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Abstract. This paper studies a periodic optimal control problem governed
by a one-dimensional system, linear with respect to the control u(·), under

an integral constraint on u(·). We give conditions for which the value of the

cost function at steady state with a constant control ū can be improved by
considering periodic control u(·) with average value equal to ū. This leads to

the so-called “over-yielding” met in several applications. With the use of the

Pontryagin Maximum Principle, we provide the optimal synthesis of periodic
strategies under the integral constraint. The results are illustrated on a prob-

lem of water quality in the chemostat model with periodic dilution rate, for

various growth functions.
Key-Words. Optimal Control, Pontryagin Maximum Principle, Periodic so-

lutions, Chemostat Model, Over-yielding.

1. Introduction

In many applications, the control of dynamical models allows to drive the state
of a system to a relevant operation point, typically a steady state optimizing the
performances of the system. However, it may happen that a periodic operation of
the system gives a better performance averaged on the period than a steady state
(with a periodic control instead of a constant one). This question has already been
investigated in the literature In particular, the so-called π-criterion characterizes the
existence of “best” periods. It consists first in determining an optimal steady state
among constant controls, and then in checking on a linear-quadratic approximation
if there exists a frequency of a periodic signal locally about the nominal constant one
that could improve the cost (see [7, 6]). For instance, in [2, 3, 19], this method has
been applied on the chemostat model, and it has been shown that its productivity
can be improved with a periodic control when there is a delay in the dynamics.
However, that there are relatively few theoretical works about global optimally of
periodic control (apart [21] for the characterization of the value function under quite
strong assumptions). Most of the existing works deal with local necessary conditions
([9, 15]), second order conditions ([8, 30, 16]) or approximations techniques ([13, 1]).

In the present work, we consider the problem of determining optimal periodic
trajectories under an integral constraint on the control. Our objective is some what
different than what has been described above. First of all, we do not necessarily
consider nominal steady states optimizing the criterion. Secondly, we consider ad-
missible trajectories under constraint, as following. For a given steady state x̄ and
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its associated constant control ū, we consider the set of periodic trajectories with
periodic controls having ū as average (which represents the integral constraint).
This question has been motivated by applications for continuous transformation
processes for which during each period of time of length T , an amount of input
matter has to be transformed (which is represented by the integral constraint on
the control). The question is to study if the quality of the product, in terms of
the averaged concentration x(·) during each time period, could be improved by the
way the input matter is delivered during each time period (that is the choice of the
control u(·) satisfying the integral constraint). In this context, we say that a over-
yielding occurs when the average of a T -periodic solution x(·) is above x̄. To our
knowledge, this problem has not been yet addressed theoretically in the literature.
From a mathematical view point, the integral constraint on the input brings two
main difficulties

(1) the existence of non-constant periodic trajectories with a control satisfying
the integral constraint,

(2) the characterization of a (globally) optimal control under both constraints
of periodicity of the trajectory and the integral constraint on the input,

that we propose to tackle here for scalar dynamics in general framework. We show
that convexity assumptions are playing an important role.

The paper is organized as follows. In Section 2, we formulate the problem and give
a precise definition of over-yielding. We then provide assumptions on the dynamics
and the cost function that guarantee or prevent over-yielding. In particular, we show
that convexity is playing an important role. In section 3, we synthesize optimal
periodic controls that improves the cost function compared to steady-state (see
Theorem 3.6). In Section 4, we show how to relax the assumptions of Section 2 that
are required on an invariant domain I of the dynamics, when these ones are fulfilled
only locally about x̄. This leads us to give a result similar to the one of Section 3
but for restrictive values of the period T . Finally, we illustrate on results in Section
5 in the context of the chemostat model (see for instance [29, 18]), considering
different kind of growth functions available in the literature. The objective to study
the impact of non-constant periodic inputs on the average water quality and, where
appropriate, determine the best input profiles.

2. Existence of over-yielding

Given two functions f, g : R→ R of class C1, we consider the control system

(1) ẋ = f(x) + ug(x),

where u is a control variable taking values in U := [−1, 1]. We suppose that the
system satisfies the following hypotheses:

(H1) There exists numbers a, b with a < b such that g is positive on the interval
I := (a, b) with

f(a)− g(a) = 0 and f(b) + g(b) = 0.

(H2) One has f − g < 0 and f + g > 0 on I.

Remark 1. Hypothesis (H1) implies that the interval I is invariant by (1) whereas
Hypothesis (H2) is related with controllability properties of (1) (that be used in the
next section for the synthesis of non-constant periodic trajectories). In the rest of
the paper, we shall consider initial conditions in I only.
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We define for x ∈ I the function

ψ(x) := −f(x)

g(x)

Notice that Hypotheses (H1)-(H2) imply that one has ψ(I) ⊂ U . Therefore, for
any x̄ ∈ I, we can consider the control value ū := ψ(x̄) in U . Note that x̄ is an
equilibrium of (1) for the constant control u = ū. In the sequel, we shall consider
T -periodic solutions of (1), where T is a positive number, with a T -periodic control
u(·) that satisfies the integral constraint

(2)
1

T

∫ T

0

u(t)dt = ū

We define then the set UT of admissible controls as

(3) UT := {u ∈ L1([0, T ], U) s.t. (2) is fulfilled}

One has the following property.

Lemma 2.1. Under Hypothesis (H1), any T -periodic solution x(·) of (1) in I with
u(·) ∈ UT fulfills the property

(4)

∫ T

0

(ψ(x(t))− ψ(x̄)) dt = 0

Proof. On the interval I, the function g is positive and one can write from equation
(1) ∫ T

0

ẋ(t))

g(x(t))
dt = −

∫ T

0

ψ(x(t))dt+

∫ T

0

u(t)dt

Define the function

h(x) :=

∫ x

x̄

dξ

g(ξ)
, x ∈ I

and denote the function y(t) = h(x(t)). For any control function u(·) that fulfills
the constraint (2), one has then

y(T )− y(0) = −
∫ T

0

(ψ(x(t))− ū) dt

where ū = ψ(x̄). For any T -periodic solution x(·) in I, y(·) is also T -periodic and
one obtains the property (4). �

We assume now the equilibrium x̄ is asymptotically stable for the dynamics (1)
in I with the constant control ū, requiring the following hypothesis.

(H̄) The function ψ satisfies the property.

(ψ(x)− ψ(x̄))(x− x̄) > 0, ∀x ∈ I \ {x̄}

For convenience, we shall denote x(x0, u(·); t) the solution of (1) at time t for the
initial condition x(0) = x0 ∈ I and control u(·) ∈ UT . In the following, we shall
consider T -periodic solutions with the initial condition x(0) = x̄ (i.e. that are such
that x(x̄, u(·);T ) = x̄ for u(·) ∈ UT ). We first show that Hypothesis (H̄) guarantees
the existence of non-constant such solutions.

