQ DEGLI1 (Deflection left in-
board Elevator), DSP_DEGI1L (Deflection Spoiler 1 Left Wing), DP_DEGIL
(Deflection all speed Inner Aileron), DP_ DEGOL (Deflection low speed Outer
Aileron) and even more for ENXF (X-Load Factor Body Axis), especially the
distribution:

|

[DQ_DEGLI | DSP_DEGIL | DP_DEGIL | DP_DEGOL | ENXF

Cluster 1

0.0043

-0.00025

-0.0082

-0.0079

-0.0587

Cluster 0

0.0258

-0.4363

-0.0495

-0.0488

0.0173

Table 3: Comparison of variables means in the two clusters

15

010 aos
08 808 08
o a4
a5 as
00z
000
Qoo e
04 04
count 14419.000000 count 13963.000000
-0.05 mean 0.025872 -0.02 mean 0.004305
std 0.043447 std 0.013254
min -0.116382 min -0.065530
02 259 0.017079 o4 02 259 -0.000101
50% 0.034160 50% 0.000016
010 75% 0.051539 -0.08 75% 0.004843
max 0.108197 max 0.082470
ao Name: DQ_DEGL1, dtype: floats4 a0 Name: DQ_DEGL1, dtype: float64
o8 09 10 11 12 0o a2 04 06 o8 10 os 09 10 11 12 oo 0z 04 06 a8 10
DQ_DEGL1 - Cluster 0 DQ_DEGL1 - Cluster 1

Figure 9: Comparison of DQ DEGL1 for the two clusters

— 010 e —
02 005
a8 o8
000
a1
06 -0.05 — 06
00 — 010
L -0.15 04
count 14419.000000 count 13963.000000
01 mean 0.017354 mean -0.058779
std 0.104844 -020 std 0.096762
min -0.233586 min -0.300776
02 25% -0.052047 . 02 5% -0.142836
50% 0.011660 50% -0.055978
02 75% 0.091290 75% 0.023171
max 0.261800 030 —— max 0.100570
oo Name: ENXF, ditype: floaté4 oo Name: ENXF, dtype: float64
08 09 10 11 12 00 02 04 06 08 10 08 09 10 11 12 00 02 04 06 08 10
ENXF - Cluster 0 ENXF - Cluster 1

Figure 10: Comparison of ENXF for the two clusters

4.2 From 238t to 242t

Before presenting the results, it is important to explain more the R-squared
score we have used in this project and why it is relevant in an engineering con-
text. The R-squared, or also known as coeflicient of determination, is a number
that shows how well predictions are with respect to the explained variance. In
other words, it is a measure of how well the model fits the data:

A\2

In our case, we calculate a R? at each station of the wing. Indeed, by do-
ing so, we maintain the engineering sense of accuracy of a curve. Because the
variance for one curve can be extremely high - for example, we have at the root
a value of 8 000 000 and at the wing tip it is closed to O - calculating a R? on
all the values at the same times would lead to over-estimate the accuracy of
our models because the total variance is higher and thus, the ratio between the
squared error and the variance is really low.

16

By calculating a R-squared at each station of the wing, we consider the vari-
ance only of the same kind of values. This has the disadvantage of being stricter
concerning the results but is more accurate on how well our models are. The
R-squared score given is then the average value of all R- squared calculated at
each station.

To compare properly the results, from the 238t data set, we have drawn
randomly a sample representing 80% of the observations, the last 20% repre-
sent the test set, and the 242t is our validation dataset, and we have repeated
several time to see if a modification of the training set leads to unstable results
in forecasting and generalizing.

To perform the comparison of algorithms presented above, we have used
the scikit-learn library. Unfortunately, because we are trying to predict a field
of vectors, just Random Forest is naturally implemented to do so and to take
advantage of links which could exist between them. Then we used the Mul-
tiOutputRegressor for the other algorithms which, basically, create a regressor
per output vector. As a recall, here are the algorithms we have tested the gener-
alization capabilities. Adaboost based on decision trees regressors (ADB-DT);
Adaboost based on Random Forest regressors (ADB-RF), Random Forest (RF),
Bagging (BG) and Gradient Boosting (GB).

