
HAL Id: hal-01700295
https://hal.science/hal-01700295v2

Submitted on 22 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pressure-driven dynamics of liquid plugs in rectangular
microchannels: influence of the transition between
quasi-static and dynamic film deposition regimes

Stéphanie Signe Mamba, Farzam Zoueshtiagh, Michael Baudoin

To cite this version:
Stéphanie Signe Mamba, Farzam Zoueshtiagh, Michael Baudoin. Pressure-driven dynam-
ics of liquid plugs in rectangular microchannels: influence of the transition between quasi-
static and dynamic film deposition regimes. International Journal of Multiphase Flow, 2018,
�10.1016/j.ijmultiphaseflow.2018.10.019�. �hal-01700295v2�

https://hal.science/hal-01700295v2
https://hal.archives-ouvertes.fr


Pressure-driven dynamics of liquid plugs in rectangular
microchannels: influence of the transition between
quasi-static and dynamic film deposition regimes.

S. Signe Mamba, F. Zoueshtiagh, M. Baudoin∗

Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN,
International laboratory LIA/LICS, F-59000 Lille, France

Abstract

In this paper, we study experimentally and theoretically the dynamics of liquid
plugs in rectangular microchannels for both unidirectional and cyclic pressure
forcing. In both cases, it is shown that the transition between quasi-static and
dynamic film deposition behind the liquid plug leads to a dramatic acceleration
of the plug, rapidly leading to its rupture. This behaviour proper to chan-
nels with sharp corners is recovered from a reduced dimension model based on
previous theoretical and numerical developments. In addition, it is shown for
cyclic periodic forcing that the plug undergoes stable periodic oscillations if it
remains in the quasi-static film deposition regime during the first cycle, while
otherwise it accelerates cyclically and ruptures. The transition between these
two regimes occurs at a pressure-dependent critical initial length, whose value
can be predicted theoretically.

Keywords: Liquid plug, rectangular channel, Hele-Shaw geometry, wet
fraction, periodic forcing.

1. Introduction

Two-phase gas-liquid flow in microfluidic devices is a hydrodynamic prob-
lem with practical applications in a variety of engineered systems including
flows in microreactors (Song et al., 2003; Gunther et al., 2004; Assmann and
von Rohr, 2011; Sobieszuk et al., 2012), enhanced oil recovery (Havre et al.,
2000), flow in porous media (Lenormand et al., 1983; Dias and Payatakes, 1986;
Stark and Manga, 2000), film coating and biomechanical systems as pulmonary
flows (Kamm and Schroter, 1989; Heil et al., 2008; Grotberg, 2011). The sig-
nificant scope of the topic motivated early studies on the dynamics of these
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interfacial flows, first in cylindrical tubes (Fairbrother and Stubbs, 1935; Tay-
lor, 1961; Bretherton, 1961) and soon after in polygonal channels (Saffman and
Taylor, 1958; Jensen et al., 1987; Ratulowski and Chang, 1989; Wong et al.,
1995b; Kolb and Cerro, 1991; Thulasidas et al., 1995; Lozàr et al., 2007, 2008;
Han and Shikazono, 2009; Han et al., 2011). In the last decades, the inter-
est in segmented gas-liquid flows in polygonal, and in particular, rectangular
microchannels has further grown with the development of soft lithography tech-
niques in microfluidics (Duffy et al., 1998; Quake and Scherer, 2000), which
enable simple design of complex microchannels with rectangular cross-sections
(Anderson et al., 2000).

A finite volume of liquid (liquid plug or slug) that is displaced by an air
finger at constant flow rate or pressure head (Taylor flow) in a tube, leaves on
the walls a trailing liquid film. Its thickness can be quantified by the so-called
wet fraction, which is the proportion of the tube section occupied by the liquid
film. In cylindrical capillary tubes, this parameter increases monotonically with
the dimensionless velocity of the meniscus (the so-called capillary number Ca)
with a Ca2/3 law (Bretherton, 1961) at low capillary number. This law can
be further extended to larger capillary number as demonstrated by Aussillous
and Quéré (2000). In polygonal microchannels however, a transition occurs at
a critical capillary number between two radically different regimes: Under this
critical parameter, the shape of the meniscus remains close to the static one
and most of the fluid deposition occurs in the corners of the tube. Indeed,
the static shape of the meniscus cannot follow the singular shape of the sharp
edges, which leads to significant deposition in the tube corners, even at van-
ishingly small capillary number. Thus, the wet fraction slightly relies on the
plug dynamics and the relative variation of the wet fraction with the capillary
number remains weak. (Wong et al., 1995a,b). Above this critical number, the
fluid deposition resulting from the deformation of the rear meniscus induced by
the flow overcomes the static one. In this case, the wet fraction becomes again
strongly dependent over the capillary number, similarly to what is observed in
cylindrical channels. Nevertheless, this process in polygonal channels also de-
pends on the tube geometry (Jensen et al., 1987; Wong et al., 1995a,b; Lozàr
et al., 2007, 2008). Lozàr et al. (2007, 2008) showed that it is possible to extend
the laws introduced for cylindrical tubes to rectangular tubes, providing the
introduction of an aspect-ratio-dependent capillary number .

This liquid film deposition process induces a dramatic acceleration of a liquid
plug when it is pushed at constant pressure head (Baudoin et al., 2013). Indeed
the diminution of the plug size leads to a reduction of the viscous resistance of
the plug to motion, itself leading to an acceleration of the plug and thus more
fluid deposition. More recently, it has been shown experimentally by Magniez
et al. (2016) that the inverse behaviour (progressive slow down and growth of the
liquid plug) might also be observed in prewetted capillary tubes depending on
the value of the driving pressure and the thickness of the prewetting film. The
acceleration and rupture of a liquid plug has also been evidenced in complex tree
geometries (Baudoin et al., 2013; Song et al., 2011) and for cyclic pressure forcing
(Signe-Mamba et al., 2018). In the latter case however, both the diminution of
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the viscous resistance and interfacial resistance (due to lubrication effects) at
each cycle contribute to the plug acceleration and breaking.

Nevertheless, all the aforementioned studies were conducted in cylindrical
tubes or at capillary numbers well above the critical capillary number. In this
paper, we study experimentally and theoretically the influence of the transition
between quasi-static and dynamic fluid deposition process on the dynamics of
liquid plugs in rectangular channels pushed either with a unidirectional or a
cyclic pressure forcing. In both cases, it is shown that the transition between
these two regimes leads to a dramatic acceleration of the plug eventually leading
to its rupture. For cyclic forcing, it is shown that under a critical length the
plug dynamics is unstable and leads to the plug rupture while above it is stable
and periodic; the experimental results are recovered from a reduced dimension
model, inspired from previous theoretical developments by Baudoin et al. (2013),
Magniez et al. (2016) and Signe-Mamba et al. (2018) adapted here to take
into account (i) the modifications of the laws in the rectangular geometry, (ii)
lubrication effects resulting from the back and forth motion of the liquid plug on
a prewetted tube, and (iii) the transition between quasi-static and dynamic film
deposition. The first and second sections provide the experimental and model
details. The third and fourth sections explore respectively the response of liquid
plugs to unidirectional and periodic cyclic pressure forcings and compare the
observed dynamics to results in cylindrical tubes.

