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Abstract. We present a body-fixed formulation of the collision between two particles of 
arbitrary angular momenta. Expressions for the potential matrix elements are derived 
in the case where the particles are either linear molecules in T3 states or atoms with an 
active outer electron. 

1. Introduction 

In this paper we present a general formalism of the collision between two particles 
with arbitrary angular momenta. This is based on the body-fixed formalism for 
rotational excitation (Curtiss and Adler 1952, Pack 1974, Launay 1976, Rabitz 1976) 
and closely related to the helicity formalism (Jacob and Wick 1959, Klar 1971). 

Explicit expressions are derived for the potential matrix elements in the case where 
the particles are either linear molecules in C states or atoms with an active outer 
electron (such as an excited alkali atom). We use the body-fixed expansion of the potential 
surfaces in terms of spherical harmonics introduced by Gioumousis and Curtiss 
(1961) in the case of rotational transitions in collisions between two molecules, which, 
as pointed out by Alexander and De Pristo (1976), is more tractable than the expansion 
in Legendre polynomials introduced by Davison (1962). 

Limiting cases such as the rotational excitation of diatomic molecules by rare 
gases (Arthurs and Dalgarno 1960) or the excitation of fine-structure transitions by 
rare gases (Reid 1973, Mies 1973) are readily obtained. 

This formalism is used in the following paper (Flower and Launay 1977b) to study 
the excitation of the fine-structure transition 2p2P;,2-3,2 of C +  by para- and 
ortho-Hz molecules and will subsequently be applied to calculations of rotational 
transitions in thermal-energy collisions between CO and H2. 

2. Formulation of the collision problem 

We consider (figure 1) the collision between two particles 1 and 2. We denote by 
G I ,  G z  their respective centres of mass, and by G the centre of mass of the ensemble; 
the relative motion vector GIG2’ is denoted by p ;  the momentum and angular 
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Figure 1. The collision system. The centres of mass of the collision partners are located 
at GI ,  G1. G is the centre of mass of the ensemble. (Gxyz)  is the space-fixed referedce 
frame; (Gx’y’z’) is the body-fixed reference frame. 

momentum operators for the relative motion are p and 1. In all that follows we adopt 
the convention of Rose (1957) for the Euler angles and rotation matrices and employ 
atomic units. 

( G x y z )  is the laboratory space-fixed (SF) frame and (Gx’y’z’) is a rotating body- 
fixed (BF) frame. Gz’ points in the direction of p and Gy’ is chosen to lie in the 
y G z  plane. Denoting by ( p , 8 , 4 )  the polar coordinates of p in the ( G x y z )  frame, 
a rotation of Euler angles (4,f3,0) brings the ( G x y z )  frame into the (Gx’y’z‘) frame. 

The Schrodinger equation of the total system after the centre-of-mass separation 
can be written as 

b 2 P P  + H1 + H2 + VI$> = El$> (1) 
where E is the total energy of the system, p is the reduced mass of the colliding system 
and H , ,  H ,  are the Hamiltonians of the free particles. 

2.1. Basis sets 

Denoting by ji (i = 1,2) the total angular momentum operators of each particle, 
eigenvectors for the free Hamiltonian of each particle are iaij,mi> and the corresponding 
eigenvalues are E,ijz : 

HiIaijimi) = E,Jai j imi) .  (2) 

Ia1jia2j2j12mj) E lyj izmj)  

We then couple j ,  and j ,  to yield jI2 and thus define vectors 

of energy E,,j,  + E,,,, and where, for brevity of notation, we have put y = a1 j , a 2 j z .  
Owing to the invariance of the interaction potential I/ under rotations of the 

total system and under inversions in the origin, it is convenient to write the vector 
solutions of (1) as a sum of different components of definite total angular momentum 
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J = j , ,  + 1 and definite total parity E ( E  denotes the eigenvalues of n, the inversion 
operator in the origin G). More precisely, J 2 ,  J ,  and l3 commute with the total 
Hamiltonian H and so J ,  M ,  E are conserved during the collision. Thus 

The coefficients of the expansion are such that 11)) satisfies plane-wave boundary 
conditions, in a manner analogous to Arthurs and Dalgarno (1960). Then the 
I $ J M f )  can be expanded over a complete set of eigenvectors ofjt,, 1 2 ,  J 2 ,  J,, ll formed 
by the usual coupling formula of angular momenta: 

I Y . ~ ~ ~ ~ J M E )  = I ~ j l z m j )  Y,ml(e, 4)  (ji2lmjmilJM) (4) 
mJml 

where (abaplcy) denotes a Clebsch-Gordan coefficient. The parity is E,, j l ~ , 2 j 2 (  - 1)’ 
where are the individual parities of Iclijimi). The corresponding expansion may be 
written as 

1 where the sum is restricted to y , j l z ,  1 values such that E = ~ ~ ~ ~ , e , ~ ~ ~ ( -  1) . 
over a complete set of eigenvectors of 

j t , ,  I jlZz,l, J 2 ,  J, ,  n. We thus follow the approach of Curtiss and Adler (1952), Mies 
(1973), Pack (1974) and Launay (1976). 

