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Body-fixed formulation of rotational excitation: 
exact and centrifugal decoupling results for CO-He 
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Abstract. The problem of rotational excitation of a rigid rotor is formulated in a body-fixed 
frame of reference. Full account is taken of the simple form of the close-coupling equations 
to reduce the amount of computing time. 

We consider, in particular, the excitation of carbon monoxide ( 'C  ground electronic 
state) by helium (IS ground electronic state) in the temperature conditions of the interstellar 
medium. 

We also examine the validity of the centrifugal decoupling approximation. It is found 
that good agreement is obtained in the partial cross sections for low J ,  the total angular 
momentum, and low rotor levels: for high J ,  the centrifugal decoupling cross sections 
converge too quickly. 

1. Introduction 

The rotational excitation of molecules by neutral atoms (H and He) or molecules (H2) 
is an important process in interstellar clouds. The knowledge of excitation cross 
sections is necessary to compute the populations of the molecular energy levels. In view 
of the ,low kinetic temperature of the clouds (10-100 K), quantum calculations are 
desirable and can now be efficiently performed for some simple systems. 

The conventional formulation of the scattering of atoms in a ' S  ground electronic 
state by linear, non-vibrating molecules in a 'C ground electronic state is that of 
Arthurs and Dalgarno (1960); they expand the wavefunction of the total system in a 
space-fixed (SF) system of reference and take account of the conservation of the total 
angular momentum to simplify the computations. The approximation is then to take 
into account only a finite number of rotational levels of the molecule. However, due to 
the rotational degeneracy, one is faced with a fairly large number of equations to solve. 

Recently, approximate methods have been proposed to reduce the complexity of 
the calculations : an effective potential method (Rabitz 1972) and centrifugal decoupling 
(CD) (McGuire and Kouri 1974, Pack 1974). The aim of both these methods is to 
remove the rotational degeneracy and so to decouple the molecular and relative 
angular momenta. 

Rabitz introduced the effective potential by taking an appropriate average over 
the components of the diatom angular momentum; each rotational level gives rise 
to only one equation. McGuire and Kouri took account of the approximate conserva- 
tion of R, the projection of the diatom angular momentum on the relative vector 
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(the vector joining the centres of mass). One must solve then a set of systems of 
coupled equations, a system for each possible value of R;  the maximum number of 
equations in each system is the number of rotor levels which are used in the expansion 
of the wavefunction. The CD method is best worked out in a rotating body-fixed (BF) 
system of reference, the relative vector being on the Oz axis. The BF formalism has 
been developed by Curtiss and Adler (1952), and was recently used by Pack (1974) 
in collision problems. The set of equations obtained using this coordinate system has 
the same dimensionality as the set of SF equations but its structure is different; one 
clearly sees the distinction between R couplings, due to the rotation of the relative 
vector, and j couplings, due to the electrostatic potential; the BF formalism takes 
account of the invariance of the potential for rotation about the relative vector. 

This formalism was used by Neilsen and Gordon (1972) in a semiclassical treatment 
of the He-HC1 collisions and more recently by Walker and Light (1975) in a quantum- 
mechanical treatment of scattering by an anisotropic Lennard-Jones potential. However 
the latter did not exploit the structure of the BF equations. 

Here we study the rotational excitation of CO by He, taking explicitly into account 
the structure of the BF equations. In $2  we present the BF equations; in $ 3  we describe 
the numerical method employed, in $4 we consider the special case of CO-He 
scattering and in $ 5  we compare the CD results for this system with the exact cc 
results. 