2. Method

The experimental setup is represented on Fig. 1. The experiments are con-
ducted in rectangular polydimethylsiloxane (PDMS) microfluidic channels of
high aspect ratio obtained by standard photolithography techniques: A mold is
etched by depositing a layer of photoresist resin (Microchem, SU8-2035) on a
silicon wafer. This layer is spin-coated and patterned by standard photolithogra-
phy. The spin-coating speed combined with the choice of the photoresist set the
height h = 45± 2µm of the microfluidic channels, while the width w = 785µm
is controlled by the design of the patterned masks which is used during the UV
exposure. These values of the channel width and height were measured after-
wards with a profilometer (Dektak XTL). After exposure, the film is developed
in an organic solvent solution (SU-8 developer) to yield the negative of the chan-
nel design. This SU8 mold was used to pour PDMS (Dow Corming, Sylgard
184) whose polymerisation was obtained by curing it at 100◦C. The microfluidic
channel is then cut out and bonded on a glass microscope slide by passing the
two surfaces in an oxygen plasma. The microscope slides are covered by a thin
PDMS membrane in order to guarantee identical boundary conditions to the
four channel walls. The total length of the channel is 6 cm.

Then, perfluorodecalin (PFD) liquid plugs are created in the channel by
pushing alternatively some liquid and some air at a Y-junction with a sy-
ringe pump and a MFCS Fluigent pressure controller respectively, connected
to both entrances of the microfluidic device. Perfluorodecalin was used for its
hydrophilic properties with PDMS (static contact angle θs = 23± 1◦) and since
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Figure 1. Sketch of the experimental set-up. A liquid plug is created inside a rectangular
PDMS microfluidic channel by pushing alternatively some liquid and some air at a Y-junction.
The liquid is pushed by a syringe pump while the air is pushed by a MFCS pressure controller.
Then the liquid plug is moved by the pressure controller either in one direction (unidirectional
driving) or alternatively in both directions (cyclic periodic driving).

it does not swell PDMS (Lee et al., 2003). This fluorocarbon has a dynamic
viscosity µ = 5.1 × 10−3 Pa.s, surface tension σ = 19.3 × 10−3 N/m and den-
sity ρ = 1.9 × 103 kg/m3. Then, air is blown in the channel at low pressure
to bring the liquid plug to the center of the microfluidic channel and stopped
manually when the target position is reached. Finally, the plug motion is forced
with either a unidirectional or cyclic periodic pressure forcing with the MFCS
programmable pressure controller. For cyclic forcing one entrance and the exit
of the channel are connected to two channels of the MFCS pressure controller.
Then an overpressure (compared to atmospheric pressure) is applied alterna-
tively to each end of the channel while the other is set to atmospheric pressure.
The resulting shapes of the pressure forcing measured with an internal pressure
sensors in these two cases are represented on Fig. 2. For cyclic forcing the period
was fixed to 2T = 4 s or 2T = 6 s, with T the duration of a half cycle. The
measured unidirectional pressure driving can be approximated by the following
analytical expression based on Gompertz functions:

Pt = 900e−3e−10t

, (1)

while the cyclic forcing can be approximated by the expression :
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Figure 2. (a) Unidirectional pressure forcing measured experimentally (blue solid line) and

approximated by the formula (red dotted line): ∆Pt = P0e−ae−bt
with P0 = 900 Pa, a = 3

and the growth rate b = 10. (b) Cyclic pressure forcing imposed by the MFCS pressure con-
troller measured experimentally (blue solid line) and approximated by the analytical formula

∆Pt = 1200e−6e−3t
Pa for t ∈ [0;T ], and ∆Pt = (−1)n(Pc − Pd) for t ∈ [nT ; (n+ 1)T ] with

Pc = 1200e−2.5e−3(t−nT )
Pa and Pd = 1200e−1.2(t−nT )e−0.02e−1.2(t−nT )

Pa (red dotted line)
and T = 2.12 is the half period.

∆Pt = 1200e−6e−3t

Pa for t ∈ [0;T ] (2)

∆Pt = (−1)
n
(Pc − Pd) for t ∈ [nT ; (n+ 1)T ] (3)

with Pc = 1200e−2.5e−3(t−nT )

Pa (4)

and Pd = 1200e−1.2(t−nT )e−0.02e−1.2(t−nT )

Pa (5)

Initially the microfluidic channel is dry. Hence, the liquid plug moves on a
dry portion of the channel for unidirectional forcing. Nevertheless, the motion
of the liquid plug leaves a trailing liquid film on the walls and in the corners
of the channel. Thus, for cyclic forcing the liquid plug moves on a prewetted
channel after the first cycle as long as it is moves on a portion of the channel
already visited by the liquid plug in the previous back and forth motions.

Experiments are recorded with a Photron SA3 high speed camera mounted
on a Z16 Leica Microscope. The resolution of the camera used in the experiments
is 1024×64 pixels, the acquisition frame rate 125 images/s and the shutter time
1/3000 s. The image analysis is then performed using ImageJ software and
Matlab. The plug evolution is characterised by monitoring the positions of the
rear meniscus xr and front meniscus xf (see Fig. 1), and deducing the evolution
of the plug length Lp(t) = xf (t) − xr(t) and the speed of the rear meniscus of
the plug Ur = dxr/dt.

3. Model of a plug flow in dry and prewetted rectangular microfluidic
channels

The model derived in this paper to describe the dynamics of liquid plugs
under pressure forcing combines previous theoretical developments by Baudoin
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et al. (2013), Magniez et al. (2016) and Signe-Mamba et al. (2018), and inte-
grates additional elements to include the transition between quasi-static and
dynamic liquid film deposition.

3.1. Dimensional analysis and characterisation of the regime

In this problem, we consider a single liquid plug of initial length L0 set into
motion in a rectangular microfluidic channel under the unidirectional or periodic
forcings represented on Fig. 2.

Dimensionless number Formula Estimation
τc/τexp lc/U 1.8× 10−2

τd/τexp ρlc
2/µ 1.3× 10−2

Re τd/τc 0.7
We ρU2lc/σ 1.9× 10−3

Ca µU/σ 2.6× 10−3

Bo ρgh2/σ 2× 10−3

Table 1. Values of the key dimensionless parameters associated with the mean characteristic
velocity U = 1cm/s.

The characteristic parameters in this problem are the width of the microflu-
idic channel w, its height h, the viscosity of the liquid plug µ, the surface tension
σ, the speed of the liquid plug U and the characteristic time associated with the
plug evolution in the experiments τexp. For cyclic forcing, this time is simply
the half period of the signal τexp = T , while for unidirectional forcing, it is the
time required for the plug to rupture. In the following, the geometry will be
characterised by the aspect ratio α = w/h and the characteristic length scale
lc =

√
wh. From these parameters, we can construct the characteristic convec-

tion time τc = lc/U , and the characteristic viscous diffusion time τd = ρlc
2/µ.