First, before checking the influence of dimensional reduction techniques we
check which algorithms work the best on raw data:

(a) it} (e) @ ¢

Figure 11: Boxplot of scores on random samples concerning Cluster 0 - Learning
scores 238t-80% : (a) ADB-DT, (b) ADB-RF, (c¢) RF, (d) Bagging, (e¢) Gradient
Boosting

17

Figure 12: Boxplot of scores on random samples concerning Cluster 0 - Test
scores 238t-20% : (a) ADB-DT, (b) ADB-RF, (c) RF, (d) Bagging, (e) Gradient
Boosting

Figure 13: Boxplot of scores on random samples concerning Cluster 0 - Valida-
tion scores 242t : (a) ADB-DT, (b) ADB-RF, (c) RF, (d) Bagging, (e) Gradient
Boosting

As we can see, even if AdaBoost is not able to predict and take into account
several outputs, the one based on decision tree regressors gets the better results
with a lower variability. Random Forest combined with AdaBoost has 4% higher
scores with a lower variability than RandomForest only. It is important to notice
that Adaboost (based on decision trees or Random Forest) is the method which
has the less degrowth from the test score to the validation score (from 98.2% to
96.7%). As a consequence, we will focus now on the two first algorithms to see

18

the impact of dimensional reduction techniques: AdaBoost with decision tree
regressors (ADB-DT) and AdaBoost with RandomForest (ADB-RF).

To quantify the influence of dimensional reduction techniques on extrapola-
tion capabilities, here follows the different configurations we need to compare:

(1) Raw inputs + raw outputs: no data transformation.

(2) Raw inputs + PCA outputs: we keep the original input space and we
perform a PCA on the output space.

(3) Raw inputs + polynomial fitting: we keep the original input space and
replace the outputs by polynomial coefficients.

(4) Raw inputs + polynomial fitting and PCA: we keep the original input
space and replace the outputs by polynomial coefficients on which we per-
form a PCA.

(5) PCA inputs + Raw outputs: we keep the original bending moment
and we perform a PCA on the input space.

(6) PCA inputs + PCA outputs: we perform a PCA on the design space,
and another on the output space.

(7) PCA inputs + polynomial fitting: we perform a PCA on the design
space and replace the outputs by polynomial coefficients.

(8) PCA inputs + polynomial fitting and PCA: we perform a PCA on the
design space and replace the outputs by polynomial coefficients on which
we perform a PCA.

Concerning AdaBoost with Decision Trees regressors, we have:

19

1.000 - _—
0995
0990
0985
0.980

T 2) 2) 5) e 8)

Figure 14: Boxplot of scores on random samples concerning Cluster 0 and Ad-
aBoost - decision trees (ADB-DT) - Learning scores 238t-80% (indices are the
number of the tested configurations)

I

(1) (2) (4) (5] (8 (8)

Figure 15: Boxplot of scores on random samples concerning Cluster 0 and Ad-
aBoost - decision trees (ADB-DT') - Test scores 238t-20% (indices are the num-
ber of the tested configurations)

The polynomial fitting alone is not shown because Adaboost has revealed
to be unable to learn properly on this kind of data. A PCA performed on the
inputs does not improve results but reduce their variability. Nevertheless, we
can see that the ADB-DT with a PCA on the outputs improves results when
predicting the 242t.

20

(1 (2) (4] (5) (8) (8]

Figure 16: Boxplot of scores on random samples concerning Cluster 0 and Ad-
aBoost - decision trees (ADB-DT) - Validation scores 242t (indices are the
number of the tested configurations)

1.00

0995
0990
0985
0.980

087 1) (2) (4) (s) (6) (8)

Figure 17: Boxplot of scores on random samples concerning Cluster 0 and Ad-
aBoost - Random Forest (ADB- RF) - Learning scores 238t-80% (indices are
the number of the tested configurations)

The results of ADB-RF are similar to ADB-DT. One major difference is the
variability concerning the validation scores which is reduced against the others
methods. From a cluster to an others, results concerning the variability and the
type of algorithms are the same; just the scores change:

21

(1)

(2) (4]

Figure 18: Boxplot of scores on random samples concerning Cluster 0 and Ad-
aBoost - Random Forest (ADB- RF) - Test scores 238t-20% (indices are the
number of the tested configurations)

092

(1)

(2) (4]

(5)

(6) (8)

Figure 19: Boxplot of scores on random samples concerning Cluster 0 and Ad-
aBoost - Random Forest (ADB- RF) - Validation scores 242t (indices are the

number of the tested configurations)

\ Cluster 0 Cluster 1

Learning Test Validation Learning Test Validation

(1) ADB-DT 99.99/0 98.35/0.3 | 96.74/0.1 99.99/0 97.44/0.4 | 95.6/0.09
(2) ADB-DT 99.98/0 98.30/0.4 | 96.85/0.2 99.98/0 97.51/0.5 | 95.72/0.2
(1) ADB-RF 99.97/0 98.29/0.2 | 96.54/0.09 99.97/0 97.51/0.3 | 95.56/0.08
(2) ADB-RF 99.96/0 98.3/0.2 | 96.66,/0.17 99.96/0 97.53/0.4 | 95.62/0.09
(1) RF 99.37/0.03 | 96.74/0.2 | 92.51/0.2 || 99.17/0.04 | 95.7/0.4 | 92.17/04
(2) RF 99.38/0.03 | 96.91/0.2 | 92.78/0.18 99.21/0 95.88/0.3 | 91.77/0.6

22

Table 4: Mean/standard deviation of scores after cross-validation

AdaBoost with Random Forest or Decision Trees are similar but the vari-
ability. Nevertheless, we can assume now that a PCA on the outputs improves
the results and from now, we shall investigate how are the error distributed to
understand better the lack of generalization capabilities of our model. In the
following, just AdaBoost with Random Forest will be investigated.