2. The coupled equations in the BF frame 

We consider (figure 1) the scattering of atom A (‘S electronic state) by the diatomic 
BC (‘C electronic state). We shall ignore the vibrations of BC which will be considered 
as a rigid rotor. In all that follows, we adopt the conventions of Rose (1957) for the 

We denote the internuclear vector-of molecule BC by R = BC (ff = R/R)  and 
the vector joining the centre of mass G of BC to atom A by I’ = GA (the relative 
motion vector) (P = v / r ) .  (Oxyz) is a reference frame whose axes are fixed in direction 
(SF frame) and (Ox’ y’ z’)  is a rotating frame (BF frame). 0, the centre of mass of the 

Euler angles and rotation matrices. --+ 
--+ 

t ‘ 

Figure 1. (OXJZ) is the SF reference frame. (Ox‘ y’ z’)  is the BF reference frame. A rotation ot 
Euler angles (4> B. 0) brings the (Oxyz) frame into the (Ox’ y’ z ’ )  frame. 
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A-BC system is on GA. Oz’ points in the direction of A and Oy’ is chosen to lie 
in the x 0 y plane. ( R ,  0, @) and (R ,  O’, cp’) are the polar coordinates of R in the (Oxyz) 
and (Ox’y’z’) frames respectively. ( r , d , $ )  are the polar coordinates of r in the (Oxyz) 
frame. A rotation of Euler angles (#,d,O) brings the (Oxyz) frame into the (Ox‘y’z’) 
frame. 

The Schrodinger equation of the system A + BC after the centre of mass separation 
can be written (in atomic units) as 

(HE,(@ + H4(r) + V ( r ,  R )  - E)$(r, fi) = 0 (1) 
where E is the total energy of the system. HE,(@ = , i 2 / 2 1  is the Hamiltonian of 
molecule BC, I its moment of inertia and , j  its angular momentum operator. 
H A ( r )  = p 2 / 2 p  is the Hamiltonian of atom A, p = [m,m,,,/(m, + mBc)] is the reduced 
mass of the A-BC system where mA is the mass of A and m,, the mass of BC. 

Due to the invariance of the potential under rotations of the system and under 
inversions in the origin, it is convenient to write the wavefunction as a sum of different 
components of definite total angular momentum J =,i + 1 (where I is the relative 
angular momentum) and definite total parity E ( E  denotes the eigenvalues of II, 
the inversion operator in the origin 0). More precisely J 2 ,  J ,  and II commute with H 
and so J ,  M and E are conserved during the collision. 

The coefficients cJMt are chosen such that $(r ,  fi) satisfies the usual boundary condi- 
tions (Arthurs and Dalgarno 1960). Then the $JME(r , f i )  can be expanded over a 
complete set of eigenfunctions of J 2 ,  J, ,  II, , j 2 ,  l 2  formed by vector coupling of 
spherical harmonics : 

where 

denotes a 3j symbol. The parity E = ( - ) j + ’ .  

can be written as 
We thus obtain the expansion employed by Arthurs and Dalgarno (1960) which 

where the sum is over ( , j ,  1) values such that ( - ) j+f  = E. Another possibility is to expand 
the 1,6~” ‘ ( r , f f )  over a complete set of eigenfunctions of J 2 ,  J, ,  j 2 ,  l j zJ ,  n. This was 
done by Curtiss and Adler (1952) and more recently by Pack (1974). 

We first consider eigenfunctions of J 2 ,  J,: , j 2 ,  j,. : 

Y;f(;, 8)  = Nhn(O, q5)?*(0’, W) (4) 

where Nhc2(0,  4) = [(2J + 1)/471] 1’2D$n(4, 8, 0) are normalized symmetric top wave- 
functions and D is a rotation matrix (Rose 1957). 

To get eigenfunctions of definite total parity, we must take a linear combination 
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of the + R  and -R components: these functions will no longer be eigenfunctions 
ofJ,, but of I,j,J. Denoting !3 = IQ1 we get (see appendix 1) 

Y ; p ( ; .  R )  = (Y;#(;, R )  + €(-)JY?!!d?, R))/21 2(1 + &ji0)1'2 ( 5 )  
where R = O o , l  ,.... min(j,J)  if In 
appendix 2. we show that between the two sets of eigenfunctions (2) and ( 5 ) ,  we have 
the unitary transformation P: 

and R = 1 ,  . . . ,  min(j,J)  if 

where 

The corresponding expansion of the wavefunction is 

1 

r 
+JM'(v, 8) = - 1 - Gih(r)$g'(;. ff). 