Then we can characterise the flow regime by introducing the following dimen-
sionless numbers: the Reynolds number (Re = τd/τc) which compares convec-
tion to viscous diffusion, the Weber number (We = ρU2lc/σ) which compares
inertia to surface tension, the capillary number (Ca = µU/σ) which compares
viscous effects to surface tension effects, the Bond number which compare grav-
ity to surface tension (Bo = ρgh2/σ), and finally the ratio of the experimental
characteristic time τexp to the convective and diffusion times τexp/τc and τexp/τd.
In the experiments the average velocity is typically Umean = 1 cm/s and the
maximal velocity Umax = 4.5 cm/s. The time required for the plug to rupture
varies between 0.5 s and 5 s for unidirectional forcing and the half period of
periodic forcing is T = 2 s or T = 3 s. These values enable the estimation of the
dimensionless numbers introduced previously and summarised in Table 1 (for
these estimations, we take τexp = 1 s and U = 1 cm/s).

These values of the dimensionless numbers indicate that, globally, surface
tension effects are dominant over viscous effects, themselves being dominant over
inertial effects. This means that away from the walls, the shape of the meniscus
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is mainly dictated by the minimisation of the interfacial capillary energy. This
undeformed part of the meniscus is called the static meniscus. Nevertheless, as
demonstrated first by Bretherton (Bretherton, 1961) in cylindrical tubes, viscous
effects still play an important role close to the walls due to the incompatibility
between the no-slip condition (null velocity at the walls) and the homogeneous
motion of an undeformed meniscus. This singularity leads to the existence of
large shear stresses close to the walls and, hence, the deposition of a thin trailing
film behind the rear meniscus and a change in the apparent contact angle for
the front meniscus. Thus viscous effects still play an important role close to
the walls despite the low value of the capillary number. Then, the relative
importance of unsteady effects can be estimated from the ratios τc/τexp and
τd/τexp. Since, these two ratios are small, the unsteady terms can be neglected
in Navier-Stokes equations even if the plug evolves over time: the flow is quasi-
static. Finally, the small value of the Bond number indicates that gravity effects
can be neglected. Based on this analysis, we expect the liquid plugs dynamics
in the present problem to be considered as a quasi-static visco-capillary flow
governed by steady Stokes equation.

3.2. Model of the plug dynamics.

The model describing the pressure drop in the microfluidic channel is ob-
tained by equalizing the driving pressure head ∆Pt (Fig. 2) to the sum of the
pressure drop resulting from viscous dissipation in the bulk of the liquid plug
∆P bulk

visc , the pressure drops at the front and rear meniscus of the plug ∆Pmen
front,

∆Pmen
rear and the pressure drop ∆Pbubble inside the air. Simple estimation of these

pressure drops show that this latest contribution can be ignored compared to
the other ones (see e.g. Kreutzer et al. (2005b)). Thus, the steady state balance
of pressure across the liquid plug becomes:

∆Pt = ∆P bulk
visc + ∆Pmen

front + ∆Pmen
rear (6)

3.2.1. Viscous pressure drop

The pressure drop resulting from a laminar flow of a fluid in a rectangular
geometry is given by (White, 2003):

∆P bulk
visc =

aµQL

wh3
(7)

with a = 12

[
1− 192

π5α
tanh

(
πα

2

)−1]
, L the portion of the tube considered and Q

the flow rate. In the limit α� 1 considered here (α = 17.5 in the experiments)
and for a liquid plug of length Lp, this expression becomes:

∆P bulk
visc =

12µQLp

wh3
(8)

where Q = UrSr is the flow rate, Sr is the the cross sectional area open to air
behind the liquid plug and Ur the speed of the rear meniscus. This expression
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relies on two assumptions: (i) it assumes that the pressure drop inside the
plug follows a Hagen-Poiseuille law despite the finite size of the plug and the
recirculation occurring close to the menisci and (ii) it assumes the same speed for
the front and rear meniscus. The validity of the first approximation has been
tested numerically with the OpenFoam Volume of Fluid code (Signe-Mamba
et al., 2018) in 2D. These 2D simulations show that equation (8) is an excellent
approximation of the viscous pressure drop (error < 4.5%) as long as the length
of the plug remains larger than the height of the channel. For smaller plugs
the discrepancy increases progressively but, in this case, the pressure drops at
the menisci strongly dominate over bulk viscous pressure drop leading to minor
effects of the error on the overall plug dynamics. The second approximation
amounts to neglect the evolution speed of the plug length dLp/dt compared to
the translational speed of rear meniscus dxr/dt, since dxf/dt = dxr/dt+dLp/dt.
Experimental measurements of the speed of the front and rear meniscus show
that this approximation holds within a few percent of accuracy. In the remaining
part of the manuscript, we will therefore neglect the difference between the
front and rear menisci in the estimation of the pressure drops, and the capillary
number Ca will therefore be constructed on the rear meniscus velocity: Ca =
µUr/σ.

3.2.2. Front meniscus pressure drop

When a liquid plug is at rest (no pressure head) in a rectangular tube, its
front and rear menisci adopt complex shapes minimising the interfacial energy.
This minimisation problem can be solved with the method of Lagrange mul-
tipliers. The solution is a constant mean curvature (CMC) surface verifying
the wetting conditions at the walls. In a rectangular geometry, this shape is
rather complex (Wong et al., 1995a) and there is no analytical expression of
these surfaces geometry. Nevertheless, what matters when we consider the mo-
tion of a liquid plug is not the static shape of the meniscus but the departure
from this static shape when the plug moves. Indeed the Laplace pressure jumps
resulting from the curvatures of the front and rear meniscus at rest compensate
one another leading to a zero contribution. Therefore we will only consider in
the following the dynamic pressure jumps at the meniscus, that is to say the
Young-Laplace pressure jumps when the plug is moving minus their value at
rest.

The computation of the dynamic pressure jumps at the front meniscus can
be greatly simplified in a rectangular geometry with high aspect ratio α �
1. In this case, the principal curvature in one direction κh ≈ 2 cos(θad)/h is
strongly dominant over the curvature in the other direction κw ≈ 2 cos(θad)/w,
where θad is the advancing dynamic apparent contact angle. Based on Young-
Laplace equation, the dynamic pressure jump at the front meniscus can thus be
estimated from the formula:

∆Pmen
front ≈ −σ(κh − κsh), with κh ≈ 2 cos(θad)/h (9)

and κsh ≈ 2/h the principal curvature in the vertical direction at rest. In the limit
of low capillary numbers, asymptotic expansion leads to: cosθad ∼ (1 − θad

2/2),
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and the dynamic pressure drop becomes:

∆Pmen
front =

2σ

h

(
θad

2

2

)
(10)

Of course, this expression is an approximation since (i) it neglects the horizontal
curvature compared to the vertical one and (ii) it neglects the thickness of the
prewetting film (if the plug is moving on a prewetted capillary tube). This
expression is therefore only valid for high aspects ratios h/w, low capillary
numbers and thin prewetting films.

