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Image denoising with generalized Gaussian mixture model patch priors

Charles-Alban Deledalle∗ † , Shibin Parameswaran† , and Truong Q. Nguyen†

Abstract. Patch priors have become an important component of image restoration. A powerful approach in this
category of restoration algorithms is the popular Expected Patch Log-Likelihood (EPLL) algorithm.
EPLL uses a Gaussian mixture model (GMM) prior learned on clean image patches as a way to
regularize degraded patches. In this paper, we show that a generalized Gaussian mixture model
(GGMM) captures the underlying distribution of patches better than a GMM. Even though GGMM
is a powerful prior to combine with EPLL, the non-Gaussianity of its components presents major
challenges to be applied to a computationally intensive process of image restoration. Specifically,
each patch has to undergo a patch classification step and a shrinkage step. These two steps can be
efficiently solved with a GMM prior but are computationally impractical when using a GGMM prior.
In this paper, we provide approximations and computational recipes for fast evaluation of these two
steps, so that EPLL can embed a GGMM prior on an image with more than tens of thousands of
patches. Our main contribution is to analyze the accuracy of our approximations based on thorough
theoretical analysis. Our evaluations indicate that the GGMM prior is consistently a better fit for
modeling image patch distribution and performs better on average in image denoising task.

Key words. Generalized Gaussian distribution, Mixture models, Image denoising, Patch priors.

AMS subject classifications. 68U10, 62H35, 94A08

1. Introduction. Image restoration is the process of recovering the underlying clean im-
age from its degraded or corrupted observation(s). The images captured by common imaging
systems often contain corruptions such as noise, optical or motion blur due to sensor limi-
tations and/or environmental conditions. For this reason, image restoration algorithms have
widespread applications in medical imaging, satellite imaging, surveillance, and general con-
sumer imaging applications. Priors on natural images play an important role in image restora-
tion algorithms. Image priors are used to denoise or regularize ill-posed restoration problems
such as deblurring and super-resolution, to name just a few. Early attempts in designing
image priors relied on modeling local pixel gradients with Gibbs distributions [25], Laplacian
distributions (total variation) [54, 65], hyper-Laplacian distribution [31], generalized Gaus-
sian distribution [7], or Gaussian mixture models [21]. Concurrently, priors have also been
designed by modeling coefficients of an image in a transformed domain using generalized Gaus-
sian [35, 40, 9, 15] or scaled mixture of Gaussian [49] priors for wavelet or curvelet coefficients
[6]. Alternatively, modeling the distribution of patches of an image (i.e., small windows usu-
ally of size 8×8) has proven to be a powerful solution. In particular, popular patch techniques
rely on non-local self-similarity [8], fields of experts [52], learned patch dictionaries [2, 19, 53],
sparse or low-rank properties of stacks of similar patches [12, 13, 34, 29], patch re-occurrence
priors [37], or more recently mixture models patch priors [67, 66, 61, 60, 26, 56, 44].

Of these approaches, a successful approach introduced by Zoran and Weiss [67] is to model
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patches of clean natural images using Gaussian Mixture Model (GMM) priors. The agility
of this model lies in the fact that a prior learned on clean image patches can be effectively
employed to restore a wide range of inverse problems. It is also easily extendable to include
other constraints such as sparsity or multi-resolution patches [58, 45]. The use of GMMs for
patch priors make these methods computationally tractable and flexible. Although GMM
patch prior is effective and popular, in this article, we argue that a generalized Gaussian
mixture model (GGMM) is a better fit for image patch prior modeling. Compared to a
Gaussian model, a generalized Gaussian distribution (GGD) has an extra degree of freedom
controlling the shape of the distribution and it encompasses Gaussian and Laplacian models.

Beyond image restoration tasks, GGDs have been used in several different fields of image
and signal processing, including watermark detection [11], texture retrieval [15], voice activity
detection [23] and MP3 audio encoding [16], to cite just a few. In these tasks, GGDs are used
to characterize or model the prior distribution of clean signals, for instance, from their DCT
coefficients or frequency subbands for natural images [63, 59, 41, 3] or videos [55], gradients
for X-ray images [7], wavelet coefficients for natural [35, 40, 11], textured [15], or ultrasound
images [1], tangential wavelet coefficients for three-dimensional mesh data [33], short time
windows for speech signals [30] or frequency subbands for speech [23] or audio signals [16].

In this paper, we go one step further and use multi-variate GGD with one scale and
one shape parameter per dimension. The superior patch prior modeling capability of such a
GGMM over a GMM is illustrated in Figure 1. The figure shows histograms of six orthogonal
1-D projections of subset of clean patches onto the eigenvectors of the covariance matrix of a
single component of the GMM. To illustrate the difference in the shapes (ν) and scales (λ) of
the distributions of each dimension, we have chosen a few projections corresponding to both
the most and the least significant eigenvalues. It can be seen that GGD is a better fit on
the obtained histograms than a Gaussian model. Additionally, different dimensions of the
patch follow a different GGD (i.e., has a different shape and scale parameter). Hence, it does
not suffice to model all the feature dimensions of a given cluster of patches as Laplacian or
Gaussian. Therefore, we propose to model patch priors as GGMM distributed with a separate
shape and scale parameters for each feature dimension of a GGD component. This differs from
the recent related approach in [44] that considered GGMM where each component has a fixed
shape parameter for all directions.

Contributions. The goal of this paper is to measure the improvements obtained in image
denoising tasks by incorporating a GGMM in EPLL algorithm. Unlike [44], that incorporates
a GGMM prior in a posterior mean estimator based on importance sampling, we directly
extend the maximum a posteriori formulation of Zoran and Weiss [67] for the case of GGMM
priors. While such a GGMM prior has the ability to capture the underlying distribution of
clean patches more closely, we will show that it introduces two major computational challenges
in this case. The first one can be thought of as a classification task in which a noisy patch is
assigned to one of the components of the mixture. The second one corresponds to an estimation
task where a noisy patch is denoised given that it belongs to one of the components of the
mixture. Due to the interaction of the noise distribution with the GGD prior, we first show
that these two tasks lead to a group of one-dimensional integration and optimization problems,
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Figure 1. Histograms of the projection of 200, 000 clean patches on 6 eigenvectors j = 1, 2, 3, 4, 62 and
63 of the covariance matrix of one component k of the mixture (with weight wk = 1.3%). The contribution
of each clean patch in the histograms is given by its membership values onto this component k (as obtained
during the E-Step of EM). For each histogram, a generalized Gaussian distribution was adjusted by estimating
the parameters λ and ν by moment estimation (as obtained during the M-Step of our modified EM exposed in
Subsection 3.1). For comparisons, we have also provided illustrations of the best fit obtained with a Gaussian
distribution.

respectively. Specifically, for x ∈ R, these problems are of the following forms∫
R

exp

(
−(t− x)2

2σ2
− |t|

ν

λνν

)
dt and argmin

t∈R

(t− x)2

2σ2
+
|t|ν

λνν
,(1)

for some ν > 0, σ > 0 and λν > 0. In general, they do not admit closed-form solutions but
some particular solutions or approximations have been derived for the estimation/optimization
problem [40, 10]. By contrast, up to our knowledge, little is known for approximating the
classification/integration one (only crude approximations were proposed in [57]).