Lemma 2.2. Under Hypotheses (H1)-(H̄), there exists non-constant T -periodic
solutions of (1) with x(0) = x̄ and u ∈ UT , for any T > 0.
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Proof. Consider the constant control u = ū and its associated dynamics in I

ẋ = f̄(x) := g(x)(ū− ψ(x)) = g(x)(ψ(x̄)− ψ(x))

As the function g is positive on I, Hypothesis (H̄) implies that one has f̄ < 0 on
(x̄, b), and f̄ > 0 on (a, x̄). Therefore, one has the properties

(5)
x0 ∈ (x̄, b̄) ⇒ x(x0, ū;T ) < x0

x0 ∈ (a, x̄) ⇒ x(x0, ū;T ) > x0

Consider now any bounded T -periodic function v in L1([0,+∞), U) with∫ T

0

v(t)dt = 0,

and the control function

uε(t) = ū+ εv(t)

where ε is a real number. Clearly, uε(·) satisfies the constraint (2) and for ε small
enough, one has uε(t) ∈ U for any t ≥ 0. Define then the function

γ(x0, ε) := x(x0, uε(·);T )− x0

for (x0, ε) ∈ I × R. By the Theorem of continuous dependency of the solutions of
ordinary differential equations with respect to initial condition and parameter (see
for instance [26], γ is a continuous function. From properties (5), one has

x0 ∈ (x̄, b) ⇒ γ(x0, 0) < 0
x0 ∈ (a, x̄) ⇒ γ(x0, 0) > 0

and by continuity of γ, there exists three numbers ε 6= 0, x+
0 ∈ (x̄, b) and x−0 ∈ (a, x̄)

such that γ(x+
0 , ε) < 0 and γ(x−0 , ε) > 0. By the Mean Value Theorem, we deduce

the existence of x0 ∈ (x−0 , x
+
0 ) such that γ(x0, ε) = 0, that is the existence of a

T -periodic solution x(·) of (1) with a non-constant control u(·) that satisfies the
constraint (2). From Lemma 2.1, such solution satisfies∫ T

0

(ψ(x(t))− ψ(x̄)) dt = 0

which implies that the map t 7→ ψ(x(t))−ψ(x̄) cannot be of constant sign on [0, T ].
Hypothesis (H̄) implies that x(t)− x̄ has to change its sign. Therefore there exists
t̄ ∈ (0, T ) with x(t̄) = x̄ and then the control function ũ(·) = u(·+ t̄) guarantees to
have x(x̄, ũ(·);T ) = x̄. �

Now, let ` : R→ R be a function of class C1 and consider the cost function

(6) JT (u) :=
1

T

∫ T

0

`(xu(t))dt,

where xu is the solution of (1) with xu(0) = x̄, associated to a control u ∈ UT .
Our aim in this work is to address the question of finding a periodic trajectory with
x(0) = x̄ that has a better cost than the constant x̄, with a (T -periodic) control of
mean value ū. For this purpose, we introduce the following terminology.

Definition 2.3. Given T > 0, we say that (1) exhibits an over-yielding for the cost
(6) if there exists a T -periodic solution x(·) of (1) with x(0) = x̄ associated to a
control u ∈ UT such that JT (u) < `(x̄).
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Moreover, we aim at characterizing in the next Section the strategies realizing
the minimum of the criterion (6) among such controls. The possibility of having an
over-yielding relies on specific assumptions on the cost function and the dynamics,
that we now introduce.

(H3) ` : I → R is increasing and γ := ψ ◦ `−1 is strictly convex increasing over `(I).

Remark 2. Hypothesis (H3) implies that ψ is strictly increasing on I and therefore
Hypothesis (H̄). Then, by Lemma 2.2, there exists T -periodic solutions x of (1)
with x(0) = x̄ and u ∈ UT , different to x̄ when (H1)-(H2)-(H3) are fulfilled.

Proposition 1. If (H1)-(H3) hold true, any non-constant T -periodic solution x(·)
of (1) with x(0) = x̄ and u ∈ UT satisfies JT (u) < `(x̄).

Proof. Consider a T -periodic solution x(·) with x(0) = x̄ associated to a control in
UT . From Lemma 2.1, equality (4) is satisfied and we deduce∫ T

0

(γ(`(x(t)))− γ(`(x̄))) dt = 0.

For a non-constant solution, we find by Jensen’s inequality

γ

(
1

T

∫ T

0

`(x(t))dt

)
<

1

T

∫ T

0

γ(`(x(t))) = γ(`(x̄)).

Since γ is increasing over `(I), we obtain

JT (u) =
1

T

∫ T

0

`(x(t))dt < `(x̄).

�

Remark 3. (i) The result of Proposition 1 applies in the simple case where `(x) = x
and ψ is strictly convex and increasing over I.
(ii) If ψ is strictly convex and increasing over I and ` is strictly concave increasing
over I, the result of Proposition 1 also holds true (by a similar reasoning).

We now provide sufficient conditions for preventing any over-yielding.

(H4) There exists a C1 function ψ̄ such that

(i) ψ̄ ≥ ψ on I with ψ̄(x̄) = ψ(x̄)
(ii) the function γ̄ := ψ̄ ◦ `−1 is concave increasing on `(I)

Proposition 2. If (H1)-(H4) hold true then no over-yielding is possible.

Proof. We suppose by contradiction that there exists a periodic solution x(·) asso-
ciated to a control u ∈ UT such that

JT (u) =
1

T

∫ T

0

`(x(t))dt < `(x̄),

The function γ̄ being increasing on `(I), we have

(7) γ̄
( 1

T

∫ T

0

`(x(t)) dt
)
< γ̄(`(x̄)) = ψ̄(x̄) = ψ(x̄)

Using Jensen’s inequality for γ̄, we can write

(8) γ̄
( 1

T

∫ T

0

`(x(t)) dt
)
≥ 1

T

∫ T

0

γ̄(`(x(t))) dt
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As one has ψ̄ = γ̄ ◦ ` ≥ ψ over I, we get

(9)
1

T

∫ T

0

γ̄(`(x(t))) dt ≥ 1

T

∫ T

0

ψ(x(t)) dt

Combining inequalities (7), (8), (9), we obtain

ψ(x̄) >
1

T

∫ T

0

ψ(x(t)) dt

which is a contradiction with the equality (4) given by Lemma 2.1. �

Remark 4. If ` is increasing on I and γ is strictly concave increasing over `(I),
then one can show in the same way that no over-yielding is possible.

3. Determination of optimal periodic solutions

In this Section, we assume that Hypotheses (H1)-(H2)-(H3) hold true, so that
we know that over-yielding is possible, according to Proposition 1. For a given
T > 0, we shall say that a solution x(·) of (1) is T -admissible if it is T -periodic with
x(0) = x̄ and u(·) ∈ UT . We reformulate the control constraint (2) by considering
the augmented dynamics

(10)

{
ẋ = f(x) + ug(x),
ẏ = u,

together with the boundary conditions:

(11) (x(0), y(0)) = (x̄, 0) and (x(T ), y(T ) = (x̄, ūT )

The optimal control problem can be then stated as follows

(12) inf
u∈U

∫ T

0

`(x(t))dt s.t. (x, y) satisfies (10)− (11),

where U is the set of measurable control functions u(·) that take values in U .

3.1. Application of the Pontryagin Maximum Principle. We derive nec-
essary optimality conditions using the Pontryagin Maximum Principle [27]. Let
H : R2 × R2 × R× R→ R be the Hamiltonian associated to (12) :

H = H(x, y, λx, λy, λ0, u) = λ0`(x) + λxf(x) + u(λxg(x) + λy),

where λ := (λx, λy) denotes the adjoint vector. Let u ∈ U be an optimal control
and (x, y) a solution of (10)-(11) associated to u. Then, there exists a scalar λ0 ≤ 0
and an absolutely continuous map λ : [0, T ]→ R2 satisfying the adjoint equation

(13)

{
λ̇x = −λ0`

′(x(t))− λx(f ′(x(t)) + u(t)g′(x(t))) a.e. t ∈ [0, T ],

λ̇y = 0,

such that (λ0, λ) 6= 0. The transversality condition implies λx(0) = λx(T ). Finally,
the Hamiltonian condition writes

u(t) ∈ arg max
ω∈U

H(x(t), λ(t), λ0, ω) a.e. t ∈ [0, T ].(14)

The switching function φ(t) := λx(t)g(x(t)) + λy(t) provides the properties: φ(t) > 0 ⇒ u(t) = 1,
φ(t) < 0 ⇒ u(t) = −1,
φ(t) = 0 ⇒ u(t) ∈ [−1, 1].
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Since λx is T -periodic, φ is also T -periodic (λy is constant). Moreover, if we differ-
entiate φ w.r.t t, we find that:

φ̇(t) = λx(t)(f(x(t))g′(x(t))− f ′(x(t))g(x(t)))− λ0`
′(x(t))g(x(t)), a.e. t ∈ [0, T ].