The next step is to determine the value of the dynamic apparent contact
angle θad as a function of the capillary number. On a dry substrate, the dynamic
contact angle can be estimated from Hoffman-Tanner’s law:

θad = ECa1/3 (11)

with E a constant of order (4−5) for a cylindrical dry tube as reported by Hoff-
man (1975) and Tanner (1979). Bico and Quéré (2001) measured the value of E
for a wetting silicon oil liquid plug and Signe-Mamba et al. (2018) for a perfluo-
rodecalin liquid plug in cylindrical glass capillary tube and obtained consistent
values of this parameter: E = 4.3 and E = 4.4 respectively. Ody et al. (2007)
and Baudoin et al. (2013) measured a value of E = 4.9 for a perfluorodecalin
liquid plug moving in PDMS rectangular capillary tubes with high aspect ratio.
This value is in good agreement with the experiments performed in this paper.

A theoretical expression of the dynamic contact angle on a prewetted surface
was proposed theoretically by Chebbi (2003) and validated experimentally by
Magniez et al. (2016) for the motion of a liquid plug in a prewetted cylindrical
capillary tube:

tanθad = (3Ca)
1/3
f((3Ca)

−2/3
cosθad hf/R) (12)

with hf/R the thickness of the liquid film ahead of the liquid plug, f(y) =∑3
j=0 bn[log10y]

n
and the coefficients bn are tabulated in Chebbi (2003). This

expression enables to integrate a lubrication effect induced by the presence of
a prewetting film, which facilitates the displacement of the front meniscus and
thus reduces the pressure jump. To the best of our knowledge, no rigorous
derivation of an analytical formula exists for rectangular geometries. Neverthe-
less, a similar expression as equation (12) is expected in rectangular geometries
with high aspect ratios α� 1. Indeed, Chebbi (similarly to Bretherton) derived
the above theoretical expression in the approximation of thin prewetting liquid
film hf compared to the radius of the tube (hf/R� 1). In this approximation,
the radial curvature of the tube is locally neglected and the problem solved is
identical to a 2D planar problem.

In the rectangular configuration, an estimation of the thickness of the prewet-
ting film in the vertical direction is nevertheless missing. To adapt this formula
to rectangular geometries, Baudoin et al. (Baudoin et al., 2013) proposed to

estimate the relative thickness of the prewetting film by the formula
√

1− S̃f
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with S̃f = Sf/(hw) the dimensionless cross sectional area open to air in front
of the plug. For rectangular channel with large aspect ratios, it is expected that
this expression slightly overestimates lubrication effects since the prewetting
film is always thicker on the lateral walls than in the central ones.

Finally, as demonstrated by Signe-Mamba et al. (2018), a good approxima-
tion of the implicit formula (12) in the limit of low capillary numbers is:

θad = FCa−1/3 (13)

with F = 31/3
(
b0 + b1log10(A) + b2 [log10(A)]

2
+ b3 [log10(A)]

3

)
and A =

(3Ca)
−2/3

√
1− S̃f . This expression shares some similarities with Hoffman-

Tanner’s law but this time the coefficient F depends on the capillary number,
underlining the lubrication effect.

3.2.3. Rear meniscus pressure drop

The dynamical pressure drop at the rear meniscus was calculated theoret-
ically by Bretherton (1961) in cylindrical geometries, Wong et al. (1995a,b)
for polygonal channels, and later on numerically by Hazel and Heil (2002) for
rectangular microfluidic channels of different aspect ratios at finite capillary
numbers. Based on the results of Hazel and Heil (2002), it is possible to in-
fer the following formula for the dynamic pressure jump at the rear meniscus
(Baudoin et al., 2013):

∆Pmen
rear =

2σ

h
Df(α)Ca2/3 (14)

with f(α) = (0.52 + 0.48/α) and D = 4.1, a constant obtained by Baudoin
et al. (2013) from least square fit of the numerical data points of Fig.8 of Hazel
and Heil (2002) in the range Ca ∈ [10−3, 0.3], with Broyden-Fletcher-Goldfarb-
Shanno (BFGS) minimization algorithm.

3.2.4. Total pressure drop

If we combine equations (8), (10), (11), (13) and (14), the total pressure
drop across the liquid plug becomes:

Dry tube: ∆Pt =
12σSrLp

wh3
Ca+

σ

h

[
E2 + 2Df(α)

]
Ca2/3 (15)

Wet tube: ∆Pt =
12σSrLp

wh3
Ca+

σ

h

[
F 2 + 2Df(α)

]
Ca2/3

with E = 4.9, F = 31/3
(
b0+b1log10(A)+b2 [log10(A)]

2
+b3 [log10(A)]

3

)
and

A = (3Ca)
−2/3

√
1− S̃f . These equations can be written under dimensionless

form by introducing the characteristic length lc =
√
wh and the characteristic

pressure variation σ/h:
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Dry tube: ∆P̃t = 12
√
αS̃rL̃pCa+

[
E2 + 2Df(α)

]
Ca2/3 (16)

Wet tube: ∆P̃t = 12
√
αS̃rL̃pCa+

[
F 2 + 2Df(α)

]
Ca2/3

where the tildes indicate dimensionless functions. To achieve a closed set of
equations, two equations are missing: one determining the evolution of the plug
length L̃p and one determining the fluid deposition process on the walls and

consequently S̃r and S̃f .

3.2.5. Evolution of the plug length

The first equation is simply obtained from a mass balance between the
amount of liquid that the plug collects and loses. Let S0 = wh be the cross
section of channel, and Sr and Sf the sections of the tube open to air behind
and in front of the plug respectively. The mass balance becomes:

S0dLp = (S0 − Sf )dxf − (S0 − Sr)dxr (17)

with dxr and dLp the displacement of the rear interface and the variation of the
plug length during an infinitesimal time step dt and dxf = dLp+dxr. Therefore,
the equation giving the evolution of the length of the liquid plug takes the form:

dLp

dt
=

[
Sr

Sf
− 1

]
U =

σ

µ

[
Sr

Sf
− 1

]
Ca (18)

where Sr depends only on the dimensionless speed of the rear meniscus Sr =
Sr(Ca) and Sf depends on the history of the liquid deposition on the walls
and the position of the front meniscus Sf = Sf (xf , t). If we introduce the
characteristic length lc and the viscocapillary time scale τ = µlc/σ, we obtain
the dimensionless equation:

dL̃p

dt̃
=

[
S̃r(Ca)

S̃f (x̃r, t̃)
− 1

]
Ca (19)

When the plug moves on a dry surface, then S̃f = 1. Otherwise the value of

S̃f is either inferred from the initial condition if the plug moves on a prewetted
tube or from a memory of the liquid deposition by the liquid plug when the plug
undergoes cyclic motion (see Signe-Mamba et al. (2018) for cylindrical tubes).
In many papers, the wet fraction m is introduced instead of the air fraction
Sr. The wet fraction is the relative portion of the tube section occupied by the
liquid. These two parameters are linked by the formula: m = 1− S̃r.