The Schrodinger equation (1) can be written, using 

and the expansion (7),  as 
A 2  

(7) 

where 

1 W;&.j,n, = a j j ,  an& J - ,.2 -(yJJf~i12jyJ:%) J Q  J Q  - 2p(y!M'~I/~YJMf). JE J ' Q  

The wavenumber in channel ,jR is defined by kf = 2 p [ E  - j(,j + 1)/2Z]. 

elements are obtained using (see appendix 3) 
1' couples channels jC2 and j 'R' with j' = j, Q' = C2 - 1, E, 0 + 1. All matrix 

( Yf?lr2iYf#') = J ( J  + 1) + j(j + 1) - 20' (9) 
<Yf$'l/21Yf#Gl) = -(I  + bn0)l ' ( [ J ( J  + 1) - !3(R I 1)][j(j + 1) - R(R 1)]]'j2. 

The potential V(r ,  8) is expanded in Legendre polynomials: 

Using (lo), we obtain 

Vonly couples channels jQ with channels j'R because the potential depends only on the 
angle between r*. and R. 
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Using relations (3), (7), and the unitary transformation (6) we can derive the 
following relations: 

G$( r )  = 1 P:#' G$( I) 

G$(r) = 2 PfF'.JG$(r). (13) 

(12) 
a 

1 

Relation (12) is useful to go from the BF to the SF representation. 
One may summarize the form of the BF coupled equations by a sketch of the 

coupling matrix W"(r) (see figure 2). The matrix W"(r) has a large number of zero 
elements: for example, with the basis 0-7, out of the 36 x 36 = 1296 total number of 
elements (parity E = ( - ) J ) ,  only 260 are non-zero. 

3. Numerical integration of the BF equations 

The special form of the W"(r) matrix suggests that it is advantageous to integrate the 
BF equations rather than the SF equations. 

We used the De Vogelaere (1955) algorithm which was found by Allison (1970) to 
be faster than the usual Numerov method (see also Lester 1971). In addition, it enables 
full advantage to be taken of the form of the WJ'(r) matrix. For completeness we 
briefly state the algorithm in matrix form. 

Given the system of equations 

(1  $+ W"(r) GJ'(r) = 0 :i 
k f i . 0 0  10 2 0  30 11 21 3 1  2 2  3 2  3 3  

0 0  

1 0  

2 0  

3 0  

1 1  

2 1  

3 1  

2 2  

3 2  

3 3  

Figure 2. A sketch of the WJ'(r) coupling matrix. Basis j = 0-3. parity E = ( - ) J ,  1' matrix 
elements are found in the dark hatched squares. V matrix elements are found in the light 
hatched squares. The case E = ( - )J+ '  may be found by striking out rows and columns 
with n = 0. R' = 0. The case J < 3 may be found by striking out rows and columns with 
n > J .  > J .  
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where N is the number of channels, I is the N x N identity square matrix and GJ'(r) 
is the N x N matrix of solution vectors (each column represents a solution vector). 
Integration from I, to r,+ is performed usingan intermediate point rn+ 1,2 = +(r,  + r,, l ) .  

Putting h = r,+ - I,,, we perform the following operations: 

G;I: 1 2 = Gi' + ihGhJ' - hh2(4W;I'Gi' - WiY j2GiY 1,2)  

G;I; 1 = Gi' + hGLJ' - &h2(W;I'G;I' + 2Wi; l,2G;I: 1,2) (14) 
GAJ: GLJ' - khWi'G;I' + 4W;: 1,2Gi: 1 /2  + Wi; lGi: 

where X, = X(r,) and where X represents W or G ;  G' = dG/dr. Integration is started 
from ro ,  chosen sufficiently far in the classically forbidden region, using 

GJ,' = 0 and G e l  = -4hGbJ'. 