An extremal trajectory is a quadruple (x, λ, λ0, u) where (x, λ) satisfies the state-
adjoint equations and u the Hamiltonian condition (14). We recall that a singular
arc occurs if φ vanishes on some time interval [t1, t2] with t1 < t2, and a switching
time ts ∈ (0, T ) is such that x(·) is not C1 at ts (which implies φ(ts) = 0).

Lemma 3.1. Under Hypotheses (H1)-(H2)-(H3), there is no abnormal extremal
i.e. λ0 6= 0.

Proof. If λ0 = 0, then λx cannot vanish from the adjoint equation. Otherwise λx
would be zero over [0, T ] and the switching function would be constant equal to λy.
Since λy cannot be simultaneously equal to 0, φ would be of constant sign over [0, T ]
implying that u = 1 or u = 0 over [0, T ] and a contradiction with the periodicity of
x (recall that f + g > 0 and f − g < 0 over I). As a consequence, λx is of constant
sign. Now, since λ0 = 0, one has

φ̇(t) = λx(t)g(x(t))2ψ′(x(t)), t ∈ [0, T ].

We deduce that φ̇ is of constant sign (recall that ψ′ > 0), that is φ monotone, and
thus we have a contradiction with the periodicity of φ. This ends the proof. �

Without any loss of generality, we may assume that λ0 = −1

3.2. Properties of switching times. Let us denote by xm and xM the minimum
and maximum on [0, T ] of a T -admissible solution x(·). Note that for any time
t ∈ (0, T ) such that x(t) ∈ {xm, xM}, then one has φ(t) = 0 (otherwise x(·) would
be monotone in a neighborhood of t implying a contradiction).

Proposition 3. Under Hypotheses (H1)-(H2)-(H3), any extremal verifies the fol-
lowing properties.

(1) At any switching time ts ∈ (0, T ), one has x(ts) ∈ {xm, xM}.
(2) It has no singular arc.

Proof. Let t1, t2 in [0, T ] be such that x(t1) = xm and x(t2) = xM with xm, xM in
I. We deduce that λx(t1)g(xm) = λx(t2)g(xM ) = −λy. Now, since H is conserved
along any extremal trajectory (see for instance [11]), one has

H = −`(xM )− λy
f(xM )

g(xM )
= −`(xm)− λy

f(xm)

g(xm)
,

implying that (recall that γ = ψ ◦ `−1)

(15)
1

λy
=
ψ(xM )− ψ(xm)

`(xM )− `(xm)
=
γ(`(xM ))− γ(`(xm))

`(xM )− `(xm)
.

Suppose now that ts is a switching time such that x(ts) ∈ (xm, xM ). Using a similar
computation as above, we find that

(16)
1

λy
=
ψ(xM )− ψ(x(ts))

`(xM )− `(x(ts))
=
γ(`(xM ))− γ(`(x(ts)))

`(xM )− `(x(ts))
.

Since γ and ` are respectively strictly convex and strictly increasing on [xm, xM ],
(15) and (16) imply a contradiction, thus x(ts) ∈ {xm, xM} as was to be proved.
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Suppose now by a contradiction that there exists a time interval [t1, t2] such

that φ(t) = φ̇(t) = 0 for t ∈ [t1, t2]. It is then easy to see that the trajectory is

necessarily constant over [t1, t2] (indeed, combining φ = φ̇ = 0 over [t1, t2] one finds
that λyψ

′(x(t))− `′(x(t)) = 0 for t ∈ [t1, t2] implying that x must be constant over
[t1, t2]). Thus there exists xs ∈ [xm, xM ] such that x(t) = xs for any time t ∈ [t1, t2].
Now, since the extremities of the singular arc t1 and t2 must be switching times,
one must have xs ∈ {xm, xM}. Suppose for instance that xs = xM . From the
expression of φ and φ′, we deduce that

1

λy
=
ψ′(xM )

`′(xM )
= γ′(`(xM )),

which is a contradiction with (15) (since γ is strictly convex). We have a similar
contradiction if xs = xm, which ends the proof. �

At this stage, we have thus proved that optimal trajectories are of bang-bang
type (i.e. are concatenations of arcs with u = ±1) such that at each switching time
ts one has x(ts) ∈ {xm, xM}. By a similar reasoning as in the proof of Proposition
3, one can show that the number of switching times is finite. Moreover, since the
switching function is T -periodic, the number of switching times is necessarily even
(otherwise a switch will have to occur at x(T ) = x̄ in contradiction with point 1 of
Proposition 3). We focus now on solutions with two switches.

3.3. Trajectories with two switches. For a given T > 0, we consider trajectories
x(·) of (1) on [0, T ] with x(0) = x̄ and a control defined by two switching times t1,
t2 with 0 ≤ t1 < t2 ≤ T :

u(t) =

∣∣∣∣∣∣
1, t ∈ [0, t1)
−1, t ∈ [t1, t2)

1, t ∈ [t2, T )

These trajectories, that we shall call BB trajectories, will play an important role
in the following. Note that under Hypotheses (H1)-(H2) a BB trajectory is char-
acterized uniquely by its maximal and minimal values xM = x(t1) and xm = x(t2)
in I. For convenience, we define on the interval I the function

η(x) =
1

f(x) + g(x)
− 1

f(x)− g(x)

From Hypothesis (H2), note that η is a positive function on I.

Lemma 3.2. Under Hypotheses (H1)-(H2), a BB trajectory is T -periodic when
xm, xM satisfy

(17)

∫ xM

xm

η(x)dx = T

Moreover, the corresponding control satisfies the constraint (2) when xm, xM satisfy

(18)

∫ xM

xm

η(x)ψ(x)dx = ūT

Proof. For t ∈ [0, t1) ∪ [t2, T ), one has ẋ = f(x) + g(x) > 0 and one can write

t1 =

∫ xM

x̄

dx

f(x) + g(x)
, T − t2 =

∫ x(T )

xm

dx

f(x) + g(x)
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Similarly for t ∈ [t1, t2), one has ẋ = f(x)− g(x) < 0 and

t2 − t1 = −
∫ xM

xm

dx

f(x)− g(x)

One then obtains

T =

∫ x(T )

xm

dx

f(x) + g(x)
−
∫ xM

xm

dx

f(x)− g(x)
+

∫ xM

x̄

dx

f(x) + g(x)

and for a T -periodic solution, x(T ) = x̄ gives exactly the property (17).
Proceeding with the same decomposition of the interval [0, T ], one can write∫ T

0

u(t)dt =

∫ xM

x̄

dx

f(x) + g(x)
+

∫ xM

xm

dx

f(x)− g(x)
+

∫ x̄

xm

dx

f(x) + g(x)

which gives the quality∫ xM

xm

(
1

f(x) + g(x)
+

1

f(x)− g(x)

)
dx = ūT

when u(·) fulfills (2). Finally, notice that one has

1

f(x) + g(x)
+

1

f(x)− g(x)
= η(x)ψ(x)

and thus property (18) is satisfied. �

We first analyze the possibilities of satisfying the integral condition (17).