3.2.6. Quasi-static and dynamic wet fraction

An air finger pushing a liquid plug in a cylindrical tube adopts a cylindrical
shape closely fitting the shape of the cylindrical tube. Such close fitting is not
possible in rectangular channels due to the presence of sharp corners. In the low
Bond number (Bo � 1) and low capillary number limit (Ca � 1), the section
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(a) (b)

Figure 3. Sketch of the cross-section behind the liquid plug (a) when Ca → 0 (quasi-static
film deposition regime) and when (b) Ca & Cac (dynamic film deposition regime). Black:
liquid, white: air.

of the bubble far behind the rear meniscus can adopt two configurations (Lozàr
et al., 2008) schematically represented on Fig. 3 depending on the value of the
capillary number:

• (i) When Ca → 0, in the quasi-static limit, the liquid only covers the
corners of the tube and the limit between the liquid and the air are four
quarter circles. In this case the wet fraction tends to an asymptotic value
called the quasi-static wet fraction ms, which depends only on the aspect
ratio of the channel α: ms = ms(α). Indeed, the liquid deposition in the
corners of the tube in this regime mostly relies on the static shape of the
rear meniscus, and thus the evolution of the wet fraction with the capillary
number is weak.

• (ii) when Ca & Cac, the limit between the liquid and the air becomes two
half circle on the side and a liquid film covers the walls in the center of the
channel (Lozàr et al., 2008). In this case, the wet fraction more strongly
depends on the dynamics of the plug and hence on the capillary number.
We will call it the dynamic wet fraction md = md(Ca, α).

The transition between these two configurations is progressive (see Lozàr
et al. (2007)) and occurs at a critical capillary number Cac whose value was
found in our experiments to lie around Cac = (2±0.1)×10−3, a value coherent
with the measurements of Lozàr et al. (2007) at similar aspect ratio (α = 15):
Cac ∼ 10−3.

The quasi-static wet fraction ms in the absence of gravity (Bo = 0) was
theoretically predicted in Wong et al. (1995a):

ms = (4− π)r̃s
2 (20)

with r̃s = rs/lc the dimensionless radius of curvature of the four quarter circles
delimiting the liquid and the air in the corners of the tube and

r̃s =

√
α

α+ 1 + ((α− 1)2 + πα)
1/2

(21)

For an aspect ratio α = 17.5 such as in our experiments, this formula gives
the value ms = 0.012. The wet fraction can be estimated experimentally by
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monitoring the evolution of the plug size as a function of the rear meniscus
velocity when Ca � Cac. We found the average estimate of this parameter
(over all the experiments performed and described in the next section) to be:
ms = 0.03. This value is larger than the theoretical value predicted by Wong
et al. (1995a). Nevertheless the theoretical value derived by this author was
obtained with zero influence of gravity (Bo = 0). For finite values of the Bond
number, it was shown experimentally by Lozàr et al. (2008) (see their figure 4)
that gravity tends to significantly increase the static wet fraction (these authors
found ms ≈ 0.065 for Bo ∼ 1 and α = 15). In our case, though small the
Bond number (table 1) is not null, which might explain the larger value of
the static wet fraction measured experimentally than expected theoretically.
Another tentative explanation would be that, owing to the finite length of the
tube, we did not reached the final equilibrium value. For the simulations, we
will therefore adopt the constant value:

ms = 1− S̃r = 0.03 for Ca < Cac (22)

under the critical capillary number.
The evolution of the dynamic wet fraction in square and rectangular mi-

crofluidic channels was investigated experimentally by Kolb and Cerro (1991);
Thulasidas et al. (1995); Lozàr et al. (2007); Fries et al. (2008); Han and Shika-
zono (2009); Han et al. (2011) and numerically by Hazel and Heil (2002); Lozàr
et al. (2008); Kreutzer et al. (2005a). In particular, Lozàr et al. (2007, 2008)
found that the measured and simulated evolution of the dynamic wet fraction
md as a function of the capillary number collapse for all aspect ratio α provid-
ing the introduction of an effective capillary number Ĉa =

[
1 + α2/α2

t

]
Ca with

αt = 6.4. Thus, the dynamic wet fraction in a rectangular channel with any
aspect ratio can be inferred from the behaviour in a square tube. This scaling
subsist even for finite Bond numbers as demonstrated both theoretically and
numerically by Lozàr et al. (2007, 2008). Of course this scaling is only valid
for Ca > Cac since otherwise, the fluid deposition does not depend on Ca but
strongly depends on α. Thus, combining (i) the scaling law proposed by Lozàr
et al. (2008) for the effective capillary number, (ii) Aussilous & Quéré law (Aus-
sillous and Quéré, 2000) for the evolution of the wet fraction as a function of
the capillary number and (iii) the matching condition at the critical capillary
number between the quasi-static and dynamic behaviour gives:

md = 1− S̃r =
ms +G

[
(Ĉa/Ĉac)

2/3 − 1
]

[
1 +H((Ĉa/Ĉac)2/3 − 1)

] for Ca > Cac (23)

where the coefficients G = 1.05 and H = 1.75 are obtained from best fit with
Lozàr et al. (2007) experimental data.

Finally, S̃r is taken as S̃r = ms−1 when the plug moves at a capillary number
lower than Cac and S̃r = md − 1 above. This is of course an approximation
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since the experimentally observed transition between the dynamic and quasi-
static regime at Ca ∼ Cac is more progressive (Lozàr et al., 2007).

3.3. Numerical resolution of the equations

The closed set of equations (16), (19), (22) and (23) are solved using a first
order Euler explicit scheme to predict the speed and the evolution of the length
of the liquid plug. To cope with the strong acceleration of the liquid plug, an
adaptive time step refinement is used: the spatial displacement ∆x̃ = xn+1

r −xnr
is kept constant and thus the time step ∆t̃n at iteration n is calculated from
the formula: ∆t̃n = ∆x̃Can−1. Convergence on ∆x̃ has been verified for all the
simulations provided in this paper.