GbJ' is an arbitrary nonsingular matrix. The time-consuming operations when 
propagating the matrix Gi' to G;; are the two matrix multiplications Wi; ,Gi: 1,2 

and W,"; GfZ in the algorithm (14). 
If W:' is a full matrix, as in the SF case, N 3  additions and multiplications are 

needed for each matrix multiplication. The other operations in the algorithm (matrix 
additions and matrix multiplication by a scalar) require only about N2 elementary 
operations and thus are rapidly performed. However, W;' in the BF case has only 
No << AT' non-zero elements. The multiplication of each column vector of G, by W, 
requires N o  additions and multiplications (it should be remembered that G, is a full 
matrix). Hence each matrix multiplication requires N o  x N << N 3  additions and 
multiplications. The advantage in speed is a factor of 1296/260 - 5 for the 36-channel 
calculation we considered above. More generally, for rotational excitation, we have 
No - N' 5 ,  thus the computational time should increase as N2 in the BF representation 
instead of as N 3  in the SF representation. The same relative advantage in computing 
time could be achieved using different numerical methods. The advantage is very easily 
obtained when the method involves only matrix multiplications as in the De Vogelaere, 
Stormer (Choi and Tang 1975) or Sams-Kouri (1969) algorithms; when matrix 
diagonalizations as in the Gordon (1971) and Light (1971) algorithms are needed, 
somewhat more programming is necessary. 

3.1. Boundary conditions 

The coupled equations must be integrated in a range r E [I,,, vi]  where r ,  is sufficiently 
large such that the radial functions have reached their asymptotic form. However, due 
to the non-diagonal elements of 12,  the asymptotic form of the BF solutions is more 
complicated than the asymptotic form of the SF solutions. Of course, it would be 
possible to integrate the equations to a point r ,  where, to good accuracy, the centrifugal 
coupling terms can be put to zero; however they decay as much slower than the 
potential terms which for neutral systems decay as r - 6 ,  so this procedure would yield 
r ,  >> r ,  and would be wasteful of computing time. 

To get the S matrix and cross sections, starting from the BF solutions at r , .  we have 
two possibilities. 

(i) We can get an analytical form of the asymptotic solutions and then fit the 
integrated BF solution to these asymptotic solutions. This procedure yields a BF S 
matrix. 
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(ii) By means of relation (12), we can convert the BF solutions to SF a t  rl . We get 
SF solutions and derivatives: 

G.<;(r,) = PJ'G&(r,) 

G'$(ri) = PJ'GbJ;(ri). 

These are then fitted to standard Bessel functions to yield a SF KJ' matrix (see for 
example Gordon 197 1). 

From the KJ' matrix, we get TJ' = -2iKJ'( I - iKJE)-'. Partial cross sections 
are obtained from the usual formulae (Arthurs and Dalgarno 1960). 

and total cross sections are given by 

where o( j o ,  j) denotes the cross section for transitions from j o  to j. 

3.2. Centrifugal decoupling 

This approximation of the BF equations was introduced by McGuire and Kouri (1974) 
in a close-coupling study and by Pack (1974) using the sudden approximation. If, in the 
SF equations, we put (Yf?J12 jYfp)  = J ( J  + 1)6,, all instead of 1(1 + l )d ,J  dI1 which 
is the exact value, we get, using the unitary transformation PJ' of the BF equations, 

(Y$yl21  Y$#E) = J ( J  + 1) djj, ann * (1 5) 

The BF equations separate into smaller subsystems, each subsystem corresponding to a 
possible value of 0 which is then a good quantum number. Boundary conditions may 
now be imposed in the BF frame at about the same point r , ,  since the off-diagonal 
1' matrix elements are zero (see McGuire and Kouri 1974). Furthermore, we note 
that the BF equations no longer depend on E .  Hence Tf&,jono = bnnoT;n,j,n except 
when E = (-)-'+I and j or j o  = 0 when the matrix element is 0. 