Our contributions are both theoretical- and application-oriented. The major contribution
of this paper, which is and theoretical in nature, is to develop an accurate approximation
for the classification/integration problem. In particular, we show that our approximation
error vanishes for x → 0 and x → ±∞ when ν = 1, see Theorem 1 and Theorem 2. We
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next generalize this result for 2
3 < ν < 2 in Theorem 3 and Theorem 4. On top of that,

we prove that the two problems enjoy some important desired properties in Proposition 2
and Proposition 3. These theoretical results allow the two quantities to be approximated by
functions that can be quickly evaluated in order to be incorporated in fast algorithms. Our
last contribution is experimental and concerns the performance evaluation of the proposed
model in image denoising scenario. For reproducibility, we have released our implementation
at https://bitbucket.org/cdeledalle/ggmm-epll.

Potential impacts beyond image denoising. It is important to note that the two main con-
tributions presented in this work, namely approximations for classification and estimation
problems, are general techniques that are relevant to a wider area of research problems than
image restoration. In particular, our contributions apply to any problems where (i) the un-
derlying clean data are modeled by a GGD or a GGMM, whereas (ii) the observed samples
are corrupted by Gaussian noise. They are especially relevant in machine learning scenar-
ios where a GGMM is trained on clean data but data provided during testing time is noisy.
That is, our approximations can be used to extend the applicability of the aforementioned
clean GGD/GGM based approaches to the less than ideal testing scenario where the data is
corrupted by noise. For instance, using the techniques introduced in this paper, one could
directly use the GGD based voice activity model of [23] into the likelihood ratio test based de-
tector of [22] (which relies on solutions of the integration problem but was limited to Laplacian
distributions). In fact, we suspect that many studies in signal processing may have limited
themselves to Gaussian or Laplacian signal priors because of the complicated integration prob-
lem arising from the intricate interaction of GGDs with Gaussian noise. In this paper, we
demonstrate that this difficulty can be efficiently overcome with our approximations. This
leads us to believe that the impact of the approaches presented in this paper will not only be
useful for image restoration but also aid a wider field of general signal processing applications.

Organization. After explaining the considered patch prior based restoration framework in
Section 2, we derive our GGMM based restoration scheme in Section 3. The approximations of
the classification and estimation problems are studied in Section 4 and Section 5, respectively.
Finally, we present numerical experiments and results in Section 6.

2. Background. In this section we provide a detailed overview of the use of patch-based
priors in Expected Patch Log-Likelihood (EPLL) framework and its usage under GMM priors.

2.1. Image restoration with patch based priors. We consider the problem of estimating
an image u ∈ RN (N is the number of pixels) from noisy linear observations v = Au + w,
where A : RN → RM is a linear operator and w ∈ RM is a noise component assumed to
be white and Gaussian with variance σ2. In this paper, we will focus on standard denoising
problems where A is the identity matrix, but in more general settings, it can account for loss
of information such as blurring. Typical examples for operator A are: a low pass filter (for
deconvolution), a masking operator (for inpainting), or a projection on a random subspace (for
compressive sensing). To reduce noise and stabilize the inversion of A, some prior information
is used for the estimation of u. Recent techniques [19, 67, 58] include this prior information as
a model for the distribution of patches found in natural clean images. We consider the EPLL
framework [67] that restores an image by maximum a posteriori estimation over all patches,

https://bitbucket.org/cdeledalle/ggmm-epll
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corresponding to the following minimization problem:

argmin
u∈Rn

P

2σ2
||Au− v||2 −

N∑
i=1

log p (Piu)(2)

where Pi : RN → RP is the linear operator extracting a patch with P pixels centered at the
pixel with location i (typically, P = 8×8), and p(.) is the a priori probability density function
(i.e., the statistical model of noiseless patches in natural images). Since i scans all of the N
pixels of the image, all patches contribute to the loss and many patches overlap. Allowing for
overlapping is important because otherwise there would appear blocking artifacts. While the
first term in eq. (2) ensures that Au is close to the observations v (this term is the negative
log-likelihood under the white Gaussian noise assumption), the second term regularizes the
solution u by favoring an image such that all of its patches fit the prior model of patches in
natural images.

Optimization with half-quadratic splitting. Problem (2) is a large optimization problem
where A couples all unknown pixel values of u and the patch prior is often chosen non-
convex. Our method follow the choice made by EPLL of using a classical technique, known as
half-quadratic splitting [24, 31], that introduces N auxiliary unknown vectors zi ∈ RP , and
alternatively consider the penalized optimization problem, for β > 0, as

argmin
u∈Rn

z1,...,zN∈RP

P

2σ2
||Au− v||2 +

β

2

∑
i∈I
||Piu− zi||2 −

∑
i∈I

log p (zi) .(3)

When β → ∞, the problem (3) is equivalent to the original problem (2). In practice, an
increasing sequence of β is considered, and the optimization is performed by alternating
between the minimization for u and zi. Though little is known about the convergence of
this algorithm, few iterations produce remarkable results, in practice. We follow the EPLL
settings prescribed in [67] by performing 5 iterations of this algorithm with parameter β set
to 1

σ2 {1, 4, 8, 16, 32} for each iteration, respectively. The algorithm is initialized using û = v
for the first estimate.

Minimization with respect to u. Considering all zi to be fixed, optimizing (3) for u corre-
sponds to solving a linear inverse problem with a Tikhonov regularization. It has an explicit
solution known as the linear minimum mean square estimator (or often referred to as Wiener
filtering) which is obtained as:

û = argmin
u∈Rn

P

2σ2
||Au− v||2 +

β

2

∑
i∈I
||Piu− ẑi||2

=

(
AtA+

βσ2

P

∑
i∈I
PtiPi

)−1(
Atv +

βσ2

P

∑
i∈I
Pti ẑi

)
,(4)

where PtiPi is a diagonal matrix whose i-th diagonal element corresponds to the number of
patches overlapping the pixel of index i.
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Minimization with respect to zi. Considering u to be fixed, optimizing (3) for zi leads to:

ẑi ← argmin
zi∈RP

β

2
||z̃i − zi||2 − log p(zi) where z̃i = Piû ,(5)

which corresponds to the maximum a posterior (MAP) denoising problem under the patch
prior p of a patch z̃i contaminated by Gaussian noise with variance 1/β. The solution of this
optimization problem strongly depends on the properties of the chosen patch prior.

Our algorithm will follow the exact same procedure as EPLL by alternating between
eq. (4)1 and (5). In our proposed method, we will be using a generalized Gaussian mixture
model (GGMM) to represent patch prior. The general scheme we will adopt to solve eq. (5)
under GGMM prior is inspired from the one proposed by Zoran & Weiss [67] in the simpler
case of Gaussian mixture model (GMM) prior. For this reason, we will now introduce this
simpler case of GMM prior before exposing the technical challenges arising from the use of
GGMM prior in Section 3.

2.2. Patch denoising with GMM priors. The authors of [67, 66] suggested using a zero-
mean Gaussian mixture model (GMM) prior2, that, for any patch z ∈ RP , is given by

p (z) =
K∑
k=1

wkNP (z; 0P ,Σk)(6)

where K is the number of components, wk > 0 are weights such that
∑

k wk = 1, and
NP (0P ,Σk) denotes the multi-variate Gaussian distribution with zero-mean and covariance
Σk ∈ RP×P . A K-component GMM prior models image patches as being spread over K
clusters that have ellipsoid shapes where each coefficient (of each component) follows a Gaus-
sian distribution, i.e., bell-shaped with small tails. In [67], the parameters wk and Σk of
the GMM are learned using the Expectation Maximization algorithm [14] on a dataset of 2
million clean patches of size 8×8 pixels that are randomly extracted from the training images
of the Berkeley Segmentation Database (BSDS) [36]. The GMM learned in [67] has K = 200
zero-mean Gaussian mixture components.