Lemma 3.3. Under Hypotheses (H1)-(H2), for any T > 0 there exists an unique
function βT : I 7→ I that satisfies βT (α) > α for any α ∈ I and∫ βT (α)

α

η(x)dx = T, α ∈ I

Moreover βT is C1, increasing and bijective from I to I.

Proof. The function f+g is C1 and positive on I = (a, b) with (f+g)(b) = 0. It then
verifies (f + g)(x) ≤ K+(b−x) for any x ∈ I, where K1 = −minx∈Ī(f + g)′(x) > 0.
As the function η satisfies

η(x) >
1

f(x) + g(x)
≥ 1

K+(b− x)
> 0, x ∈ I,

one deduces that the map

χ : (ξ−, ξ+) 7→
∫ ξ+

ξ−

η(x)dx

is such that for any α ∈ I, χ(α, ·) is increasing with χ(α, α) = 0 and χ(α, b) = +∞.
By the Theorem of implicit functions, there exists an unique map βT : I 7→ I such
that χ(α, βT (α)) = T for any α ∈ I. Moreover, one has

β′T (α) =
η(α)

η(β(α))
> 0, α ∈ I

The function βT is thus increasing, and then admits limits βT (a+) ≥ a and βT (b−) ≤
b that verify χ(a, βT (a+)) = T and χ(b, βT (b−)) = T . As previously, f − g < 0 on
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I with (f − g)(a) = 0 implies that one has (f − g)(x) ≥ K−(x − a) for any x ∈ I
(with K− = minx∈Ī(f − g)′(x) > 0) and thus one has

η(x) > − 1

f(x)− g(x)
≥ 1

K−(x− a)
> 0, x ∈ I,

then, if β(a+) > a, one should then have χ(a, βT (a+)) = +∞ which is not possible.
So one has β(a+) = a. As the function η is positive on I, one has βT (α) > α for
any α ∈ I, and we deduce the limit βT (b−) = b. This proves that βT is bijective
from I to I. �

We are ready now to show that there exits an unique BB trajectory that satisfies
both integral conditions (17) and (18).

Proposition 4. Under Hypotheses (H1)-(H2)-(H̄), there exists unique xm, xM in
I that verify (17) and (18). One has necessarily xm < x̄ < xM .

Proof. From Lemma 3.3, the satisfaction of condition (17) implies to have xM =
βT (xm). We thus have simply to show the uniqueness of xm for the condition (18)
to be fulfilled. Consider the function

F (α) :=

∫ βT (α)

α

η(x)(ψ(x)− ψ(x̄))

and notice that conditions (17) and (18) are both satisfied exactly when F (xm) = 0.
From Hypothesis (H̄) and properties of βT given in Lemma 3.3, one has F (α) > 0
for any α ∈ [x̄, b), and F (α) < 0 for any α ∈ (a, β−1

T (x̄)]. By the Mean Value

Theorem, there exists xm ∈ (β−1
T (x̄), x̄) such that F (xm) = 0. Moreover, one has

F ′(α) = η(β(α)) (ψ(β(α))− ψ(x̄))β′(α)− η(α) (ψ(α))− ψ(x̄))

As βT is increasing and ψ satisfies (H̄), we obtain F ′(α) > 0 for any α < x̄ with
βT (α) > x̄, that is exactly for α ∈ (β−1

T (x̄), x̄), and we conclude about the existence
and uniqueness of xm, xM in I, with xm < x̄ and xM > x̄. �

It is worth to mention that xm and xM depend on the period T . In the next
Lemma, we provide properties of xm and xM as functions of T .

Lemma 3.4. Under Hypotheses (H1)-(H2)-(H̄), the functions T 7→ xm(T ) and
T 7→ xM (T ) are continuously differentiable, and respectively decreasing and in-
creasing. Moreover, one has

(19) lim
T→+∞

xm(T ) = a and lim
T→+∞

xM (T ) = b.

Proof. For each T > 0, we know from Proposition 4 that there exists unique xm(T ),
xM (T ) in I satisfying (17)-(18). Differentiating w.r.t. T the conditions (17) and
(18), one obtain that the derivatives xm

′, xM ′ are solution of the linear system η(xM ) −η(xm)

η(xM )ψ(xM ) −η(xm)ψ(xm)


︸ ︷︷ ︸

X

 xM
′

xm
′

 =

 1

ψ(x̄)
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where det(X) = η(xM )η(xm) (ψ(xM )− ψ(xm)) > 0. Then xM
′, xm′ are given by

the expressions 
xM
′ =

η(xm) (ψ(x̄)− ψ(xm))

det(X)
> 0

xm
′ =

η(xm) (ψ(x̄)− ψ(xm))

det(X)
< 0

From (17) and (18), one has

T

2
(ū+ 1) =

∫ xM (T )

xm(T )

dx

f(x) + g(x)
<

∫ xM (T )

a

dx

f(x) + g(x)

Taking the limit when T tends to +∞ in both side of this inequality, one obtains
limT→+∞ xM (T ) = b. Similarly one can prove limT→+∞ xm(T ) = a. �

3.4. Optimal solutions. According to Proposition 4, for any T > 0 there exists
an unique BB trajectory x̂T (·) that is T -admissible, generated by a control that we
shall denote ûT . Moreover, there exists a unique t̄ ∈ (0, T ) such that x̂T (t̄) = x̄.
Therefore, there exists exactly two T -admissible solutions x̂T (·), x̌T (·) with two
switches, given by ûT and ǔT with

ǔT (t) = ûT (t+ t̄), t ≥ 0

which have the same cost.
We study now the monotony of the cost JT (ûT ) with respect to T .

Lemma 3.5. Under Hypotheses (H1)-(H2)-(H3), one has

S > T > 0⇒ JS(ûS) < JT (ûT )

Proof. Let us denote by x, y the solutions of (1) corresponding to ûT and ûS
respectively. Set xM := x(t1), xm := x(t2), yM := x(s1), ym := x(s2). Recall that
one has 0 < t1 < t2 < T , 0 < s1 < s2 < S and from Lemma 3.4, xM < yM ,
xm > ym with t1 < s1, t2 < s2 Let us introduce the set E defined by

E := {s ∈ [0, S] ; y(s) > xM or y(s) < xm}.
Let us also define the function ϕ : [0, T ]→ [0, S]\E by

ϕ(t) :=


t if t ∈ [0, t1),

t+ δ1 if t ∈ [t1, t2),

t+ δ2 if t ∈ [t2, T ],

where δ1, resp. δ2 is the time spent by y(·) over x(·), resp. below x(·). By construc-
tion one has x(t) = y(ϕ(t)) for t ∈ [0, T ] and ϕ is bijective, thus meas(E) = S − T .
Moreover, for any monotonic function ρ : I → R one has∫ T

0

ρ(x(t))dt =

∫ T

0

ρ(y(ϕ(t)))dt =

∫
[0,S]\E

ρ(y(s))ds,

by considering the change of variable s = ϕ(t). We then get∫ T

0

`(x(t))dt =

∫
[0,S]\E

`(y(s))ds,

and

(20)

∫ T

0

γ(`(x(t)))dt =

∫
[0,S]\E

γ(`(y(s)))ds.
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As both controls ûT and ûS satisfy the constraint (4), one has

1

T

∫ T

0

γ(`(x(t)))dt =
1

S

∫ S

0

γ(`(y(s)))ds = ū,

which implies
1

S − T

∫
E

γ(`(y(s)))ds = ū.