Partial cross sections are obtained using the formulae 

if j ,  or j = 0. 

We can also use the exact value of the diagonal I' matrix element: 

( YjJ,M'i12~Y$#f) = djj. dnpi.[J(J + 1) + j ( j  + 1) - 2s i2] .  (16) 
We shall refer to the approximation in (15) as CD1 and to the approximation in (16) 
as CD2. The form of CD2 requires spherical Bessel functions of order /L such that 
i ( A  + 1) = J ( J  + 1) + j ( j  + 1) - 2n'. 3, is, in general, a real number. Spherical 
Bessel functions may conveniently be calculated in terms of cylindrical Bessel functions 
(Abramowitz and Stegun 1965). 
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Table 1. The numerical potential derived from the electron-gas model calculated by Green 
and Thaddeus (1976). Distances are in a u ;  the potential is given in cm-'. For distances 
greater than lOau, U,,, U,, u2 are computed using the asymptotic expansions given by 
Green and Thaddeus (1976). 

I' 1'0 01 t'2 U3 "4 t '5  

2.0 147877.44 
2.5 56292.16 
3.0 22810.08 
3.5 9028.87 
4.0 3342.32 
4.5 1110.34 
5.0 298.91 
5.5 3739 
6.0 -18.71 
6.5 -21.87 
7.0 - 16'60 
7.5 - 13.00 
x.0 -10.20 
8.5 - 7.90 
9.0 -5.92 
9.5 -4.28 

10.0 -3.14 

- 26995'36 
- 6 107.16 
- 5500'67 
- 4088.17 
-2363.14 
- 1136'28 
- 467'96 
- 159'01 
- 35.49 

3.41 
8.94 
7.68 
5.08 
2.96 
1.63 
0.88 
0.49 

23790648 
77524.44 
321 35.48 
13896.86 
5795.38 
2268.45 

812.18 
251.29 
54.47 
- 2.95 
- 1047 
- 8.89 
- 5.73 
- 3.26 
- 1.73 
-086 
-0.53 

- 73432'69 
- 17033'82 
- 7508'60 
-4083'16 
-2104'56 
-980.59 
-415.89 
- 159'53 
- 53'09 
- 13.12 

-0.16 
1.88 
1.75 
1.13 
0.59 
0.28 
0.12 

112346.69 
25603.37 
9277.00 
4015.20 
1757,68 
737.95 
295.38 
111.81 
39.20 
12.19 
2.86 
0.02 

- 0.65 
- 0.59 
- 0.34 
-0.18 

0.0 

-38811.91 
- 6854'55 
- 2184.46 
- 1046.75 
- 506.61 
-231'81 
- 100'49 
-41'43 
- 16'33 
- 6.01 
- 1.90 
-0.31 

0.26 
0.43 
0.3 1 
0.2 1 
0.0 

4. Application to CO-He scattering 

4.1. Potential surface 

We employed a potential surface calculated by Green and Thaddeus (1976) using the 
Gordon-Kim uniform electron-gas model (1972) at  short and intermediate distances 
(near the Van der Waals minimum) and perturbation theory at large distances to take 
properly into account the dispersion and induction forces. The Legendre expansion 
of the potential is given in table 1. For the rotational constant, we used 
Bco = 1.92265 cm-' t .  

4.2. Collision dynamics 
Calculations were performed in the cc and CD1-2 methods including all open channels 
in the expansion of the wavefunctions. The error introduced by this approximation is 
thought not to be very large. Tests were made which indicated that the cc and CD 
methods had similar rates of convergence. The same conclusion was reached by 
McGuire (1976) for the He-HCN system and Green (1976) for the He-CO system. 