Due to the multi-modality of the GMM prior, introducing this prior in eq. (5) makes the
optimization problem highly non-convex:

ẑ ← argmin
z∈RP

β

2
||z̃ − z||2 − log

[
K∑
k=1

wkN (z; 0P ,Σk)

]
.(7)

To circumvent this issue, the EPLL framework introduced by Zoran et al. [67] uses an ap-
proximation3. In a nutshell, the approximated approach of EPLL provides a way to avoid

1Since our study focuses only on denoising, we will consider A = IdN .
2To enforce the zero-mean assumption, patches are first centered on zero, then denoised using eq. (5), and,

finally, their initial means are added back. In fact, one can show that it corresponds to modeling p(z− z̄) with
a GMM where z̄j = 1

P

∑
i zi for all 1 6 j 6 P .

3An alternative investigated in [60] is to replace the MAP denoising problem in (5) by the minimum mean
square error (MMSE) estimator (a.k.a., posterior mean). The MMSE estimator is defined as an integration
problem and has a closed-form solution in case of GMM priors. In our experimental scenarios, this estimator
did not lead to significative improvements compared to MAP and we thus did not pursue this idea.
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Figure 2. Illustration of EPLL framework for image denoising with a GMM prior. A large collection of
(overlapping) patches are first extracted. For each patch, an optimal Gaussian component is picked based on a
measure of discrepancy with the given patch. This Gaussian component is next used as a prior model to denoise
the given patch by linear shrinkage in the corresponding eigenspace and depending on β. All estimated patches
are finally aggregated together, weighted by β and combined with the original noisy image to produce a first
estimate. The procedure is repeated 5 times with increasing values of β.

the intractability of mixture models, thus making them available to model patch priors [67].
Figure 2 provides an illustration of the EPLL framework and the steps involved in solving the
optimization problem (7) namely:

(i) compute the posterior p(k|z̃)4 of each Gaussian component, k = 1, 2 . . .K for the given
noisy patch z̃ with assumed noise variance of 1/β,

(ii) select the component k? that best explains the given patch z̃,
(iii) perform whitening by projecting z̃ over the main directions of that cluster (given by

the eigenvectors of Σk?), and
(iv) apply a linear shrinkage on the coefficients with respect to the noise variance 1/β and

the spread of the cluster (encoded by the eigenvalues).
The details of each of these steps will be discussed in Subsection 3.2 as part of the development
of the proposed model which is more general.

In this paper, we suggest using a mixture of generalized Gaussian distributions that will
enable image patches to be spread over clusters that are bell shaped in some directions but
can be peaky with large tails in others. While the use of GMM priors leads to piece-wise
linear estimator (PLE) as a function of z (see [66]), our GGMM prior will lead to a piecewise
non-linear shrinkage estimator.

3. Generalized Gaussian Mixture Models. In this paper, we aim to learn K orthogonal
transforms such that each of them can map a subset (cluster) of clean patches into independent
zero-mean coefficients. Instead of assuming the coefficient distributions to be bell shaped, we
consider that both the scale and the shape of these distributions may vary from one coordinate
to another (within the same transform). Our motivation to assume such a highly flexible

4In [67], this is referred to as “conditional mixing weight”.
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model is based on the observation illustrated in Figure 1. Given one of such transform and
its corresponding cluster of patches, we have displayed the histogram of the patch coefficients
for six different coordinates. It can be clearly observed that the shape of the distribution
varies depending on the coordinate. Some of them are peaky with heavy tails, and, therefore,
would not be faithfully captured by a Gaussian distribution, as done in EPLL [67]. By
contrast, some others have a bell shape, and so would not be captured properly by a peaky
and heavy tailed distribution, as done for instance by sparse models [35, 40, 2, 19, 20, 53, 58].
This shows that one cannot simultaneously decorrelate and sparsify a cluster of clean patches
for all coordinates. Since some of the coordinates reveal sparsity while some others reveal
Gaussianity, we propose to use a more flexible model that can capture such variations. We
propose using a multi-variate zero-mean generalized Gaussian mixture model (GGMM)

p (z) =

K∑
k=1

wkG(z; 0P ,Σk,νk)(8)

where K is the number of components and wk > 0 are weights such that
∑

k wk = 1. The
notation G(0P ,Σ,ν) denotes the P -dimensional generalized Gaussian distribution (GGD) with
zero-mean, covariance Σ ∈ RP×P (symmetric positive definite) and shape parameter ν ∈ RP ,
whose expression is

G(z; 0P ,Σ,ν) =
K

2|Σν |1/2
exp

[
−||Σ−1/2

ν z||νν
]

with ||x||νν =
P∑
j=1

|xj |νj ,(9)

where K =
P∏
j=1

νj
Γ(1/νj)

and Σ
1/2
ν = Σ1/2


√

Γ(1/ν1)
Γ(3/ν1)

. . . √
Γ(1/νP )
Γ(3/νP )

 .(10)

Denoting the eigen decomposition of matrix Σ by Σ = UΛU t such that U ∈ RP×P is unitary
and Λ = diag(λ1, λ2, . . . , λP )2 is diagonal with positive diagonal elements λ2

j , Σ1/2 in the

above expression is defined as Σ1/2 = UΛ1/2 and Σ−1/2 = Λ−1/2U t is its inverse.
When ν is a constant vector with all entries equal to νj = 2, G(0P ,Σ,ν) is the multi-

variate Gaussian distribution N (0P ,Σ) (as used in EPLL [67]). When all νj = 1, it is
the multi-variate Laplacian distribution and the subsequent GGMM is a Laplacian Mixture
Model (LMM). When all νj < 1, it is the multi-variate hyper-Laplacian distribution and the
subsequent GGMM is a hyper-Laplacian Mixture Model (HLMM). Choosing K = 1 with a
constant vector ν corresponds to `ν regularization [20, 53]. But as motivated earlier, unlike
classical multivariate GGD models [6, 47, 44], we allow for the entries of ν to vary from one
coordinate j to another. To the best of our knowledge, the proposed work is the first one to
consider this fully flexible model.

Proposition 1. The multi-variate zero-mean GGD can be decomposed as

G(z; 0P ,Σ,ν) =
P∏
j=1

G((U tz)j ; 0, λj , νj)(11)
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where, for x = U tz, the distribution of each of its components is given as

G(x; 0, λ, ν) =
κ

2λν
exp

[
−
(
|x|
λν

)ν]
where κ =

ν

Γ(1/ν)
and λν = λ

√
Γ(1/ν)

Γ(3/ν)
,

where x 7→ G(x; 0, λ, ν) is a real, even, unimodal, bounded and continuous probability density
function. It is also differentiable everywhere except for x = 0 when ν 6 1.

The proof follows directly by injecting the eigen decomposition of Σ in (9) and basic
properties of x 7→ |x|ν . Proposition 1 shows that, for each of the K clusters, eq. (9), indeed,
models a prior that is separable in a coordinate system obtained by applying the whitening
transform U t. Not only is the prior separable for each coordinate j, but the shape (νj) and
scale (λj) of the distribution may vary.

Before detailing the usage of GGMM priors in EPLL framework, we digress briefly to
explain the procedure we used for training such a mixture of generalized Gaussian distributions
where different scale and shape parameters are learned for each feature dimension.