Let us now consider a function γ̂ : [`(ym), `(yM )]→ R defined by

γ̂(ξ) :=

∣∣∣∣∣∣∣
`(xm) +

γ(`(xM ))− γ(`(xm))

`(xM )− `(xm)
(ξ − `(xm)) for ξ ∈ [`(xm), `(xM )]

γ(ξ) otherwise

(see Figure 1). First, note that γ̂ is convex increasing and satisfies

γ

γ̂

l(xm) l(xM )

Figure 1. Functions γ and γ̂.

(21) γ̂(ξ) > γ(ξ) for ξ ∈ (`(xm), `(xM )).

As one has γ = γ̂ in [`(ym), `(yM )]\[`(xm), `(xM )], we also have

1

S − T

∫
E

γ̂(`(y(s)))ds = ū.

By Jensen’s inequality, we obtain

(22)
1

S − T

∫
E

`(y(s))ds ≤ γ̂−1(ū).

Now, since γ̂ is affine over [`(xm), `(xM )], one obtains

γ̂

(
1

T

∫ T

0

`(x(t))dt

)
=

1

T

∫ T

0

γ̂(`(x(t)))dt >
1

T

∫ T

0

γ(`(x(t)))dt = ū

using the property x(t) ∈ [xm, xM ] for t ∈ [0, T ], (21) and (4). Therefore, one has

(23)
1

T

∫ T

0

`(x(t))dt > γ̂−1(ū).
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We get by (20), (22) and (23)

1

S

∫ S

0

`(y(s))ds =
1

S

∫
E

`(y(s))ds+
1

S

∫
[0,S]\E

`(y(s))ds

≤ S − T
S

γ̂−1(ū) +
1

S

∫ T

0

`(x(t))dt

<
S − T
S

1

T

∫ T

0

`(x(t))dt+
T

S

1

T

∫ T

0

`(x(t))dt

=
1

T

∫ T

0

`(x(t))dt,

which concludes the proof. �

We give now our main result.

Theorem 3.6. Assume that Hypotheses (H1)-(H2)-(H3) are fulfilled. For any T >
0, there are two optimal trajectories, given by the two controls ûT and ǔT .

Proof. Proposition 3 shows that an optimal trajectory consists in 2n (with n ≥ 1)
switches, that occur exactly at its maximal and minimal values. As (H3) implies
(H̄), Proposition 4 gives the uniqueness of a T -admissible BB trajectory, which
amounts to state that there are exactly two extremals with two switches (i.e. n = 1),
given by the controls ûT (·) and ǔT (·).

If n > 1, an optimal trajectory has to be T/n-periodic (as n switches have to
occur for the same value xm of x(·) and the other n ones at the same value xM )
with exactly two switches on [0, T/n]. Therefore its cost is equal to J(ûT/n). By
Lemma 3.5, one has J(ûT/n) < J(ûT ), which proves that only the case n = 1 can
be optimal. �

An interesting consequence of Lemma 3.5 is the monotony of the cost function
evaluated at the optimal solution as a function of T .

Proposition 5. The optimal criterion T 7→ JT (ûT ) is decreasing w.r.t. T .

4. Relaxing the assumptions for local over-yielding

The previous Sections have shown the crucial role played by the monotony of the
function ψ and the convexity of the function γ on the interval I (see Hypotheses (H̄)
and (H3)). In the present Section, we consider situations for which these conditions
are not fulfilled on the whole interval I but only on a neighborhood of x̄. Typically,
there could exist other values of x̄ satisfying ψ(x̄) = ū (Hypothesis (H̄) is thus
not fulfilled on I) or γ could be convex only locally about x̄ (Hypothesis (H3) is
thus not fulfilled on I). The idea is then to restrict the values of the period T for
characterizing (periodic) optimal solutions remaining in a neighborhood of x̄ (and
presenting over-yielding).

For any T > 0, one can straightforwardly check that under Hypotheses (H1)-(H2)
any T -periodic solution x(·) of (1) with x(0) = x̄ and control u(·) taking values in
U verifies

(24) x(t) ∈ [x−T , x
+
T ], ∀t ∈ [0, T ],
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where x−T , x+
T are uniquely defined by the t−, t+ in (0, T ) such that

(25)

{
x−T = x(x̄,−1; t−) = x(x̄, 1; t− − T ),

x+
T = x(x̄, 1; t+) = x(x̄,−1; t+ − T )

Clearly, one has x−T < x̄ < x+
T and (x−T , x

+
T )→ (x̄, x̄) when T → 0.

Therefore, one can revisit Proposition 4 as follows.

Proposition 6. For any T > 0 such that

(26) (ψ(x)− ψ(x̄))(x− x̄) > 0, ∀x ∈ [x−T , x
+
T ] \ {x̄}

where x−T , x+
T are given in (25), there exists unique xm = xm(T ), xM = xM (T ) in

[x−T , x
+
T ] that verify (17) and (18).

Proof. As we look for xm, xM in the interval [x−T , x
+
T ], we shall consider the function

F defined in the proof of Proposition 4 on the interval [x−T , β
−1
T (x+

T )] only. Notice

that for any T > 0 one has βT (x−T ) = x̄ and βT (x̄) = x+
T (that is β−1

T (x+
T ) = x̄).

So xm has to belong to the interval [x−T , x̄]. For T > 0 that fulfills (26), one has

F (x−T ) < 0 and F (x̄) > 0, and by the Mean value Theorem, we deduce that there

exists xm in (x−T , x̄) such that F (xm) = 0, which amounts that have that pair
xm, xM = βT (xm) satisfying (17) and (18). As in the proof of Proposition 4, the
condition (26), instead of (H̄), gives F ′ > 0 on the interval (x−T , x̄) which provides

the uniqueness of xm on (x−T , x̄) (and thus the uniqueness of xM as well). �

Then, one may wonder if is enough to require Hypothesis (H3) to be fulfilled
on [xm(T ), xM (T )] (instead of I) to obtain the optimality of the controls ûT , ǔT
as in Theorem 3.6. There could exist extremals with x(·) taking values outside
[xm(T ), xM (T )]. We show that condition (26) is indeed enough to prevent this case
from occuring.

Proposition 7. Under Hypotheses (H1)-(H2), for any T > 0 that verifies (26) and
such that ψ is increasing on [xm, xM ] where xm = xm(T ), xM = xM (T ) are given
by Proposition 6, any T -admissible solution x(·) verifies

x̂ := max
t∈[0,T ]

x(t) ≤ xM and x̌ := min
t∈[0,T ]

x(t) ≥ xm

Proof. Consider a T -admissible solution x(·). From the property (24), one has
x̂ ≤ x+

T and x̌ ≥ x−T . Moreover, from condition (26) and Lemma 2.1, one deduces

that the inequalities x̂ > x̄ > x̌ have necessarily to be fulfilled. Let t̂ ∈]0, T [ be
such that x(t̂) = x̂ and suppose that one has x̂ > xM . One can assume, without
loss of generality, that x(t) ≥ x̄ is satisfied for any t ∈ [0, t̂] (if not, consider
t0 = sup{t < t̂ s.t. x(t) < x̄} and replace x(·) by x(· + t0)). Let A and B be
the numbers defined by

A =

∫ x̂

x̄

dx

f(x) + g(x)
and B = −

∫ x̂

x̄

dx

f(x)− g(x)

(which are positive by Hypothesis (H2)) that are the fastest times for a solution of
(1) to reach, respectively, x̂ from x̄ (with the constant control u = 1) and x̄ from x̂
(with the constant control u = −1). Clearly, one has t̂ ≥ A and T − t̂ > B.