At an energy of 130cm-' where the basis j = 0-7 was used, two sets of 36 and 
28 equations are solved corresponding to the two parities at each J value in the 
cc method while in the CD methods, we have 8 systems of 8,7, ..., 1 equations at 
each J value. At this energy, we sum up to J = 35 to get converged inelastic as well as 
elastic total cross sections. The total computing time was 310s for cc and 39s for CD 
on an IBM 370/168 computer. The conventional SF-CC calculation would take about 
1000s. Storage requirements are 170kbytes for cc and 90 kbytes for CD. The 
computations were made using integration limits and step sizes such that the numerical 
uncertainty in the cross sections would not exceed 2%; K-matrix symmetry was in 
general better than three significant figures. 
t l c m - '  = 1.4388K = 1,2399 x 10-4eV. 
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J 
Figure 3. uJ(O,l) a t  an energy of 50cm-'. Full curve, cc results; broken curve, CDI results; 
dotted curve, CD2 results. 

5. Results and discussion 

3.1. Inelastic cross sections 
He-CO is a system whose short-range anisotropy is large whereas the long-range 
anisotropy is rather small. Hence, inelastic collisions will sample mainly the repulsive 
part of the potential at higher energies and the potential well at lower energies. The 
long-range Van der Waals forces are rather ineffective except at very low energies. 
In figures 3 and 4 we have plotted ciJ(O, 1) and aJ(O, 2) at  an energy of 50cm-'. Short- 

J 
Figure 4. uJ(0,2) at an  energy of 50cm- I .  CC, CDI and CD2 results as  in figure 3 
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J 
Figure 5. uJ(0,7) a t  a n  energy of 130cm-'. CC, CDI and CD2 results as in figure 3 

range forces are dominant for low partial waves and long-range forces for high partial 
waves. CDI and CD2 are in good agreement with cc for low J whereas for high J we 
see discrepancies in oJ(O,l). We note that for these cross sections CDI and CD2 are in 
close agreement but converge too quickly with J for the 0-2 transition. 

In figure 5 we plot oJ(0,7) at  an energy of 130cm-'. CD2 agrees closely with cc 
at very low J but converges much too quickly. CDl is higher at low J and also 
converges too quickly with J .  

The behaviour of the cross sections may be explained as follows: in collisions where 
a high angular momentum is transferred to the molecule, the angular momentum of 
the incident particle is decreased and hence scattering occurs mainly from channels 
j = 0, 1 = J to j ' ,  2' with I '  < J ;  but for these channels the CDl treatment puts up too 
large a repulsive barrier, since it assumes I '  = J .  Hence the probability of excitation 
in these channels is decreased and, since they are the most important. the total 

J 
Figure 6. aJ(O,O) a t  a n  energy of 130cm- ' .  Full curve. 
and CD2 results (indistinguishable to  graphical accuracy). 

cc results: broken curve. CD1 
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excitation probability is decreased. For small J on the contrary, scattering occurs 
mainly from j = 0, 1 = J to j ' , l '  with 1' > J (this is obvious for J = 0 since then the 
only possibility is I' = j ' )  and putting I' = J lowers the centrifugal barrier; excitation 
cross sections are enhanced in CD1. Now CD2 is an exact treatment of the BF equations 
for J = 0 since, for this value, we have no off-diagonal centrifugal coupling terms 
(it was verified numerically that CD2 and cc gave the same results for J = 0); thus it 
is not surprising that CD2 and cc are in good agreement for low J .  For higher J ,  
CD2 should in general be smaller than CDl, since in the BF formulation scattering 
occurs from j = 0, Q = 0 to j ' ,  Q' = 0, the centrifugal barrier being J ( J  + l ) / r 2  in CD1 
and [ ( J ( J  + 1) + j ' (  j '  + 1)]/r2 in CD2. 