3.1. Learning GGMMs. Parameter estimation is carried out using a modified version
of the Expectation-Maximization (EM) algorithm [14]. EM is an iterative algorithm that
performs at each iteration two steps, namely Expectation step (E-Step) and Maximization
stop (M-Step), and is known to monotonically increase the model likelihood and converge to
a local optimum. For applying EM to learn a GGMM, we leverage standard strategies used
for parameter estimation for GGD and/or GGMM that are reported in previous works [35, 5,
55, 3, 16, 30, 6, 39, 47, 32]. Our M-Step update for the shape parameter ν is inspired from
Mallat’s strategy [35] using statistics of the first absolute and second moments of GGDs. Since
this strategy uses the method of moments for ν instead of maximum likelihood estimation, we
refer to this algorithm as modified EM and the M-Step as Moment step. We also noticed that
shape parameters ν < .3 lead to numerical issues and ν > 2 leads to local minima with several
degenerate components. For this reason, at each step, we impose the constraint that the
learned shape parameters satisfy ν ∈ [.3, 2]. This observation is consistent with earlier works
that have attempted to learn GGMM shape parameters from data [51]. Given n training
clean patches of size P and an initialization for the K parameters wk > 0, Σk ∈ RP×P and
νk ∈ RP , for k = 1, . . . ,K, our modified EM algorithm iteratively alternates between the
following two steps:

• Expectation step (E-Step)
– For all components k = 1, . . . ,K and training samples i = 1, . . . , n, compute:

ξk,i ←
wkG(zi; 0P ,Σk,νk)∑K
l=1wlG(zi; 0P ,Σl,νl)

.

• Moment step (M-Step)
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– For all components k = 1, . . . ,K, update:

wk ←
∑n

i=1 ξk,i∑K
l=1

∑n
i=1 ξl,i

and Σk ←
∑n

i=1 ξk,iziz
t
i∑n

i=1 ξk,i
.

– Perform eigen decomposition of Σk:

Σk = UkΛkU
t
k where Λk = diag(λk,1, λk,2, . . . , λk,P )2 .

– For all components k = 1, . . . ,K and dimensions j = 1, . . . , P , compute:

χk,j ←
∑n

i=1 ξk,i|(U
t
kzi)j |∑n

i=1 ξk,i
and (νk)j ← Π[.3,2]

[
F−1

(
χ2
k,j

λ2
k,j

)]
.

where Π[a,b][x] = min(max(x, a), b) and F (x) = Γ(2/x)2

Γ(3/x)Γ(1/x) is a monotonic invertible function

that was introduced in [35] (we used a lookup table to perform its inversion as done in [5, 55]).
Note that χ2

k,j and λ2
k,j corresponds to the first absolute and second moments for component

k and dimension j, respectively.
For consistency purposes, we keep the training data and the number of mixture compo-

nents in the models the same as that used in the original EPLL algorithm [67]. Specifically,
we train our models on n = 2 million clean patches randomly extracted from Berkeley Seg-
mentation Dataset (BSDS) [36]. We learn K = 200 zero-mean generalized Gaussian mixture
components from patches of size P = 8×8. We opted for a warm-start training by initializing
our GGMM model with the GMM model from [67] and with initial values of shape parameters
as 2. We run our modified EM algorithm for 100 iterations. As observed in Figure 1, the
obtained GGMM models the underlying distributions of a cluster of clean patches much better
than a GMM. In addition, we will see in Section 6 that our GGMM estimation did not lead
to overfitting as it is also a better fit than a GMM for unseen clean patches.

3.2. Patch denoising with GGMM priors. We now explain why solving step (5) in EPLL
is non-trivial when using a GGMM patch prior. In this case, for a noisy patch z̃ with variance
σ2, equation (5) becomes

ẑ ← argmin
z∈RP

1

2σ2
||z̃ − z||2 − log

[
K∑
k=1

wkG(z; 0P ,Σk,νk)

]
.(12)

As for GMMs, due to the multi-modality of the GGMM prior, this optimization problem is
highly non-convex. To circumvent this issue, we follow the strategy used by EPLL [67] in the
specific case of Gaussian mixture model prior. The idea is to restrict the sum involved in the
logarithm in eq. (12) to only one component k?.

If we consider the best k? to be given (the strategy to select the best k? will be discussed
next), then eq. (12) is approximated by the following simpler problem

(13) ẑ ← argmin
z∈RP

{
||z̃ − z||2

2σ2
− log G(z; 0P ,Σk? ,νk?) =

||z̃ − z||2

2σ2
+ ||Σ−1/2

νk? z||
ν
ν

}
.
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The main advantage of this simplified version is that, by virtue of Proposition 1, the underlying
optimization becomes tractable and can be separated into P one-dimensional optimization
problems, as:

ẑ = Uk?x̂ where x̂j = s(x̃j ;σ, λk?,j , νk?,j) with x̃ = U t
k? z̃(14)

and s(x;σ, λ, ν) = sνσ,λ(x) ∈ argmin
t∈R

1

2σ2
(x− t)2 +

|t|ν

λνν
where λν = λ

√
Γ(1/ν)

Γ(3/ν)
,(15)

where for all k, νk,j = (νk)j and λk,j = (λk)j . While the problem is not necessarily convex,
its solution sνσ,λ is always uniquely defined almost everywhere (see, Section 5). We call this
almost everywhere real function sνσ,λ : R → R shrinkage function. When ν = 2, it is a linear
function that is often referred to as Wiener shrinkage. When ν 6= 2, as we will discuss in
Section 5, it is a non-linear shrinkage function that can be computed in closed form for some
cases or with some approximations.

Now, we address the question of finding a strategy for choosing a relevant component k?

to replace the mixture distribution inside the logarithm. The optimal component k? can be
obtained by maximizing the posterior as

k? ∈ argmax
16k6K

p(k | z̃) = argmax
16k6K

wkp(z̃ | k) = argmin
16k6K

− logwk − log p(z̃ | k)(16)

where the weights of the GGMM corresponds to the prior probability wk = p(k). We next
use the fact that the patch z̃ (conditioned on k) can be expressed as z̃ = z + n where z and
n are two independent random variables from distributions G(0P ,Σk,νk) and N (0P , σ

2IdP )
respectively. It follows that the distribution of z̃ is the convolution of these latter two, and
then

− log p(z̃ | k) = − log

∫
RP
G(z̃ − z; 0P ,Σk,νk) · N (z; 0P , σ

2IdP ) dz .(17)

We next use Proposition 1 to separate this integration problem into P one-dimensional inte-
gration problems. We obtain

− log p(z̃ | k) =
P∑
j=1

f((U t
kz̃)j ;σ, λk,j , νk,j)(18)

where, for x̃ = U t
kz̃, the integration problem of each of its components reads as

f(x;σ, λ, ν) = fνσ,λ(x) = − log

∫
R
G(x− t; 0, λ, ν) · N (t; 0, σ2) dt .(19)

We call the real function fνσ,λ : R→ R the discrepancy function which measures the goodness
of fit of a GGD to the noisy value x. When ν = 2, this function is quadratic with x. For
ν 6= 2, as we will discuss in Section 4, it is a non-quadratic function, that can be efficiently
approximated based on an in-depth analysis of its asymptotic behavior.



12 C. DELEDALLE, S. PARAMESWARAN, AND T.Q. NGUYEN

Figure 3. Illustration of our extension of EPLL to GGMM priors. The general procedure, illustrated in
the top row, is similar to the original EPLL scheme described in Figure 2 but relies on generalized Gaussian
distributions instead of Gaussian distributions. The shape of the discrepancy function, illustrated in the second
row, depends on the given scale and shape parameters (λ and ν) of the GGD components. In Section 4, we
will see that it can be approximated based on six parameters, four of them retrieved from lookup tables (LUTs).
Finally, the shrinkage function, illustrated in the bottom row, can be non-linear and depends on the selected
GGD component. In Section 5, we will see that it can be approximated by one of five predefined parametric
functions depending on the range in which the scale parameter ν lies. The values ν = 1.2 and λ/σ = .25, shown
in the bottom row, were chosen for the sake of illustration.
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Figure 3 illustrates the details of the patch denoising step under the GGMM-EPLL frame-
work. It shows that the method relies on fast approximations f̂νσ,λ and ŝνσ,λ of the discrepancy
and shrinkage functions, respectively.