Another possibility is to expand 

We first consider eigenfunctions of,jf,, j12z, ,  J 2 ,  J ,  : 

tyjlzQJM) = I y j l z Q > N i L ( B ,  4)  (6) 

where 

Ndn(Q,+) = [(2J + 1)/47111’2 Ddn*(+, 630) 

are normalised symmetric-top wavefunctions and D is a rotation matrix (Rose 1957). 
Eigenvectors of definite parity E are obtained from a linear combination of the 

+ Q  and -Q components. Denoting Si = I Q l ,  we get (see appendix 1) 

lyj12RJME) = (1yjl2RJM) + ~ p l ~ j , ~  - Q J M ) )  [2”’(1 + ~ p S f i ~ ) l ’ ~ ] - ~  (7) 
where 

= E . E . ( -  1 ) J - j 1 2 .  
2151 a252  

The relation between the two sets of eigenvectors (4) and (7) is a unitary 
transformation PJf (see appendix 1): 

where 
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3. Scattering equations 

We expand in the set of eigenvectors (7): 

and use 

We thus get a set of coupled second-order differential equations: 

where 
1 

P 
W:j12~;7.j.,2n,(p) = 677,  6jl,j;, 6 ~ ~ 8  kS, - 7 (Vj,zfiJME112jy’j‘lzfi’JME) 

- 2 p ( y j , 2 f i J M ~ /  Vly’ , j \ z f i ’JM~) .  (12) 

In (12), k;, is the wavenumber defined by kz = 2 p ( E  - E,,,, - E,,,,); 1’ is diagonal in 
the y j12  indices; formulae for the matrix elements are given in appendix 2. 

index due to its invariance under 
rotations about p. A general formula, valid when the particles are either linear C 
molecules or atoms with an active outer electron is given in appendix 3. Then the 
interaction potential between the two particles may be written as 

The interaction potential V is diagonal in the 

where R1, R2 are the body-fixed angular coordinates of the electron or of the 
molecule and 

y41421L(R1) R 2 )  = 4 n [ y q l p ( R ~ ) y q 2 - ~ ( f i 2 )  + y,L-,L(fii)y421L(Rz)] [2(1 + 6p0)]-1’2 (14) 

(0 d p 6 min(ql, q 2 ) )  are a set of real operators invariant under rotations about the 
p axis and under reflections through a plane containing p .  They obey the following 
normalisation properties : 

y q 1 4 2 1 1 ( f i ~ 3  Rz)Y,;,:+@I, f i 2 )  dR, dR2 = 16n26,,,f1 dq2,> (15) 
If particle 2 is spherically symmetric, we have q2 = p = 0 and we obtain 

y4joo(al, a,) = (2q, + 1)1/2P,,(cos 0,) where cos 
We thus have the usual expansion over Legendre polynomials which was used by 

Arthurs and Dalgarno (1960) for rotational excitation and by Reid (1973) for 
fine-structure transitions. A potential of the form (13) has been derived by Flower 
and Launay (1977a) for the interaction of C’(2p’P”) with H2 from available 
potential energy surfaces (Liskow et a1 1974). 

= 8, .a .  

Matrix elements may then be written as 

(Y.I’&JMEI Vly’j;&’JME) = 1 ~ ~ ; f : & ; ~ . ~ . , , ~ .  (1 6) 
4142u 
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where 

is an algebraic coefficient which is independent of the quantum numbers J , M , E .  
The explicit form, when each particle obeys an LS-coupling scheme, is given in 
appendix 3 .  

3.1. Numerical procedure 

A large number of elements of the WJE(p)  matrix are zero. Full account is taken of 
this fact to reduce the computational time in the De Vogelaere (1955) algorithm 
(Launay 1976). This proves to be very effective when we deal with large (2 10) numbers 
of equations. 