OPTIMAL PERIODIC CONTROL UNDER INTEGRAL CONSTRAINT 15

We construct now a T -periodic solution x̃(·) of (1) with x̃(0) = x̄ and a control
ũ(·) defined as follows

(27) ũ(t) =

∣∣∣∣∣∣
ū t ∈ [0, t̂−A[
1 t ∈ [t̂−A, t̂[∪[t†, T ]
−1 t ∈ [t̂, t†[

where t† is given by

t† = T −
∫ x̄

x†

dx

f(x) + g(x)

with x† solution of κ(x†) = T − t̂, the map κ(·) being defined by

κ(ξ) :=

∫ x̄

ξ

dx

f(x) + g(x)
−
∫ x̂

ξ

dx

f(x)− g(x)

By Hypothesis (H2), κ(·) is decreasing with

κ(xm) =

∫ x̂

xm

η(x)dx−A >

∫ xM

xm

η(x)dx− t̂ = T − t̂

and κ(x̄) = B < T−t̂. Therefore x† is uniquely defined with x† ∈ (xm, x̄). Moreover,
one has

t† = t̂−
∫ x̂

x†

dx

f(x)− g(x)
∈ ]t̂, T [

Expression (27) is thus well defined. See Fig. 2 as an illustration of the solution
x̃(·).

t

x†

x̂

x

t̂

t† T

t̂− A
x̄ ũ = ū

ũ = 1

ũ = −1 ũ = 1

xM

xm

Figure 2. The solution x̃(·) in thick line, x(·) in thin line.

Clearly x̃(·) reaches x̂ at t̂ and is below x(·) on the interval [0, t̂]. On [t̂, t†], x̃(·)
has the fastest descent and therefore stays also below x(·) on this interval. At t = t†,
one has x̃(t†) = x†. Finally, from x = x† at time t† the constant control u = 1 is
the only one that allows to satisfy x̃(T ) = x̄. So, any periodic solution has to be
above x̃(·) on [t†, T ]. We conclude that one has x(t) ≥ x̃(t) for any t ∈ [0, T ]. As
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ψ(x) > ψ(x̄) for x ∈ [xM , x̂] and ψ is increasing on [xm, xM ] (by hypothesis), and
as we have shown x(t) > xm for any t ∈ [0, T ], one can write∫ T

0

(ψ(x(t))− ψ(x̄))dt >

∫
{t∈[0,T ]|x(t)≤xM}

(ψ(x(t))− ψ(x̄))dt

≥
∫
{t∈[0,T ]|x(t)≤xM}

(ψ(x̃(t))− ψ(x̄))dt

=

∫ xM

x†
(ψ(x)− ψ(x̄))η(x)dx

Finally, with x† > xm and η > 0 on I, one obtains∫ T

0

(ψ(x(t))− ψ(x̄))dt >

∫ xM

xm

(ψ(x)− ψ(x̄))η(x)dx = 0

which is not possible according to Lemma 2.1. We then conclude that the inequality
x̂ ≤ xM is satisfied. In a similar manner, one can prove the other inequality
x̌ ≥ xm. �

For periods T > 0 that fulfill conditions of Proposition 7, we know that optimal
solutions remains in the set [xm(T ), xM (T )] and one obtains the same conclusion
than Theorem 3.6 when Hypothesis (H3) is fulfilled on [xm(T ), xM (T )] only.

Theorem 4.1. Assume that Hypotheses (H1)-(H2) are fulfilled and consider T > 0
such that

i) (ψ(x) − ψ(x̄))(x − x̄) > 0 for any x ∈ [x−T , x
+
T ] \ {x̄}, where x−T , x+

T are
defined in (25),

ii) ` is increasing on [xm, xM ] and ψ ◦ `−1 is strictly convex increasing on
[xm, xM ], where xm = xm(T ), xM = xM (T ) are given by Proposition 6

then, there are two optimal trajectories, given by the two controls ûT and ǔT .

Proof. Remark first that assumption ii) implies ψ to be increasing on [xm, xM ].
Then, with assumption i) we know from Proposition 7 that any extremal is such
that x(·) belongs to [xm, xM ]. With assumption ii) instead of Hypothesis (H3), the
reader can easily check that the arguments of Theorem 3.6 apply in the same manner
on [xm, xM ] (instead of the whole interval I), to prove that only the extremals with
x(·) = x̂(·) or x(·) = x̌(·) are optimal. �

5. Application to the chemostat model

Let us recall that the chemostat apparatus, invented simultaneously by [22] and
[24] in the fifteens, is extensively used as an experimental device for studying the
growth of micro-organisms. The mathematical model of the chemostat is often
considered in the literature as a mathematical representation of the micro-organisms
growth [29, 18], and not exclusively for the precise experimental chemostat device.
It can be found in several real life situations, in natural environments, such as
lakes, lagoons... [31], or in industrial applications such as waster-water treatment
plants [14]. Originally, the word “chemostat” refers to a steady state operation
and therefore many mathematical analyses address the long time behavior of the
chemostat model under a constant input flow rate of substrate (which has also to
be equal to the output flow for maintaining a constant volume of the water reservoir
or tank).
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Periodic flow rates in the chemostat model have been investigated in ecological
contexts, typically for taking into account seasonality. In particular, it has been
shown that periodic solutions could allow the coexistence of different species, while
this is not possible in constant environment (see for instance [10, 25]). However,
the impact of periodic inputs on the performances of the ecological functions of
the ecosystem (resource conversion, biomass growth...) does not seem to have been
studied in the ecological literature, even for the single species case. In industrial
frameworks, its is known that periodic operations can impact positively or neg-
atively the productivity of continuous cultures [17, 28]. The optimization of the
bio-processes productivity has already been investigated with periodic controls, as
mentioned in the introduction (see [2, 3, 19]). Our purpose here is different as we
impose an integral constraint on the input flow rate, fixing the amount of nutrient
that has to be delivered per period. Our objective is to compare temporal profiles
that deliver the same amount of nutrient in terms of average biomass or nutrient
concentrations in the chemostat model. Our study is two fold:

(1) From an ecological view point, we investigate if a non constant flow rate
can impact positively or negatively the average density of the consumers,

(2) From a bio-process view point, we determine the best periodic flow rate
maximizing the average water quality.

We consider then the classical chemostat model:

(28)


ḃ = µ(s, b)b−Db

ṡ = − 1

Y
µ(s, b)b+D(sin − s)

where b and s denote the concentrations, respectively of consumers (biomass) and
resource (substrate). The parameters sin > 0 and Y > 0 are the input concentration
of nutrient and the biomass yield factor, respectively. The dilution rate D is the
input variable, taking values within an interval [Dm, DM ] with 0 ≤ Dm < DM . The
function µ is the specific growth function, which is C1, non-negative and verifies
µ(0, b) = 0 for any b. According to the literature, we distinguish two classes of
growth functions:

i) µ does not depend on b. We assume that µ is either increasing on [0,+∞)
or increasing on [0, ŝ) and decreasing on (ŝ,+∞), with ŝ > 0. Typical
instances of monotonic functions are given by the Hill expression [23]

µ(s) := µmax
sn

Kn
s + sn

where µmax > 0, Ks > 0 and n > 1 are parameters. The well-known Monod
function [22] corresponds to the particular value k = 1 in this expression:

µ(s) := µmax
s

Ks + s

A usual instance of non-monotonic growth functions is the Haldane expres-
sion [4]:

µ(s) := µ̄
s

Ks + s+ s2/Ki

where µ̄, Ks and Ki are positive parameters. For this function, one has
ŝ =
√
KsKi.
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ii) µ is density-dependent i.e. it depends explicitly on density b of consumers.
In that case, µ is decreasing with respect to b, representing the crowding
effect of consumers in competition for the common resource s. A prototype
of such functions is the Contois kinetics [12]:

µ(s, b) = µmax
s

s+Kb

(where µmax and K are positive parameters, which is increasing w.r.t. s.