To calculate the error ratio per curve of bending moment, the following for-
mula has been used:

VIE (@)~ f(2))?
VIEG@)2 [EF@))?

Where L is the length of the wing. By doing so it allows us to have a physical
idea of how far our predictions are.

error =

90% of the predictions of the 242t have an error lower than 7%, 88% with
an error lower than 5%, and 78% with an error lower than 2%; nevertheless, the

average error of the whole 242t dataset is 2.79%, that means that in average
the score is 97.21% for Cluster 0.

Percentage of observations of the 242t with the correct precision

Percentage of observations

Error

Figure 20: Percentage of observations of the 242t vs. Error Rate

23

It is interesting to understand why some points are really bad predicted. In
the first place, we shall look at the mean curve whose prediction error is above
10% and we can see that the curve which are not well predicted belong to the
whole space and does not occupy a certain subspace; as a consequence, the mean
curve is almost null:

— Mean
= = Median

- Int.sup

15 Sea == Intinf

Bending Moment

Figure 21: Mean curve of badly predicted bending moments of the 242t

By performing a PCA and plotting the A.C. parameters of the training
set (238t), as well as projecting the A.C. parameters of the 242t onto the first
components, we can see that the two first components do not help to understand
better the space distribution of the input parameters. Nevertheless, we can see
that the error grows in subspace were the density of points on the training set
is high. It is even more flagrant when you look at the projection in the second
and third component:

This high density value but high error ratio can be explained by the fact
that slight changes in the A.C. parameters (especially total weight) leads to
very different bending moments and by the fact that the design space is not
well distributed. Some points have a lot of weight in the PCA as we can see
above, and because we can not consider them as outliers, it makes difficult the
model to learn properly and have a better distributed design space. Besides,
the total weight of the aircraft (which is the crucial key of the analysis) has
not as much importance as it should be in the model and in the PCA; as a
consequence, load cases estimation leads to hazardous results for some dense
zone.

4.3 From 238t to 251t

In order to know if decision trees algorithms are able, in our case, to generalize
properly the problem we are dealing with, we shall focus on testing the best

24

PC2206%

Scatter plot of observations in the first and second principal components

S
.
:

.

.'

WO

e omammen s = Y

Figure 22: (238t (blue) and 242t (black) A.C. in the first and second PC - red
points correspond to observation whose error is above 5%

PC3153%

Scatter plot of observations in

the second and third principal components

PC2206%

Figure 23: (a) 238t (blue) and 242t (black) A.C. in the second and third PC —
red points correspond to observation whose error is above 5%

two algorithms, that is to say Adaboost based on decision trees and based on
Random Forest with both combining with a PCA on the outputs. As previously
explained, we shall, for a random sample of the 238t data set, create a model,
test it on the rest of the 238t dataset, and predict the 242t, 247t, and 251t
cases. This process is repeated several times for a different sample to show the

25

variability and the stability of our model. The shape of the data set of the 247t
and 251t are similar to the 238t and 242t.

Boxplots of scores Scores

L
w =
’ 3 B2 -
. 4
& & & & & & & & 5 5
s & & & S $ S $ $ $
o v & > & & & >
S 5 & Py & &7 & P & &
A A < A &«
¢ ¢ w‘YQ f\?ve z;’Q 175 Q)’Q 47?— Q)’Q 47?
$ £ ¢
& o & & & &
[~}
X
&

Figure 24: Results of generalization (boxplots of scores) concerning AdaBoost
with Decision Tree Regressors and Random Forest Regressors

The quality of generalization drops for points far from the training data set
and also for some really dense zones. As a consequence, concerning the 247t
data set, only 49% of the predicted observations have an error smaller than 2%,
78% for an error under 5% and 95% of the observations have an error smaller
than 35%. For the 251t, only 48% of the predicted observations have an error
smaller than 2%, 78% for an error under 5% and 95% of the observations have
an error smaller than 30%.