The next two sections are dedicated to the analysis and approximations of the discrepancy
function fνσ,λ and the shrinkage function sνσ,λ, respectively.

4. Discrepancy function: analysis and approximations. From its definition given in
eq. (19), the discrepancy function reads for ν > 0, σ > 0 and λ > 0, as

fνσ,λ(x) =− log
1√
2πσ

ν

2λνΓ(1/ν)
− log

∫ ∞
−∞

exp

(
−(x− t)2

2σ2

)
exp

[
−
(
|t|
λν

)ν]
dt .(20)

It corresponds to the negative logarithm of the distribution of the sum of a zero-mean gen-
eralized Gaussian and a zero-mean Gaussian random variables. When ν = 2, the generalized
Gaussian random variable becomes Gaussian, and the resulting distribution is also Gaussian
with zero-mean and variance σ2 + λ2, and then

f2
σ,λ(x) =

1

2

[
log 2π + log(σ2 + λ2) +

x2

σ2 + λ2

]
.(21)

Remark 1. For ν = 2, a direct consequence of (21) is that − log p(z̃ | k) is as an affine
function of the Mahanalobis distance between z̃ and 0P for the covariance matrix Σk+σ2IdP :

− log p(z̃ | k) =
1

2

[
P log 2π + log |Σk + σ2IdP |+ z̃t(Σk + σ2IdP )−1z̃

]
.(22)

When ν = 1, the generalized Gaussian random variable becomes Laplacian, and the distri-
bution resulting from the convolution also has a closed form which leads to the following
discrepancy function

f1
σ,λ(x) = log(2

√
2λ)− σ2

λ2
− log

[
e
√
2x
λ erfc

(
x√
2σ

+
σ

λ

)
+ e−

√
2x
λ erfc

(
− x√

2σ
+
σ

λ

)]
,(23)

refer to Appendix A for derivation (note that this expression is given in [22]).
To the best of our knowledge, there are no simple expressions for other values of ν. One

solution proposed by [57] is to express this in terms of the bi-variate Fox-H function [38].
This, rather cumbersome expression, is computationally demanding. In practice, this special
function requires numerical integration techniques over complex lines [48], and is thus difficult
to numerically evaluate it efficiently. Since, in our application, we need to evaluate this
function a large number of times, we cannot utilize this solution.

In [57], the authors have also proposed to approximate this non-trivial distribution by an-
other GGD. For fixed values of σ, λ and ν, they proposed three different numerical techniques
to estimate its parameters λ′ and ν ′ that best approximate either the kurtosis, the tail or the
cumulative distribution function. Based on their approach, the discrepancy function fνσ,λ(x)

would thus be a power function of the form |x|ν′ .
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In this paper, we show that fνσ,λ does, indeed, asymptotically behave as a power func-
tion for small and large values of x, but the exponent can be quite different for these two
asymptotics. We believe that these different behaviors are important to be preserved in our
application context. For this reason, fνσ,λ cannot be modeled as a power function through
a GGD distribution. Instead, we provide an alternative solution that is able to capture the
correct behavior for both of these asymptotics, and that also permits fast computation.

4.1. Theoretical analysis. In this section, we perform a thorough theoretical analysis of
the discrepancy function, in order to approximate it accurately. Let us first introduce some
basic properties regarding the discrepancy function.

Proposition 2. Let ν > 0, σ > 0, λ > 0 and fνσ,λ as defined in eq. (19). The following
relations hold true

fνσ,λ(x) = log σ + fν1,λ/σ(x/σ) ,(reduction)

fνσ,λ(x) = fνσ,λ(−x) ,(even)

|x| > |y| ⇔ fνσ,λ(|x|) > fνσ,λ(|y|) ,(unimodality)

min
x∈R

fνσ,λ(x) = fνσ,λ(0) > −∞ .(lower bound at 0)

The proofs can be found in Appendix B. Based on Proposition 2, we can now express the
discrepancy function fνσ,λ(x) : R → R in terms of a constant γνλ and another function ϕνλ :
R∗+ → R, both of which can be parameterized by only two parameters λ > 0 and ν > 0, as

fνσ,λ(x) = log σ + γνλ/σ +

{
e
ϕν
λ/σ

(|x/σ|)
if x 6= 0 ,

0 otherwise ,
(24)

where ϕνλ(x) = log
[
fν1,λ(x)− γνλ

]
and γνλ = fν1,λ(0) .(25)

We call ϕνλ the log-discrepancy function.
At this point, let us consider an instructive toy example for the case when ν = 2. In this

case, from eq. (21), we can deduce that the log-discrepancy function is a log-linear function
(i.e., a linear function of log x)

ϕ2
λ(x) = α log x+ β ,(26)

and γ2
λ = 1

2

[
log 2π + log(1 + λ2)

]
,(27)

where α = 2 and β = − log 2− log(1 + λ2) .(28)

Here, the slope α = 2 reveals the quadratic behavior of the discrepancy function. Figure 4
gives an illustration of the resulting convolution (a Gaussian distribution), the discrepancy
function (a quadratic function) and the log-discrepancy (a linear function with slope 2). Note
that quadratic metrics are well-known to be non-robust to outliers, which is in complete
agreement with the fact that Gaussian priors have thin tails.

Another example is the case of ν = 1. From eq. (23), the log-discrepancy is given by

ϕ1
λ(x) = log

[
log
[
2 erfc

(
1
λ

)]
− log

[
e
√
2x
λ erfc

(
x√
2

+ 1
λ

)
+ e−

√
2x
λ erfc

(
− x√

2
+ 1

λ

)]]
,(29)
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Figure 4. From left to right: the convolution of a Gaussian distribution with standard deviation λ = 2
with a Gaussian distribution with standard deviation σ = 1, the corresponding discrepancy function and log-
discrepancy function.

and γ1
λ =

1

2
log 2 + log λ− 1

λ2
− log

[
erfc

(
1
λ

)]
.(30)

Unlike for ν = 2, this function is not log-linear and thus f1
σ,λ is not a power function. Never-

theless, as shown by the next two theorems, it is also asymptotically log-linear for small and
large values of x.

Theorem 1. The function ϕ1
λ is asymptotically log-linear in the vicinity of 0

ϕ1
λ(x) ∼

0
α1 log x+ β1 ,(31)

where α1 = 2 and β1 = − log λ+ log

[
1√
π

exp
(
− 1
λ2

)
erfc

(
1
λ

) − 1

λ

]
.(32)

The proof can be found in Appendix C.

Theorem 2. The function ϕ1
λ is asymptotically log-linear in the vicinity of +∞

ϕ1
λ(x) ∼

∞
α2 log x+ β2 ,(33)

where α2 = 1 and β2 =
1

2
log 2− log λ .(34)

The proof can be found in Appendix D.
Theorem 1 and Theorem 2 show that ϕ1

λ has two different asymptotics that can be ap-
proximated by a log-linear function. Interestingly, the exponent α1 = 2 in the vicinity of 0
shows that the Gaussian distribution involved in the convolution prevails over the Laplacian
distribution and thus, the behavior of f1

σ,λ is quadratic. Similarly, the exponent α2 = 1 in
the vicinity of +∞ shows that the Laplacian distribution involved in the convolution pre-
vails over the Gaussian distribution and the behavior of f1

σ,λ is then linear. These results are
supported by Figure 5 which illustrates the resulting convolution, the discrepancy function
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Figure 5. From left to right: the convolution of a Laplacian distribution with standard deviation λ = 2
with a Gaussian distribution with standard deviation σ = 1, the corresponding discrepancy function and log-
discrepancy function.