4. Effect of the transition between quasi-static and dynamic film de-
position on the dynamics of a liquid plug driven by a unidirectional
forcing

4.1. Direct experimental evidence of the transition

The transition between the quasi-static and dynamic liquid film deposition
and the associated changes in the plug dynamics are evidenced on Fig. 4 a-d.
These figures illustrate the evolution of a liquid plug of initial size Lo = 3.5
mm driven by a unidirectional pressure head ∆Pt = 1000e−3e−10t

Pa. Blue
curves correspond to experimental measurements while red curves correspond
to simulations with the model developed in the previous section. Figure 4a
is obtained by stacking snapshots of the plug evolution every 8 ms when the
capillary number lies below its critical value Cac and then later on when Ca
exceeds Cac. When Ca < Cac no liquid film is visible on the tube lateral sides
since liquid deposition only occurs in the corners of the channel, while this film
is clearly visible when Ca exceeds Cac. Figure 4b shows the position of the
front and rear menisci as a function of time. Figure 4c shows the evolution of
the capillary number. The black dashed line (also reported on figure 4d) marks
the transition (at time tc ≈ 2.8 s) between the quasi-static and dynamic film
deposition regimes. It corresponds to the time when Ca reaches the critical
value Cac = 2± 0.1× 10−3. Before tc and after the end of the transient regime
(t > tt = 0.3 s) (corresponding to the time required for the pressure controller
to achieve a constant value), the increase in the capillary number is very slow.
This leads to a quasi-linear variation of the plug size as a function of time as can
be seen on figure 4d since the wet fraction m is quasi-constant in the quasi-static
regime. Then, when the value of the capillary number overcomes the critical
value Cac, the plug undergoes a strong acceleration leading to more and more
fluid deposition and eventually to the plug rupture.

Excellent agreement between the simulations (red) and experiments (blue)
is achieved for the evolutions of (i) the position of the menisci (Fig. 4 b),
(ii) the plug dimensionless speed (Fig. 4 c) and (iii) the plug length (Fig. 4
d). Our reduced dimension model thus properly captures the main physical
ingredients. This model can be used to rationalise the observed tendencies: In
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Figure 4. Dynamics of a liquid plug of initial length L0 = 3.55 mm pushed in a dry rectangular

microfluidic channel with a unidirectional pressure head ∆Pt = 1000e−3e−10t
Pa. (a) Stack

showing the evolution of the plug below and above the critical capillary number Cac. Liquid
(air) appears light (dark) grey. (b) Position of the rear and front meniscus as a function of
time. (c) Evolution of the capillary number as a function of time. (d) Evolution of the plug
length as a function of time. Blue solid curves correspond to experimental measurements and
red dashed curves to simulations.
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the quasi-static film deposition regime, the value of the pressure head prescribes
an initial value of the capillary number and the size of the plug diminishes
quasi-linearly due to film deposition in the corners of the tube. This regular
diminution of the plug size leads to a reduction of the viscous resistance of the
plug to motion since the viscous pressure drop depends linearly on Lp. This
induces a slow increase in the liquid plug speed (since the viscous resistance is
weak compared to interfacial resistances). Nevertheless, since the wet fraction
m does not depend on Ca, there is no retroaction of the evolution of the plug
speed on the liquid film deposition and thus the evolution remains relatively
stable. In the dynamic film deposition regime however, the increase in the plug
speed leads to more film deposition according to equation (23), itself leading
to an acceleration of the plug speed. This retroaction is at the origin of the
massive acceleration of the plug and rapid decrease in its size when Ca exceeds
Cac. This behaviour is reminiscent of what is observed in cylindrical tubes
(Magniez et al., 2016; Signe-Mamba et al., 2018), while the quasi-static film
deposition regime only occurs when there is the presence of sharp corners.

4.2. Influence of this transition on the plugs rupture time and rupture length

We performed numerous experiments (represented on Fig. 5) for different

initial plug lengths Lo and two different driving pressures (∆Pt = 900e−3e−10t

Pa and ∆Pt = 1000e−3e−10t

Pa) to analyse the evolution of the plug rupture
time and rupture length in rectangular microchannels. The rupture time is
the time elapsed between the start of the pressure head and the plug rupture
(Lp = 0), that is to say when the front and rear menisci come into contact at
the centerline of the channel and the plug breaks, leaving the air flow freely
in the channel. The rupture length is the distance traveled by the liquid plug
(Dl = max(xf ) −min(xr)) before its rupture. These two parameters quantify
the stability of a liquid plug to breaking. The quantitative agreement between
experiments (blue stars) and simulations (red lines) enables to validate our
model on an an extensive set of experimental data.

Again a transition between two distinct regimes is clearly evidenced on
Fig. 5 (for both the rupture time and the rupture length) at a driving pressure-
dependent critical initial plug length Lc

o (Lc
o ≈ 2.6 mm for ∆Pt = 900 Pa and

Lc
o ≈ 3.1 mm for ∆Pt = 1000 Pa). Under this critical value of the initial plug

length Lo < Lc
o, the initial dimensionless plug speed lies above the critical capil-

lary number and thus the dynamics of the liquid plug is only in the dynamic film
deposition regime. Thus the plug accelerates rapidly leading to rapid rupture of
the plug on a short propagation length scale. Above, this critical initial length
Lo > Lc

o, the initial capillary number lies under the critical number Cac and
thus the plug dynamics is initially in the quasi-static film deposition regime.
This regime leads to larger plug rupture time and thus propagation distance.
Moreover, since in this regime the acceleration is weak, the rupture time and
rupture length remain relatively linear function of the plug initial length (see
Fig. 5). From this analysis, we can infer a theoretical evaluation of the criti-
cal initial length Lc

o, which delimits the transition between these two regimes.
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Figure 5. Rupture lengths (a-a1) and rupture times (b-b1) of a set of liquid plugs as a
function their initial lengths when they move on a dry rectangular microfluidic channel under

two driving pressure ∆Pt = 900e−3e−10t
Pa (a-b-c) and ∆Pt = 1000e−3e−10t

Pa (a1-b1-c1).
The rupture lengths as a function of the rupture times are given in figures (c-c1). The blue
stars correspond to experiments and the red lines to simulations with the model developed in
section 3. Error bars quantify the error in the determination of the plug initial length owing
to the large field of view and the limited resolution of the camera (1024× 64 pixels). A circle
surrounds three data which are out of the global tendency. The most likely reason of this
dispersion is that the microfluidic channel was not dried properly and there were some liquid
remaining at the front meniscus that lubricated the channel and thus accelerated the plug
motion leading to reduced rupture time and length.

Indeed, Lc
o corresponds to the plug initial length when the initial capillary num-

ber is equal to the critical capillary number Cac. From equation (15) and by
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approximating Sr by wh at first order, we obtain:

Lc
o =

h

12Cac

[
∆Pt h

σ
− (E2 + 2Df(α))Ca2/3c

]
This formula gives Lc

o = 3.1 ± 0.2 mm and Lc
o = 3.5 ± 0.2 mm for ∆Pt =

900 Pa and ∆Pt = 1000 Pa respectively. It overestimates by 19% and 16%
respectively the critical length but nevertheless remains in good agreement with
the experimentally measured values. This formula is also consistent with the
increase in Lc

o as a function of ∆Pt observed experimentally. This theoretical
prediction of the critical initial length Lc

o is of the upmost practical interest since
it enables to predict in which regime will mainly evolve a liquid plug depending
on its initial length. An interesting point is also that despite the regime change,
the rupture length and rupture time remain relatively proportional to each other
(Fig. 5 c and c1).