5 Conclusion

Let us highlight now the contribution of this case study. As mentioned above,
AdaBoost associated with Random Forest gives excellent results for observa-
tions which are not far from the training set (78% with an error less than 2%)
and close to 95% of load cases have an error under 10% and in average we get
a score above 97%. This is even more accurate when the outputs have similar

26

Percentage of observations of the 242t with the correct precision

Percentage of observations

Error

Figure 25: Percentage of observations of the 242t, 247t, 251t vs Error rate

forms for close design points and for load cases that are not impacted by the
weight change roughly. As soon as we try to generalize the results for obser-
vations far from the learning data set or for load cases which leads to different
behaviour, results drop. If we control the design space at the starting point, or
add information concerning the form of the load to predict, or place us in an
interpolation context, results would be even better.

A PCA on the outputs improves the results in average, and this can be ex-
plained because of the high co linearity of the outputs. Because of the presence
of outliers and especially because all inputs matter, a PCA on the input space
does not improve our results in average.

By trying to predict a vector (the shape of our training matrix is 28931x53)
and not a point (it would have been 838 999x25), the speed of learning is expo-
nentially decreased, and we keep the engineering information of the mathemat-
ical object.

Upcoming works concerning this project should investigate the following
point: define a reliable method for extrapolation; test other dimensional re-
duction techniques as the shape invariant model approach such as defined by
Sergienko et al.| (2012) which has been used in the petroleum industry; pro-
duce data in sub-spaces where there is a lack of information; investigate the
fact that the optimal parameters obtained are maybe not optimal in term of

27

generalization; consider other machine learning algorithms than those based on
regression trees because they are known to be not optimal in a generalization
problem, because they are considered as “black-boxes” and because they do not
give uncertainties; considering on-line learning: as soon as a new observation is
available, the model should keep learning sequentially.

Airbus pursues the increasing knowledge capitalization and the development
of new methods and tools for Research and Engineering through Big Data initia-
tives and the promising results of the sprint project, in which this case study has
been achieved, are part of the root of upcoming bigger projects about Machine
Learning in the load and stress process.

References

Airbus, C. A. (2017). A330 family. Available from
http://www.aircraft.airbus.com /aircraftfamilies /passengeraircraft /a330family /.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24:123-140.

Breiman, L. (1997). Arcing the edge. Technical Report, (486). Statistics De-
partment, University of California.

Breiman, L. (2001). Random forests. Machine Learning, 45:5-32.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. J. (1984). Classification
and Regression Trees. Wadsworth, Belmont, CA.

Doherty, D. (2009). Analytical modeling of aircraft wing loads using matlab
and symbolic math toolbox.

Drucker, H. (1997). Improving regressors using boosting techniques. Proceedings
of the Fourteenth International Conference on Machine Learning, pages 107—
115.

Freund, Y. and Shapire, R. (1995). A decision-theoretic generalization of on-
line learning and application to boosting. Proceedings of the second European
Conference on Computational Learning Theory, pages 23-37.

Freund, Y. and Shapire, R. (1996). Experiments with a new boosting algorithm,
machine learning. Proceedings of the Thirteenth Conference, pages 148-156.

Friedman, J. H. (1999). Greedy function approximation: A gradient boosting
machine.

Gandomi, A. and Haider, M. (2015). Beyond the hype: Big data concepts,
methods, and analytics. Internation Journal of Information Management,

35:137-144.

Hjelmstad, K. D. (2005). Fundamentals of Structural Mechanics. Springer US.

28

Hoblit, F. M. (1988). Gust Loads on Aircraft: Concepts and Applications. ATAA
Education Series, ATAA.

Hotelling, H. (1993). Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology, 23:417-441 and 498-520.

Li, C. (2016). A gentle introduction to gradient boosting. College of Com-
puter and Information Science, Northeastern University. Available from:
http://www.ccs.neu.edu/home/vip/teach/MLcourse/4 _boosting/slides/gradient boosting.pdf.

Manyika, J. and al. (2011). Big data: the next frontier for innovation, compe-
tition and productivity. Mc Kinsley Global Institute.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in
space. Philosophical Magazine, 2(11):559-572.

Sergienko, E., Gamboa, F., and Busby, F. (2012). Shape invariant model ap-
proach for functional data analysis in uncertainty and sensitivity studies.

Wikistat (2016). Arbres binaires de décision — wikistat. Available from:
http:/ /wikistat.fr /pdf/st-m-app-cart.pdf.

29

	Introduction
	Industrial context
	A simplistic load and stress model computation process example
	Data presentation
	Industrial problem

	Three Dimensional Reduction Techniques
	Principal Components Analysis
	Polynomial fitting
	Polynomial fitting & Principal Components Analysis

	Regression based on Trees
	Classification and Regression Trees (CART)
	Bagging with regression trees
	Random Forest
	Gradient Boosting
	AdaBoost

	Prediction of loads for a new weight variant
	Data preparation
	From 238t to 242t
	From 238t to 251t

	Conclusion