(eq. (23)) and the log-discrepancy function (eq. (29)). Furthermore, the discrepancy func-
tion f1

σ,λ shares a similar behavior with the well-known Huber loss function [28] (also called
smoothed `1), known to be more robust to outliers. This is again in complete agreement with
the fact that Laplacian priors have heavier tails.

In the case 2
3 < ν < 2, even though ϕνλ has no simple closed form expression, the similar

conclusions can be made as a result of the next two theorems.

Theorem 3. Let ν > 0. The function ϕνλ is asymptotically log-linear in the vicinity of 0

ϕνλ(x) ∼
0
α1 log x+ β1 ,

where α1 = 2 and β1 = − log 2 + log

1−

∫ ∞
−∞

t2e−
t2

2 exp

[
−
(
|t|
λν

)ν]
dt∫ ∞

−∞
e−

t2

2 exp

[
−
(
|t|
λν

)ν]
dt

 .

The proof can be found in Appendix E.

Theorem 4. Let 2
3 < ν < 2, then ϕνλ is asymptotically log-linear in the vicinity of +∞

ϕνλ(x) ∼
∞

α2 log x+ β2 ,

where α2 = ν and β2 = −ν log λ− ν

2
log

Γ(1/ν)

Γ(3/ν)
.

The proof relies on a result of Berman (1992) [4] and is detailed in Appendix F.

Remark 2. For ν > 2, an asymptotic log-linear behavior with α2 = 2 and β2 = − log 2 can
be obtained using exactly the same sketch of proof as the one of Theorem 4.

Remark 3. For ν = 2, we have ϕ2
λ is linear, β1 = − log 2− log

(
1 + λ2

)
and β2 = − log 2−

log λ2, which shows that Theorem 4 cannot hold true for ν = 2.
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Figure 6. From left to right: the convolution of a generalized Gaussian distribution with standard deviation
λ = 2 with a Gaussian distribution with standard deviation σ = 1, the corresponding discrepancy function and
log-discrepancy function. From top to bottom: the GGD has a shape parameter ν = 1.5 and .3, respectively.

Remark 4. For ν = 1, Theorem 1 and Theorem 2 coincide with Theorem 3 and Theorem 4.

Remark 5. For 0 < ν 6 2
3 , though we did not succeed in proving it, our numerical simula-

tions also revealed a log-linear asymptotic behavior for x → ∞ in perfect agreement with the
expression of α2 and β2 given in Theorem 4.

Again, the exponent α1 = 2 in the vicinity of 0 shows that the Gaussian distribution in-
volved in the convolution prevails over the generalized Gaussian distribution and the behavior
of fνσ,λ is then quadratic. Similarly, the exponent α2 = ν in the vicinity of +∞ shows that
the generalized Gaussian distribution involved in the convolution prevails over the Gaussian
distribution and the behavior of fνσ,λ is then a power function of the form xν . These results
are supported by Figure 6 that illustrates the resulting convolution, the discrepancy function
and the log-discrepancy function for ν = 1.5 and ν = .3. Moreover, the discrepancy function
fνσ,λ with ν 6 1 shares a similar behavior with well-known robust M-estimator loss functions
[27]. In particular, the asymptotic case for ν → 0 resembles the Tukey’s bisquare loss, known
to be insensitive to outliers. This is again in complete agreement with GGD priors having
larger tails as ν goes to 0.
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Figure 7. Illustrations of the log-discrepancy function for various 0.3 6 ν 6 2 and SNR λ/σ.

Figure 7 shows the evolution of the log-discrepancy function for various values of ν in
the context of three different signal-to-noise ratios λ/σ (SNR). One can observe that as the
SNR decreases (resp., increases), the left (resp., right) asymptotic behavior starts dominating
over the right (resp., left) asymptotes. In other words, for ν < 2, the intersection of the two
asymptotes goes to +∞ (resp., −∞). Last but not least, for 0 < ν 6 2, the log-discrepancy
function ϕνλ is always concave and since α2 6 α1 it is thus upper-bounded by its left and right
asymptotes.

From Theorem 3, Theorem 4 and Remark 5, we can now build two asymptotic log-linear
approximations for ϕνλ, with 0 < ν 6 2, and subsequently an asymptotic power approximation
for fνσ,λ by using the relation (24). Next, we explain the approximation process of the in-
between behavior, as well as its efficient evaluation.

4.2. Numerical approximation. We now describe the proposed approximation of the dis-
crepancy function fν1,λ through an approximation ϕ̂νλ of the log-discrepancy function as

f̂ν1,λ(x) = γνλ + exp ϕ̂νλ(x) where γνλ = fν1,λ(0) .(35)

Based on our previous theoretical analysis, a solution preserving the asymptotic, increasing
and concave behaviors of ϕν1,λ can be defined by making use of the following approximations

ϕ̂νλ(x) = α1 log |x|+ β1 − rec(α1 log |x|+ β1 − α2 log |x| − β2) ,(36)

where rec is a so-called rectifier function that is positive, increasing, convex and satisfies

lim
x→−∞

rec(x) = 0 and rec(x) ∼
x→∞

x .(37)

In this paper, we consider the two following rectifying functions

relu(x) = max(0, x) and softplus(x) = h log
[
1 + exp

(x
h

)]
, h > 0 ,(38)
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Figure 8. Illustrations of our approximations of ϕνλ and the corresponding underlying posterior distribution
N (0, ν, λ) ∗ G(0, 1) (where ν = .8 and λ = 4). The blue curves have been obtained by evaluating the convolution
using numerical integration techniques for all x. The dashed curves are obtained using the proposed relu- and
softplus-based approximations that have closed-form expressions.

as coined respectively in [42] and [18]. Using the function relu (Rectified linear unit) leads
to an approximation ϕ̂νλ that is exactly equal to the asymptotes of ϕνλ with a singularity at
their crossing point. In this paper, we will instead use the function softplus as it allows the
approximation of ϕνλ to converge smoothly to the asymptotes without singularity. Its behavior
is controlled by the parameter h > 0. The smaller the value of h is, the faster the convergence
speed to the asymptotes.

The parameter h should be chosen such that the approximation error between ϕ̂νλ(x) and
ϕνλ(x) is as small as possible. This can be done numerically by first evaluating ϕνλ(x) with
integration techniques for a large range of values x, and then selecting the parameter h by
least square. Of course, the optimal value for h depends on the parameter λ and ν.

Figure 8 gives an illustration of our approximations of the log-discrepancy and the
corresponding distribution obtained with relu and softplus. On this figure the underlying
functions have been obtained by numerical integration for a large range of value of x. One
can observe that using softplus provides a better approximation than relu.