4.3. Comparison with the dynamics in cylindrical tubes

Figure 6 compares the rupture times and lengths obtained in rectangular and
cylindrical tubes in the same range of capillary numbers (5.5×10−5 . Ca . 1.2×
10−2). This comparison is not meant to be quantitative since the dimensions
of the channels (rectangular: h = 45µm, w = 785µm, cylindrical: diameter
D = 470µm) and the driving pressure magnitude (1000 Pa for rectangular
channels 80 Pa for cylindrical channels ) are different. The purpose of this
figure is only to show that in the same range of capillary numbers, no transition
is observed in the case of a cylindrical channel, while a transition is clearly
evidenced in a rectangular channel.

5. Response of liquid plugs to periodic pressure forcings in rectangu-
lar microfluidic channels

5.1. Detailed analysis of single plug ruptures.

We further investigated the response of liquid plugs to cyclic forcing. For
this purpose, liquid plugs are inserted at the center of a rectangular microfluidic
channel and a cyclic pressure forcing (represented on Fig. 2) is applied. Fig. 7
illustrates the positions of the rear and front menisci (a-c-e) and the evolution
of the plug length (b-d-f) for three different initial plug lengths: L1 = 3.8 mm
(a,b), L2 = 4.1 mm (c,d) and L3 = 4.5 mm (e,f). The blue curves correspond to
experiments and the red curves to simulations. For these three initial lengths,
the plugs undergo oscillations eventually leading to their rupture. The exper-
imental results show that the evolution of the plug length is not monotonic:
the plug size first increases and then decreases during each back and forth mo-
tion. This is a consequence of the progressive increase in the driving pressure
(Fig. 2b): at the beginning the driving pressure is low, the plug moves slowly
and leaves less liquid behind it than it recovers from the liquid film lying in front
of it. Then, when the driving pressure reaches a critical pressure (derived in
Magniez et al. (2016) in the case of cylindrical tubes), the tendency is inverted.

18



2 3 4
0

5

10

15

20

25

30

35

40

45
R
u
p
tu

re
L
e
n
g
th

(m
m
)

 

 

Initial plug length L0 (mm)

Experiments rectangular

Model: ∆Pt = 1000e−3e−10t
P a

(a1)

0 1 2 3 4
0

10

20

30

40

50

60

Initial plug length L0 (mm)

R
u
p
tu

re
le
n
g
th

(m
m
)

 

 

Experiments cylindrical

Model: ∆Pt = 80e−6e−3t
P a

(a2)

2 3 4
0

1

2

3

4

5

Initial plug length L0 (mm)

R
u
p
tu

re
ti
m
e
(s
)

 

 

Experiments rectangular

Model: ∆Pt = 1000e−3e−10t
P a

(b1)

0 1 2 3
0

1

2

3

4

5

R
u
p
tu

re
ti
m
e
(s
)

 

 

Initial plug length L0 (mm)

Experiments cylindrical

Model: ∆Pt = 80e−6e−3 t
P a

(b2)

Figure 6. Rupture lengths (a1) and rupture times (b1) of a set of liquid plugs moving

in a rectangular microfluidic channel under the pressure driving ∆Pt = 1000e−3e−10t
Pa

compared to the rupture lengths (a2) and rupture times (b2) of a set of liquid plugs moving in a

cylindrical capillary tube of diameter D = 470µm under the pressure driving ∆Pt = 80e−6e−3t

Pa (a2-b2) . The blue stars correspond to experiments and red curves to simulations. Error
bars quantify the error in the determination of the plug initial length owing to the large field
of view and the limited resolution of the camera (1024× 64 pixels).

The number of oscillations before the plug rupture increases with the initial
length of the plug. For the longest plug (L3 = 4.5 mm), a clear transition
can be seen between a first phase where the plug undergoes relatively stable
oscillations with weak net evolution of its length from one cycle to another (see
Fig. 7f before time t = 15 s) and a second phase with a brutal acceleration of
the plug rapidly leading to its rupture (t ≥ 15 s)

5.2. Specificity of the cyclic dynamics of liquid plugs in rectangular channels
compared to cylindrical channels.

Such transition is not observed in cylindrical tubes wherein the net varia-
tion of the plug size is more regular (see Fig. 8f). Signe-Mamba et al. (2018)
demonstrated that in cylindrical channels, the two sources of the plug instability
leading to its rupture are (i) the cyclic diminution of the plug viscous resistance
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Figure 7. Spatiotemporal evolution of three liquid plugs of initial lengths (a-b) L1 = 3.85 mm,
(c-d) L2 = 4.1 mm and (e-f) L3 = 4.5 mm driven by the cyclic pressure forcing represented
on Fig. 2(b). (a-c-e) Positions of the left and right menisci as a function of time. (b-d-f)
Evolution of the length of the plug as a function of time.

to motion due to the diminution of its length and (ii) a cyclic reduction of the
plug interfacial resistance due to the deposition of a liquid film of increasing
thickness at each cycle and lubrication effects. A very interesting point is that
these two instability sources rely on the amount of liquid deposited on the walls.
If the amount of liquid left on the walls behind the liquid plug would remain
constant, there would be no cyclic evolution of the plug size and no instabil-
ity related to lubrication effects. Thus the plug would undergo stable periodic
motion with no remarkable evolution of its size and no rupture.

This behaviour is indeed observed for plugs of initial length larger than
Lc
o = 4.7 mm (see Fig. 9a). In this case the plug always moves at a dimensionless

speed smaller than the critical capillary number Cac. The simulations are able
(i) to quantitatively reproduce the statistical trends of the evolution of the
rupture length and rupture time (80% of the experimental data match with
the simulations within the error bar on the determination of the initial plug
length, see Fig. 5) and (ii) to qualitatively reproduce individual dynamics of
liquid plugs (see Fig. 8). Thus, we use them below to analyse the evolution of
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Figure 8. (a-b-c) Spatiotemporal evolution of a liquid plug of initial length L1 = 4.5 mm mov-
ing in a rectangular microfluidic channel under the driving pressure represented on Fig. 2b.
(a) Position of the left and right meniscus. (b) Evolution of the capillary number. (c) Evo-
lution of the plug length. (d-e-f) Spatiotemporal evolution of a liquid plug of initial length
L2 = 3.35 mm moving in a cylindrical capillary tube of diameter D = 470µm driven by a cyclic

forcing: ∆Pt = 78e−6e−3t
Pa for t ∈ [0, T ], ∆Pt = (−1)n(Pc − Pd) for t ∈ [nT, (n + 1)T ]

with Pc = 78e−3e−3(t−nT )
Pa and Pd = 78e−1.4(t−nT )e−0.02e−1.4∗(t−nT )

Pa, T = 2.15 s
with 2T = 4 s. (d) Position of the left and right meniscus. (e) Evolution of the capillary
number. (f) Evolution of the plug length. For all experiments, the blue curves correspond to
experiments and the red curves to simulations with the model presented in this paper for the
experiments (a-b-c) in a rectangular tube and the model presented in (Signe-Mamba et al.,
2018) for the experiments (d-e-f) in a cylindrical tube.
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Figure 9. (a) Evolution of the positions of the left and right menisci of a liquid plug of
initial length L4 = 5 mm driven by the cyclic forcing represented on Fig. 2b. We stopped
the acquisition after 6 cycles since no significant evolution of the plug length and speed from
one cycle to the next was observed. (b) Simulations showing the predicted spatiotemporal
evolution of the amount of liquid lying on the walls (wet fraction).

the amount of liquid covering the walls (wet fraction) as a function of time. On
Fig. 9b, we indeed see that the plug leaves a film of constant thickness (constant
wet fraction ms), thus leading to a zero cyclic mass balance.
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Figure 10. Spatiotemporal evolution of the wet fraction for a liquid plug of initial length
L3 = 4.5 mm driven by the cyclic pressure forcing Fig. 2(b). This figure correspond to the
same experiment as Fig. 7 (e-f) and Fig. 8 (a-b-c)

.