Notice that without any loss of generality one can choose Y = 1 (re-scaling the
biomass concentration b). Considering then the total density of matter m := b+ s,
one has

ṁ = D(t)(sin −m)

Then, for any D̄ ∈ (Dm, DM ) and T -periodic D(·) (where T is a positive number)
such that

(29)
1

T

∫ T

0

D(t)dt = D̄ > 0

a T -periodic solution of (28) has to fulfill m(t) = sin for any t. Therefore, we shall
consider the dynamics on the m = b+ s = sin invariant domain:

(30) ṡ = (sin − s)(−ν(s) +D),

with
ν(s) = µ(s, sin − s)

We define the break-even concentration as

λ(D) := inf{s < sin s.t. ν(s) < D}
We fix a reference value D̄ ∈ (Dm, DM ) such that s̄ := λ(D̄) < sin and s̄ < ŝ for the
non-monotonic case (we implicitly assume that the interval (Dm, DM ) allows this).
s = s̄ is clearly an equilibrium of (30) for the constant control D = D̄. Moreover, for
all the instances of the function µ we have described previously (Monod, Haldane,
Hill and Contois), the function ν is increasing about s = s̄, which implies that s = s̄
is a locally asymptotically stable equilibrium.

We consider now the criterion

JT (D(·)) =
1

T

∫ T

0

s(t)dt

for periodic solutions of (30) with s(0) = s̄ and inputs D(·) that fulfill the integral
constraint (29) with D(t) ∈ [Dm, DM ] for any t ∈ [0, T ]. We first study if it is
possible to have JT (D(·)) < s̄. Notice that is exactly equivalent to have

1

T

∫ T

0

b(t)dt > b̄ = sin − s̄

(as one has m(t) = s(t) + b(t) = sin for any t). From an ecological view point, this
amounts to study if a periodic environment allows to maintain a higher population
of consumers b in average. In industrial waste-water treatments, the water quality
is usually defined by the substrate s (considered as a pollutant) after separation of
the biomass from the liquid, that has to be as small as possible. The question of
interest is to determine the operating conditions that give the lowest concentration s
averaged on a given period T . Here, we consider that one can play with the temporal
distribution of the input flow rate of a water loaded with a high concentration of
substrate sin.
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Let us begin by showing that Assumptions of the previous sections are fulfilled.
We stick with the notation s (instaed of x) for the state varible as it is often used
with the chemostat model. We posit

f(s) :=

(
−ν(s) +

DM +Dm

2

)
(sin − s)

g(s) :=
DM −Dm

2
(sin − s)

and

u :=
2

DM −Dm
D − DM +Dm

DM −Dm

so that dynamics (30) has exactly the form (1) with u ∈ U . We take a = λ(Dm)
and b = λ(DM ) which gives f(a)− g(a) = f(b) + g(b) = 0. As b ≤ sin, g is clearly
positive on (a, b). Thus Hypothesis (H1) is fulfilled. Remark that for all the growth
functions listed above, the function ν is increasing on (a, b), which implies that
Hypothesis (H2) is also satisfied. The function ψ : I → R is given by the expression

ψ(s) = −f(s)

g(s)
=

2

DM −Dm
ν(s)− DM +Dm

DM −Dm
.

Let ū be the control associated to the value D̄, which also satisfied ū = ψ(x̄). Fi-
nally, our criterion amounts to choose the function l to be the identity function.

One can straightforwardly check the following Lemma concerning the Hill func-
tions.

Lemma 5.1. The Hill functions are increasing on R+, strictly convex on [0, sc]
and concave on [sc,+∞] where

sc := Ks

(
n− 1

n+ 1

) 1
n

5.1. Study of the possibility of over-yielding. We start by giving conditions
for which an over-yielding is not possible.

Proposition 8. An over-yielding is not possible in the following cases.

i) The function µ is of Monod type.
ii) The function µ is of Haldane type.

iii) The function µ is of Hill type with λ(Dm) ≥ sc or s̄ > Ks(n− 1)1/n.
iv) The function µ is of Contois type with K ≤ 1.

Proof. Remark first that one has γ = ψ (as l is identity) and the function ψ has
the same monotony and convexity characteristics than the function ν.

For the Monod kinetics, Hypothesis (H4) is fulfilled with ψ̄ = ψ, as µ is concave
increasing on R+ (and thus ψ also). By Proposition 2 (and Remark 4), we conclude
that an over-yielding is not possible.

For the Haldane function, µ is concave on (0, ŝ) and we can choose

(31) ψ̄(s) =

∣∣∣∣ ψ(s), s ≤ ŝ
ψ(ŝ) s > ŝ

so that Hypothesis (H4) is fulfilled. As for the Monod kinetics, an over-yielding is
not possible.
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According to Lemma 5.1, the Hill function µ is concave and increasing on I when
a ≥ sc, and as previously we conclude that an over-yielding is not possible. When
a < sc, we define the number s† as the smallest s ∈ R+ such that the tangent to
the graph of µ at s is above the graph of µ on R+. One can easily check that it
exactly corresponds to the abscissa s† such that the tangent to the graph of µ at s†

passes by the origin, that is such that

µ(s†)− µ′(s†)s† = 0

which gives the expression s† = Ks(n − 1)1/n. We then consider the function (see
Figure 3)

ψ̄(s) =

∣∣∣∣ µ′(s†)s for s ≤ s†,
ψ(s) for s > s†

which is concave increasing on R+ and above the function ψ. When s̄ > s†, one has
ψ̄(s̄) = ψ(s) and Hypothesis (H4) is then verified. As previously, we conclude that
no over-yielding is possible.

 

 

ψ̄

s†sc

Figure 3. Example of graphs of functions ψ and ψ̄ for the Hill
case with µmax = 2, Ks = 2 and n = 5.

For the Contois kinetics, one has

ν(s) = µ(s, sin − s) = µmax
s

s+K(sin − s)
, s ∈ (0, sin)

from which one computes the expressions

(32)

ν′(s) = µmax
sinK

(s+K(sin − s))2

ν′′(s) = µmax
2sinK(K − 1)

(s+K(sin − s))3

The function ν is thus concave increasing on any interval I ⊂ (0, sin) when K ≤ 1,
preventing then any possibility of over-yielding. �

We focus now on situations for which over-yielding exists.

Proposition 9. Over-yielding exists in the following cases.

i) For the Hill functions with λ(DM ) ≤ sc or the Contois function with K > 1,
any non constant T -periodic solution verifies JT (D(·)) < s̄, whatever is
T > 0.



OPTIMAL PERIODIC CONTROL UNDER INTEGRAL CONSTRAINT 21

ii) For the Hill function s̄ < sc, any non constant T -periodic solution verifies
JT (D(·)) < s̄ for T > 0 small enough.

Proof. Remind first that that the function γ has the same monotony and convexity
properties than the function ν.

When the function µ is of Hill type, we know by Lemma 5.1 that the function
ν (which is identical to µ) is strictly convex and increasing on [0, sc) and concave
on [Kc,+∞). So, when the interval I is included in (0, sc), Hypothesis (H3) is
fulfilled and by Proposition 1, we obtain that any non-constant periodic solution
has a better cost than the constant solution s = s̄.

For the Contois function, the expressions of the two first derivatives of ν given in
(32) show that the function ν is strictly convex and increasing on R+ when K > 1
and Proposition 1 applies again.