5 .2 .  Elastic cross sections 

Elastic collisions are less sensitive to CD approximations since they sample mainly the 
isotropic part of the potential, and for an isotropic potential and j = 0, CD1 and CD2 are 
identical with cc. Consider, for example, figure 6 where we have plotted d(0,O) at  
E = 130cm-'. cc, CD1, CD2 practically agree to graphical accuracy. In figures 7 and 8 
we have plotted aJ(2,2) and oJ(5,5) at  E = 130cm-'. For aJ(2,2), we see that cc 
smoothes out the low J oscillations of CD; CD1 and CD2 are in close agreement. For 
aJ(5, 5) ,  discrepancies are clearly seen; the maxima in CD are much higher than in cc 
but the partial cross sections converge too quickly; CD2 does not appear to be better 
than CD1. This behaviour in oJ(j , j )  may reflect the fact that CC results are a mean of 
CD1 results over the range IJ - j i  to J + j  (in cc, 1 can vary from IJ - j l  to J + j 
and in CD1 we have 1 = J) .  In table 2, we give the total cross sections between different 
rotational levels a t  50cm-'. One can see that CD gives very good results for the 0-2 
transition which, as we have seen before, is mainly due to short-range forces. In general, 
CD2 underestimates cross sections between excited rotor-levels. 

5.3. Interaction potential 

To see the influence of the potential on the cross sections, we decided to make an 
exponential fit to the potential. Each member of the Legendre expansion can, to good 

J 

Figure 7. d(2 ,2)  at an energy of 130cm-'. CC, CDI and CD2 results as in figure 6. 
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J 
Figure 8. 4 5 5 )  at ai1 energy of 130cm-I CC, CDI and CD2 results as in figure 3 

accuracy, be fitted to an exponential in the region r < 4.5au. We then take 
i ,fxP(r) = a,exp(-xr) for all r,  with cx = 1.85au-'. The a, are determined such that 
the two potentials coincide exactly at  4au. This potential is clearly of short range. 
We can see in table 3 that the CD1 results are now in much better agreement with cc. 
We note that McGuire and Kouri (1974) obtained similar agreement for He-H, 
collisions (although at  much higher energies), where the potential employed also decayed 
exponentially with r .  Finally, we should point out that the cross sections changed by 
roughly an order of magnitude except for Aj = 2 transitions; this illustrates the 
importance of the Van der Waals minimum in determining the cross sections. 

6. Conclusion 

We have shown that, using the De Vogelaere integration method, we can take account 
of the symmetry of the BF equations to reduce the amount of computation by a factor 

Table 2. Total cross sections at an energy of 50cm- '  using CC. CD1 and CD2 methods 
with the electron-gas model potential; cross sections are in A'. 

Cross sections CC CDI CD2 

0-0 
0- 1 
0-2 
0-3 
0-4 
1-1 
1-2 
1-3 
1-4 
2-2 
2-3 
2-4 
3-3 
3-4 
4-4 

180 176 178 
9.97 13 2 13.3 

19.1 18.5 18.9 
3.14 2.31 2.34 
3.26 3.90 2.94 

7.72 8.06 7.56 

2.40 238 236 

7.56 6 1 1  5 14 
9.40 10.9 8.95 

6.56 4.65 463  

193 190 191 

12.0 12.0 11.8 

194 189 191 

203 20 1 199 

169 145 123 
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Table 3. Total cross sections at  an energy of 50cm- using cc and CDI methods with the 
exponential fit of the electron-gas model potential; cross sections are in A 2 .  

Cross section CC CDI 

0-0 
0- 1 
0-2 
0-3 
0-4 
1-1 
1-2 
1-3 
1-4 
2-2 
2-3 
2-4 
3-3 
3-4 
4-4 

75.5 

12,8 
1.73 

0.601 
0.371 

1.52 
5.23 
0.163 

1.07 
1.46 

0.781 

84.2 

86.4 

90.8 

98.7 

74.6 

13.2 
1.72 

0.6 18 
0,391 

83.8 
1.54 
5.25 
0.170 

1.08 
1.32 

0.73 1 

84.6 

85.6 

80.2 

of about three. This method allows us to calculate very efficiently rotational excitation 
cross sections for many systems of astrophysical interest. 