Our approximation for f̂ν1,λ(x) is parameterized by six scalar values: γλν , α1, β1, α2, β2

and h that depend only on the original parameters λ and ν. From our previous analysis, we
have that α1 = 2 and α2 = ν. The other parameters are non-linear functions of λ and ν. The
parameters γλν , β1 and β2 require either performing numerical integration or evaluating the
special function Γ. As discussed, the parameter h requires numerical integration for various x
and then optimization. For these reasons, these values cannot be computed during runtime.
Instead, we pre-compute these four parameters offline for 10, 000 different combinations of λ
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Figure 9. Lookup tables used to store the values of the parameters γνλ, β1, β2 and h for various .3 6 ν 6 2
and 10−3 6 λ 6 103. A regular grid of 100 values has been used for ν and a logarithmic grid of 100 values has
been used for λ. This leads to a total of 10, 000 combinations for each of the four lookup tables.

and ν values in the intervals [10−3, 103] and [0.3, 2], respectively (the choice for this range
was motivated in Subsection 3.1). The resulting values are then stored in four corresponding
lookup tables. During runtime, these parameters are retrieved online by bi-linear extrapolation
and interpolation. The four lookup tables are given in Figure 9. We will see in Section 6 that
using the approximation f̂ν1,λ results in substantial acceleration without significant loss of
performance as compared to computing fν1,λ directly by numerical integration during runtime.

5. Shrinkage functions: analysis and approximations. Recall that from its definition
given in eq. (15), the shrinkage function is defined for ν > 0, σ > 0 and λ > 0, as

sνσ,λ(x) ∈ argmin
t∈R

(x− t)2

2σ2
+ λ−νν |t|ν .(39)
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Figure 10. Illustrations of the shrinkage function for various 0.3 < ν 6 2 and SNR λ/σ.

5.1. Theoretical analysis. Except for some particular values of ν (see, Subsection 5.2),
Problem (39) does not have explicit solutions. Nevertheless, as shown in [40], Problem (39)
admits two (not necessarily distinct) solutions. One of them is implicitly characterized as

sνσ,λ(x) =

{
0 if 0 < ν 6 1 and |x| 6 τνλ ,
t? otherwise ,

(40)

where t? = x− sign(t?)νσ2λ−νν |t?|ν−1 ,

and τνλ =

{
(2− ν)(2− 2ν)−

1−ν
2−ν (σ2λ−νν )

1
2−ν if ν < 1 ,

σ2λ−1 otherwise (ν = 1) .

The other one is obtained by changing |x| 6 τνλ to |x| < τνλ in (40), and so they coincide
for almost every (x, λ, σ, ν). As discussed in [40], for ν > 1, sνσ,λ(x) is differentiable, and for
ν 6 1, the shrinkage exhibits a threshold τνλ that produces sparse solutions. Proposition 3
summarizes a few important properties.

Proposition 3. Let ν > 0, σ > 0, λ > 0 and sνσ,λ as defined in eq. (15). The following
relations hold true

sνσ,λ(x) = σsν
1,λ
σ

(x
σ

)
,(reduction)

sνσ,λ(x) = −sνσ,λ(−x) ,(odd)

sνσ,λ(x) ∈
{

[0, x] if x > 0
[x, 0] otherwise

,(shrinkage)

x1 > x2 ⇔ sνσ,λ(x1) > sνσ,λ(x2) ,(increasing with x)

λ1 > λ2 ⇔ sνσ,λ1(x) > sνσ,λ2(x) ,(increasing with λ)

lim
λ
σ
→0

sνσ,λ(x) = 0 ,(kill low SNR)
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Table 1
Shrinkage function under generalized Gaussian priors

ν Shrinkage sνσ,λ(x) Remark

< 1

{
x− γxν−1 +O(x2(ν−1)) if |x| > τνλ
0 otherwise

≈ Hard-thresholding
[40]

1 sign(x) max

(
|x| −

√
2σ2

λ
, 0

)
Soft-thresholding

[17]

4/3 x+ γ

(
3

√
ζ − x

2
− 3

√
ζ + x

2

)
[10]

3/2 sign(x)

(√
γ2 + 4|x| − γ

)2

4
[10]

2
λ2

λ2 + σ2
· x Wiener (LMMSE)

with γ = νσ2λ−νν and ζ =

√
x2 + 4

(γ
3

)3
.

lim
λ
σ
→+∞

sνσ,λ(x) = x .(keep high SNR)

The proofs can be found in Appendix G. These properties show that sνσ,λ is indeed a shrinkage
function (non-expansive). It shrinks the input coefficient x according to the model ν and the
modeled signal to noise ratio λ

σ (SNR). When x is small in comparison to the SNR, it is likely
that its noise component dominates the underlying signal, and is, therefore, shrunk towards
0. Similarly, when x is large, it will likely be preserved. This is even more likely when ν is
small, since in this case large coefficients are favored by the prior. Illustrations of shrinkage
functions for various SNR and ν are given in Figure 10.

5.2. Numerical approximations. The shrinkage function sνσ,λ, implicitly defined in (40)
does not have a closed form expression in general. Nevertheless, for fixed values of x, σ, λ, ν,
sνσ,λ(x) can be estimated using iterative solvers such as Newton descent or Halleys root-finding
method. These approaches converge quite fast and, in practice, reach a satisfying solution
within ten iterations. However, since in our application of interest we need to evaluate this
function a large number times, we will follow a different path in order to reduce computation
time (even though we have implemented this strategy).

As discussed earlier, sνσ,λ is known in closed form for some values of ν, more precisely:
ν = {1, 4/3, 3/2, 2} (as well as ν = 3 but this is out of the scope of this study), see for instance
[10]. When ν = 2, we retrieve the linear minimum mean square estimator (known in signal
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(a) GMM (ν = 2) (b) GGMM (.3 6 ν 6 2) (c) LMM (ν = 1) (d) HLMM (ν = .5)

Figure 11. Set of 100 patches, sorted by the norm of their gradient, and generated to be independently
distributed according to (from left to right) a GMM, GGMM, LMM and HLMM. For ease of visualization, only
the top eigendirections corresponding to 80% of the variance have been chosen. Near-constant patches with
variance smaller than 2

P
||Σk||2F have also been discarded.

processing as Wiener filtering) and related to Tikhonov regularization and ridge regression.
This shrinkage is linear and the slope of the shrinkage goes from 0 to 1 as the SNR increases (see
Figure 10). When ν = 1, the shrinkage is the well-known soft-thresholding [17], corresponding
to the maximum a posteriori estimator under a Laplacian prior. When ν < 1, the authors of
[40] have shown that (i) the shrinkage admits a threshold with a closed-form expression (given
in eq. (40)), and (ii) the shrinkage is approximately equal to hard-thresholding with an error
term that vanishes when |x| → ∞. All these expressions are summarized in Table 1.

In order to keep our algorithm as fast as possible, we propose to use the approximation of
the shrinkage given for ν < 1 in [40]. Otherwise, we pick one of the four shrinkage functions
corresponding to ν = {1, 4/3, 3/2, 2} by nearest neighbor on the actual value of ν ∈ [1, 2].
Though this approximation may seem coarse compared to the one based on iterative solvers,
we did not observe any significant loss of quality in our numerical experiments (see Section 6).
Nonetheless, this alternative leads to 6 times speed-up while evaluating shrinkage.

6. Experimental evaluation. In this section we explain the methodology used to evaluate
the GGMM model, and present numerical experiments to compare the performance of the
proposed GGMM model over existing GMM-based image denoising algorithms. To demon-
strate the advantage of allowing for a flexible GGMM model, we also present results using
GGMM models with fixed shape parameters, ν = 1 (Laplacian mixture model) and ν = 0.5
(Hyper-Laplacian mixture model). For learning Laplacian mixture model (LMM) and hyper-
Laplacian mixture model (HLMM), we use the same procedure as described in Subsection 3.1
but force all shape parameters to be equal to 1 or 0.5, respectively.