For the Hill function with s̄ < sc, the function ν is strictly convex only locally
about s̄. However, ν is always increasing on R+ and Proposition (6) ensures the
existence and uniqueness of sm(T ) and sM (T ) for any T > 0. As already no-
ticed in Section 4, one has (s−T , s

+
T ) → (s̄, s̄) when T → 0 and thus one has also

(sm(T ), sM (T )) → (s̄, s̄). Therefore, there exists T̄ > 0 such that for T ∈ (0, T̄ )
one has [sm(T ), sM (T )] ⊂ [0, sc] and we conclude by Theorem (4.1) that the BB
trajectories exhibit an over-yielding. �

5.2. Numerical illustrations of over-yielding.

5.2.1. The Contois case. From Proposition 9, we know that the BB trajectories
are always optimal when K > 1. Figure 4 depicts these optimal trajectories for the
optimal controls û and ǔ with the parameters values µmax = 1, K = 2.5, sin = 3
and the reference value D̄ ' 0.3874 which corresponds to s̄ ' 1.8377.

0

s̄

t2t1 T

s̄

t2t1 T0

Figure 4. Optimal periodic trajectories for Dm = 0.1, DM = 0.8
and T = 10 in the Contois case (û on the left; ǔ on the right)

Figure 5 gives the evolution of the extreme values sm, sM of the optimal trajec-
tories and the optimal (average) cost as a function of the period T .
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0 5 10 15 20 25 30

(b)

sM (T )

T

sm(T )

λm

λM

0 5 10 15 20 25 30 35 40
1.3

2
(a)

T

s̄

Figure 5. (a) Plot of sm and sM as function of T . (b) Plot of the
optimal cost JT (û) = JT (ǔ) as function of T (in the Contois case
for Dmin = 0.1 and Dmax = 0.8)

5.2.2. The Hill case. We have consider a Hill function for the parameters µmax = 3,
Ks=1.9 and n = 2.5 with sin = 3. For these values, one computes sc ' 1.3538. For
the reference value D̄ ' 0.7221 that gives s̄ = 1.2, we are in the conditions of point
ii) of Proposition 9: the control strategies û, ǔ are optimal when the period T is not
too large. Figure 6 gives BB trajectories, while Figure 7 presents extremes values
and cost as functions of T .

0 6

s̄

t1 t2 0 6

s̄

t2t1

Figure 6. BB periodic trajectories for Dm = 0.2, DM = 2.4 and
T = 10 in the Hill case (û on the left; ǔ on the right)

One can clearly see on Figure 7 (b) that BB trajectories do not provide over-
yielding for large T (because of too large excursions in the interval I). However

there exists a value T̂ of the period that gives the lowest average cost Ĵ among
BB-trajectories. We conjecture that the optimal cost for periods larger than T̂
cannot be lower than Ĵ .

5.2.3. Operating diagrams. For a given reference value D̄, one can play with two
operating parameters:
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0 1 2 3 4 5 6 7 8 9 10

λm

λM

T

s̄

0 5 10 15 20 25 30 35 40
1.175

1.22

s̄

T

Figure 7. (a) Plot sm and sM as function of T . (b) Plot of the
optimal cost JT (û) = JT (ǔ) as function of T (in the Hill case for
Dmin = 0.2 and Dmax = 2.4)

- the amplitude δ of the dilution rate D about D̄: D ∈ [D̄− δ, D̄+ δ] (which
amounts to choose Dm = D̄ − δ and DM = D̄ + δ).

- the period T .

We consider the operating diagram in the (δ, T ) plane that gives the iso-values of the
relative gain GT provided by the BB trajectories compared to the constant control
D̄, where GT is defined as

GT =
s̄− JT (û)

s̄
This diagram can serve as a decision support tool for the practitioners to choose
which characteristics of periodic operating conditions worth to be applied. Figure 8
illustrates this diagram for the Contois and Hill functions for the same parameters
than for the previous Figures.
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Figure 8. Operating diagrams in percentage of the optimal gain
GT with respect to (δ, T ) (Contois on the left, Hill on the right)

5.3. A procedure to discriminate a Contois kinetics. It often happens in mi-
crobiology that experimenters have to choose between several expressions for the
growth function, to be identified on the experimental data. As already noticed in
[20], periodic operations in the chemostat is a way to discriminate between models,
playing with different frequencies of the dilution rate D(·). A typical situation is
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the discrimination between a Monod expression, which is often used as a first try,
and the density dependent Contois expression which amounts to consider that the
affinity coefficient Ks in the Monod expression depends on the biomass concentra-
tion: Ks = Kb. When the magnitude of Ks can be roughly estimated and Ks/b is
larger than one, the following procedure allows to discriminate between these two
models.

Procedure.

(1) Consider the chemostat at a (quasi) steady state for a a nominal value D0

of the dilution rate (with Dm < D0 < DM ) at time 0. Let s0 be the corre-
sponding value of s at steady state.

Remark. This ensures the chemostat’s state to belong to the invariant set
s+ b = sin.

(2) Choose an arbitrary time t1 > 0 and apply the control

D(t) =

∣∣∣∣ DM t ∈ [0, t1]
Dm t > t1

until the time t̄ > t1 such that s(t̄) = s0 (which exists as Dm < D0 < DM ).
Choose another arbitrary time t2 > t̄ and apply the control

D(t) =

∣∣∣∣ Dm t ∈ [t̄, t2)
DM t > t2

until the time T > t2 such that s(T ) = s0 (which exists asDm < D0 < DM ).

(3) Store the measurements history {s(t)}t∈[0,T ].

(4) Let D̄ be the mean value of the dilution rate during [0, T ] :

D̄ =
DM (T + t1 − t2) +Dm(t2 − t1)

T

Apply for t > T the constant value D̄ and wait for the (quasi) steady state.
Let s̄ be the corresponding value of s at steady state.

Remark. The trajectory s(·) is a T -periodic solution with a control of mean
value equal to D̄ = µ(s̄). From Lemma 2.1, µ(s̄) is also equal to the mean
value µ(s(·)). Therefore s̄ belongs to the interval [s(t2), s(t1)] and there ex-
ists t0 > 0 as the first time such that s(t0) = s̄.

(5) With the data stored on [0, T ], determine the average value of s on [0, T ]:

s̃ =
1

T

∫ T

0

s(t)dt

Remark. The average of the solution from s(t0) = s̄ with the period control
on [t0, t0 + T ] is also equal to s̃.

(6) If s̃ < s̄, we invalidate Monod (or Haldane) kinetics. Otherwise, we invali-
date Contois (with K > 1).
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This simple procedure relies on the fact that only the Contois function with
K > 1 produces an over-yielding, and not the Monod function (see Propositions 8,
9). Note that this test does not require to test different frequencies.

6. Conclusion

In this work, we have provided sufficient conditions on the dynamics to allow
over-yielding, and shown that under these conditions, there is exactly one optimal
trajectory (up to a time translation) which is bang-bang with two switches on a
period. This optimality result is global. We have also relaxed the hypotheses
to prove the same optimality result globally, but for limited values of the period.
Finally, we have illustrated our results on the chemostat model where the objective
is to maximize the average water quality. Depending on the growth function, three
kinds of situations could occur : no over-yielding at all, systematic over-yielding or
over-yielding for moderated periods. To our best knowledge, such improvement in
the context of the chemostat modem is new.

Some of the techniques we have proposed here to cope with the integral constraint
on the control variable, which is the main characteristic of the problem we have
considered, could be deployed for systems in higher dimensions, and will be the
matter of a future work.
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