3.2. Boundary conditions 

The N scattering equations (11) are solved for a square N x N matrix G $ . ( p )  of 
linearly independent solutions satisfying the usual boundary condition at the origin 
C;,f(O) = 0. This matrix is then converted to the SF representation at a distance 
which is sufficiently far in the asymptotic region by means of the relation: 

Git . (p)  = PJ'GAr(p)PJet 

P J E  being the matrix of the unitary transformation (9). This matrix is then matched 
to diagonal matrices of spherical Bessel functions of the first and second kinds 
j l  and nl (Abramowitz and Stegun 1965): 

Cgf.(p) J J ' ( p )  AJe - N J e ( p )  BJ' 

where 

Jl f12 l ;y ' j ' l 21@)  = 

N$!,21:7, jrI2l,(p) = 

a j 1 2 j , l 2  611, k t , " ~  j l ( k , p )  

6 j ,  2j'12 6118 k~, '2ptz , (k . tp) .  

The KJf and T J e  matrices are then obtained using 
KJ' = gJe J e  -1  

TJ' = - 2 i ~ J " ( 1  - iKJ')-I, 
( A  ) 

Partial cross sections averaged over initial states and summed over final states 
for transitions from y' to y are given by 

where cu(y') = (2 j ;  + 1)(2ji + 1) is the degeneracy of the initial state y'. 
Total cross sections are given by 
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Appendix 1. Unitary transformation 

We shall consider the space-fixed wavefunctions jyjlzlJMe) as being constructed from 
the spherical harmonics Y,,,(O, 4)  describing the relative movement of the particles 
and from the molecular wavefunctions I y j ,  Z Q ) B F  describing the internal motions. 

We have 

which gives, when using the relation between spherical harmonics and rotation 
matrices : 

and the composition theorem of rotation matrices: 

Using the unitarity property of this transformation, we can write: 

IYjl2QJM) = ( 21 ’ )’” ( j l z l Q O ~  JQ)lyjlzlJME). (‘4.3) 
1 

We consider now the effect of IT, the inversion operator, on both sides of (A.3). 
We have easily : 

The functions lyjlzRZJM) + d I / y j 1 2 Q J M )  have parity E and norm 

(A.6) 

[2(1 + E ~ S , - ~ ) ] ’ ’ ~  with p = ezljl eaZj2(- l)J-jiz and thus we have: 

jyj12JzJMe) = (lyjlzJzJM) + ~ p l y j ~ ~  - D J M ) )  [2l”(1 + ep6H0)1’2]-1. 

Using (A.2) and (A.6), we easily get the unitary transformation given by (8) 
and (9). 
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Appendix 2. I* matrix elements 

We first evaluate l 2  matrix elements in the Iyj12QJM) basis. The derivation is the 
same as in Launay (1976). Non-zero matrix elements are given by 

where 

%,(U, b) = [U(U + 1) - b(b & 1)]1’2 

/?(U, b, C )  = U(U + 1) i- b(b + 1) - 2 c 2 ,  

/ 2  matrix elements in the l y j 1 2 C l J M ~ )  basis are obtained using formula (A.6). 
Explicit expressions (valid whether j l  is integer or half-integer) are: 

Appendix 3. V-matrix elements 

We shall assume that each particle has an orbital angular momentum Li and a spin 
angular momentum Si which couple to give ji  = Li + S , .  We assume that we have 
pure LS coupling so that the vectors laijimi) may be labelled as I(LiSi)jimi) and 
thus y L1S1L2S2. 

The algebraic coefficients in equation (16) are given by: 

where the index in the scalar product denotes the integration over R l ,  R 2 ,  $. Using 
equations (6), (7) and the normalisation properties of the symmetric-top wavefunction, 
we obtain 

(A.lO) c91,,2E 2n ;, ’ j ‘I , = ( ~j 1 2 f i  I yq 1421L(R 1, f i 2  I r’ji 2Q’ ) r i ,  . R ,  . 

The functions Y4142p(fil, R 2 )  are expanded over a basis of irreducible tensorial 
operators : 

x 471{y,,(fil) x yq2(fi2)~,,,o (A.11) 

where ($:) are 3j coefficients, and where the sum is over q12 values of the same parity 
as 41 + 42. 

A . w . P . ( B )  10,lX.- F 
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By application of the Wigner-Eckart theorem and of Racah algebraic techniques 
(Messiah 1964), we get straighforwardly 

j1 j 2  j 1 2  

x .i; i ;  i'12 (A.12) i cll (12 (712 

where {a ,  h, c. . . .  i = (2u + 1)(2h -t 1)(2c + 1) ..., and [$ !j\, 

are 6 j  and 9 j coefficients. 
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