To understand the transition occurring for liquid plugs smaller than Lc
o we
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also plotted the evolution of the wet fraction as a function of time for the initial
size L3 = 4.5 mm (see Fig. 10). In this case, the plug moves initially at a
capillary number lying under the critical capillary number Cac thus leading to
the deposition of a liquid film of constant thickness behind the plug. The plug
speed increases progressively (see Fig. 8b) due to the increase in the driving
pressure (see Fig. 2). At time t ≈ 1.5 s (see Fig. 10) the plug dimensionless
speed overcomes Cac and the wet fractions starts increasing until the direction
of motion changes (Fig. 10). During the next cycles, the same behaviour is
observed with, at first, the deposition of a film of constant thickness and then
the deposition of a film of increasing thickness (Fig. 10). Nevertheless, at each
cycle, (i) the plug travels further away, (ii) the plug size decreases, (iii) more
and more liquid is left on the walls and (iv) the proportion of the motion above
Cac increases. For time t > 15 s the plug dimensionless speed exceeds Cac
for the most part of the motion and this leads to a rapid evolution of the plug
size and speed and eventually its rupture. This second phase is similar to the
evolution of liquid plugs in cylindrical tubes.

This analysis enables to set a criterion on the stability of a liquid plug driven
by a pressure periodic cyclic forcing in a dry rectangular microchannel: If the
plug dimensionless speed remains below Cac during the first cycle, then the plug
dynamics will remain stable during the next cycles, while if the plug reaches Cac
during this first cycle, it will accelerate cyclically and eventually rupture.

5.3. Evolution of the rupture time and rupture length and comparison between
cyclic and unidirectional forcing.

To get a parametric overview of the liquid plugs dynamics in rectangular
microchannels, we performed hundreds experiments with different plug initial
lengths and either unidirectional or cyclic pressure drivings (of same maximal
amplitude). The measured values of the rupture time and rupture length are
represented on Fig. 11 (a1-b1) and compared to the evolutions in cylindrical
tubes (a2-b2). As previously reported in cylindrical channels, we observe a sat-
uration of the rupture length when the plug starts undergoing cycles. Neverthe-
less a major difference with cylindrical tubes is that the rupture time increases
to infinity for a finite value of the critical initial length Lc

o ≈ 4.7 mm while the
increase in the rupture time was shown to follow a more ”gradual” exponential
trend in Signe-Mamba et al. (2018). This is again a consequence of the exis-
tence of the quasi-static deposition regime in rectangular channels which does
not exist in cylindrical tubes. Of course, in any case, the rupture time is never
really infinite owing to evaporation of the plug occurring in the channel and the
weak dependence over the capillary number.

6. Critical assessment of the experimental dispersion and the model
validity.

The experiments presented in this paper were extremely sensitive on the con-
tamination of the channels. To avoid pollution, (i) the channels were fabricated
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Figure 11. (a1-a2) Rupture lengths and (b1-b2) rupture times for a cyclic or unidirectional
pressure forcing in a rectangular (a1-b1) or cylindrical (a2-b2) channel. For rectangular chan-
nels, the pressure driving corresponds to the one represented on Fig. 2 and for the cyclic
pressure driving, it correspond to the one described in Fig. 8. Blue stars correspond to exper-
iments with the cyclic forcing, black squares to experiments with the unidirectional pressure
forcing, red solid lines to simulations for the cyclic pressure forcing and black dashed lines to
simulations with the unidirectional pressure driving.

in the clean room and stored in a sealed box until their use, (ii) the air injected
in the channels by the pressure controller was filtered by several filters, and (iii)
we were extremely cautious in the liquid sampling to avoid pollution of Perflu-
orodecalin. Nevertheless, even with all these precautions, we had to change the
channels regularly when contamination was observed to avoid deviation in the
results. We believe that this pollution is the main source of discrepancy in the
experiments. From the theoretical side, the main shortcomings of the model
are:

1. The approximation of the progressive transition between the quasi-static
and dynamic deposition regimes (observed in Lozàr et al. (2007)) by a
sharp transition between a constant value behind a critical capillary num-
ber and equation (23) above.

2. The omission of all the unsteady and convective terms from Stokes equa-
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tion, even in the most accelerative phase and the approximation of the
viscous pressure drop by a Poiseuille law.

3. The 2D (high aspect ratio) approximation for the estimation of the front
interface pressure drop.

4. The approximation of the tube prewetting film by the formula
√

1− S̃f .

With that said, it is difficult to determine the exact origin of discrepancies
between experiments and theory. In particular we are unable at the present state
to determine whether observed deviations mostly originate from experimental
imperfections or approximations in the theory.

7. Conclusion

In this work, we studied the dynamics of single liquid plugs in rectangular
microfluidic channels under unidirectional and cyclic pressure forcings. First
we showed that the transition between quasi-static and dynamic film deposi-
tion regimes leads to a dramatic acceleration of the plug rapidly leading to its
rupture. A pressure-dependent critical size for the transition between these two
regimes is derived analytically. For cyclic periodic pressure forcing, we showed
that two regimes can occur depending on the initial size of the plug: the plug
can either undergo stable periodic oscillations or cyclically accelerate and even-
tually rupture. The stable regime is observed when the plug dimensionless speed
remains below a critical capillary number during the first cycle, while the sec-
ond is observed as soon as the plug overcomes this value during the first cycle.
We were able to quantitatively reproduce the evolution with a reduced dimen-
sion model obtained from the combination of previous elements introduced by
Baudoin et al. (2013), Magniez et al. (2016) and Signe-Mamba et al. (2018)
with additional elements to consider the transition between the quasi-static and
dynamic film deposition regimes.

These results are of primary interest since microfluidic channels with rect-
angular cross sections are widely used in the field of microfluidics owing to their
easy fabrication. In particular, for the study of liquid plugs dynamics in com-
plex geometries, such as airway tree, it is extremely difficult to design trees
with cylindrical sections. Thus this work also enables to analyse and transpose
results obtained in rectangular channels to cylindrical channels and understand
the pertinence and limit of such comparison.
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Lozàr, A.D., Hazel, A., Juel, A., 2007. Scaling properties of coating flows in
rectangular channels. Phys. Rev. Lett. 99, 234501.
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