We have also used centrifugal decoupling methods which are obtained by neglecting 
the Coriolis coupling terms in the BF equations. These methods are found to converge 
too quickly with J for partial cross sections involving excited rotor levels. When using 
a short-range exponential potential, very good results are obtained. For the He-CO 
system, which shows a rather small long-range anisotropy, we get sufficiently accurate 
results for the total cross sections. 
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Appendix 1. Parity 

We calculate 

nY$f(;,R) = Y $ y ( 4 ,  -8). 
The polar coordinates of - i  are (n - 8, C$ + n) and the BF polar coordinates of - R  
are (0’, n - 0’). Then, using the relations 

and 
QLn(4 + n, n - 0,O) = ( - I J %  .-*(4,0,O) 

Yjn(O’, n - a) = Yj-n(O’, 0‘) 

rIY$(f, 8) = (-)”;!$(;, 8). 
we get 
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The functions 

Y;z(;, 8) + €nY;f(;, 8) 

Y # y i ,  8) = [Yf#(F, 8) + E(-)JY;fn(i, R)]/[2(1 + cs$=j0)]l'2. 

where E = k 1 have parity E and norm [2(1 + i ? ~ ~ ) ] ~ ; ~ .  Thus we have 

Appendix 2. Unitary transformation 

We calculate first 

( j R J M / j l J M e )  = Y;E*(;, R)Y5Mc(;, 8) dr̂ . dR. i 
Using equations (2) and (4) and the rotation theorem of spherical harmonics, 

?,(Of, W )  = D&n(6, 6,0)Yjnr(0, @) 
L-2 ' 

we get 

where 

@,m,(?) = D i m . ( + ,  6, 0). 

Then, using 

the second integral reduces to 

J' D&~(i)~,,(E.)D&n(i) d; = ( -)M+R[4n(21 + 1)]'12 

Using (A.l) and (A.2) we get 

- M  >ii R O -R '1.  (A.2) 

( jRJM1 jlJME) = (-)j-'+*(21 + 1)1'2 ( j  ' J ) ( 2 J +  1) ( j  -si2 
R 0 -R m,ml *j mi 

Using relation (5j, we get 

from which (6) may be obtained if we put E' = E. 
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Appendix 3. Matrix elements 

A3.1. l 2  matrix elements 

We shall first evaluate l 2  matrix elements in the IjRJM) basis; we have 

1 - - (  J - j ) 2  = J 2  + j 2  - 2jI, - (J’+J’- + j [ ~ ’ + )  

where we have used the relation j,, = J,. and where the prime index denotes the 
components of the operators on the BF axes. Using relation (4) and the usual relations 

j’+ Y,n = z + ( j ,  RI?*+ 
where 

z , ( u , ~ )  = [U(U + 1) - b(b 1)]1’2 

j,. = R T:, 
.i2 yjn = j(j + 1150 

and 

J2N;Cln = J ( J  + 1)NLn 

J’&n = &dJ ,  Q ) w L n T  1 

which come from the reversed commutation relations in the BF coordinates 
[J,., Jy,] = - iJz ,  (Van Vleck 1951) we get 

(jQJMI121jR F IJM) = - - z , ( j , ~ ) z ~ ( ~ , ~ )  

(jQJM112/ j Q J M )  = J ( J  + I )  + j ( j  + 1) - 2 ~ ~ .  

Then using equation (5) we get equation (9). 

A3.2. V matrix elements 

The matrix elements in the IjRJM) basis may be expressed as 
;.“,ax 

i. = 0 
(jRJMl VIj‘Q’JM) = c (jRlP;,(cos @’)lj’Q’)uj.(r) 

where we have used equations (4), (10) and the normalization of the Nhn. We have 

( j  j ‘  “j ji (jQ1P;,(cos @’)lj’R’) = ha*,( - )y (2 j  + 1)(2j’ + 1 ) p 2  j ’  “) 
0 0 0 R - R  0 ’  

Then using equation (5) we get equation (11). 
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