Model validation. As discussed in Section 3, Figure 1 illustrates the validity of our model
choices with histograms of different dimensions of a single patch cluster. It clearly shows the
importance of allowing the shape and scale parameter to vary across dimensions for capturing
underlying patch distributions. Since GGMM (and obviously, GMM) falls into the class of
generative models, one can also assess the expressivity of a model by analyzing the variability of
generated patches and its ability to generate relevant image features (edges, texture elements
etc.). This can be tested by selecting a component k of the GGMM (or GMM) with probability
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Figure 12. Average log-likelihood of all non-overlapping patches (with subtracted mean) of each of the 40
images of our validation subset of the testing BSDS dataset for the GMM, GGMM, LMM and HLMM. The
total average over the 40 images is shown in the last column.

wk and sampling patches from the GGD (or GD) as described in [43]. Figure 11 presents a
collage of 100 patches independently generated by this procedure using GMM, GGMM, LMM
and HLMM. As observed, patches generated from GGMM show greater balance between
strong/faint edges, constant patches and subtle textures than the models that use constant
shape parameters such as GGM, LMM and HLMM.

The superiority of our GGMM model over GMM, LMM or HLMM models can also be
illustrated by comparing the log-likelihood (LL) achieved by these models over a set of clean
patches from natural images. Note that, to maintain objectivity, the models have to be tested
on data that is different than the dataset used during training. To this end, we compute the
LL of the four above-mentioned models on all non-overlapping patches of 40 randomly selected
images extracted from BSDS testing set [36], which is a different set than the training images
used in the EM algorithm (parameter estimation/model learning). One can observe that not
only GGMM is a better fit than GMM, LMM and HLMM on average for the 40 images, but
it is also a better fit on each single image. Given that GGMM have a larger degree of freedom
than GMM, this study proves that our learning procedure did not fall prey to over-fitting,
and that the extra flexibility provided by GGMM was used to capture relevant and accurate
image patterns.

Denoising evaluation. Following the verification of the model, we provide a thorough evalu-
ation of our GGMM prior in denoising task by comparing its performance against EPLL that
uses a GMM prior [67] and with our LMM and HLMM models explained above. For the ease
of comparison, we utilize the pipeline and settings that was prescribed for the original EPLL
[67] algorithm (see Section 2.1). To reduce the computation time of all EPLL-based algo-
rithms, we utilize the random patch overlap procedure introduced by [46]. That is, instead of
extracting all patches at each iteration, a randomly selected but different subset of overlapping
patches consisting of only 3% of all possible patches is processed in each iteration. For the
sake of reproducibility of our results, we have made our MATLAB/MEX-C implementation
available online at https://bitbucket.org/cdeledalle/ggmm-epll.

https://bitbucket.org/cdeledalle/ggmm-epll
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Table 2
Image denoising performance comparison of EPLL algorithm with GMM and GGMM priors. PSNR and

SSIM values are obtained on the BSDS test set (average over 60 images), on six standard images corrupted
with 5 different levels of noise (average over 10 noise realizations), and finally an average over these 66 images.
BM3D algorithm results are also included for reference purposes.

σ Algo. BSDS barbara
camera

man hill house lena mandrill Avg.

PSNR

5
BM3D 37.33 38.30 38.28 36.04 39.82 38.70 35.26 37.36
GMM 37.25 37.60 38.07 35.93 38.81 38.49 35.22 37.26
GGMM 37.33 37.73 38.12 35.95 38.94 38.52 35.23 37.33

10
BM3D 33.06 34.95 34.10 31.88 36.69 35.90 30.58 33.15
GMM 33.02 33.65 33.91 31.79 35.56 35.46 30.55 33.06
GGMM 33.10 33.87 34.01 31.81 35.72 35.59 30.58 33.15

20
BM3D 29.38 31.73 30.42 28.56 33.81 33.02 26.60 29.50
GMM 29.36 29.76 30.16 28.46 32.77 32.40 26.60 29.42
GGMM 29.43 30.02 30.24 28.48 33.03 32.59 26.64 29.50

40
BM3D 26.28 27.97 27.16 25.89 30.69 29.81 23.07 26.38
GMM 26.21 26.02 26.93 25.68 29.60 29.18 23.25 26.26
GGMM 26.26 26.17 27.03 25.70 29.89 29.42 23.21 26.32

60
BM3D 24.81 26.31 25.24 24.52 28.74 28.19 21.71 24.90
GMM 24.57 23.95 25.10 24.21 27.53 27.28 21.57 24.61
GGMM 24.64 24.03 25.17 24.25 27.80 27.52 21.50 24.67

SSIM

5
BM3D .9619 .9643 .9613 .9508 .9571 .9436 .9588 .9614
GMM .9626 .9616 .9604 .9511 .9475 .9434 .9597 .9618
GGMM .9628 .9617 .9602 .9507 .9469 .9425 .9593 .9620

10
BM3D .9115 .9410 .9286 .8821 .9215 .9155 .8983 .9117
GMM .9155 .9298 .9307 .8858 .8999 .9107 .9022 .9150
GGMM .9154 .9313 .9309 .8839 .8992 .9112 .9007 .9149

20
BM3D .8236 .9036 .8685 .7789 .8741 .8763 .7943 .8260
GMM .8315 .8687 .8704 .7812 .8596 .8639 .8030 .8324
GGMM .8297 .8715 .8699 .7766 .8629 .8669 .7991 .8308

40
BM3D .7074 .8196 .7954 .6599 .8276 .8143 .6184 .7118
GMM .7054 .7509 .7780 .6496 .8025 .7918 .6341 .7081
GGMM .7018 .7526 .7842 .6430 .8112 .7995 .6192 .7048

60
BM3D .6375 .7581 .7496 .5859 .7956 .7784 .4993 .6427
GMM .6212 .6534 .7174 .5661 .7507 .7350 .5001 .6241
GGMM .6174 .6544 .7266 .5592 .7622 .7438 .4782 .6207
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Table 3
Image denoising performance comparison of EPLL algorithm with different priors. PSNR values are ob-

tained on the BSDS test set (average over 60 images), on six standard images corrupted with 3 different levels
of noise (average over 10 noise realizations), and finally an average over these 66 images.

σ Algo. BSDS barbara
camera

man hill house lena mandrill Avg.

PSNR

5

GMM 37.25 37.60 38.07 35.93 38.81 38.49 35.22 37.26
LMM 37.31 37.83 38.11 35.89 38.93 38.49 35.18 37.32
HLMM 36.85 37.42 37.66 35.39 38.37 38.08 34.77 36.86
GGMM 37.33 37.73 38.12 35.95 38.94 38.52 35.23 37.33

20

GMM 29.36 29.76 30.16 28.46 32.77 32.40 26.60 29.42
LMM 29.30 30.18 30.04 28.36 33.22 32.72 26.43 29.37
HLMM 28.48 29.28 29.04 27.72 32.50 32.10 25.44 28.56
GGMM 29.43 30.02 30.24 28.48 33.03 32.59 26.64 29.50

60

GMM 24.57 23.95 25.10 24.21 27.53 27.28 21.57 24.61
LMM 24.55 23.94 24.96 24.23 27.91 27.58 21.35 24.59
HLMM 23.95 23.16 23.72 23.84 27.10 26.94 20.67 23.97
GGMM 24.64 24.03 25.17 24.25 27.80 27.52 21.50 24.67

The evaluation is carried out on classical images such as Barbara, Cameraman, Hill, House,
Lena and Mandrill, and on 60 images taken from BSDS testing set [36] (the original BSDS
test data contains 100 images, the other 40 were used for model validation experiments). All
image have been corrupted independently by ten independent realizations of additive white
Gaussian noise with standard deviation σ = 5, 10, 20, 40 and 60 (with pixel values between
[0, 255]). The EPLL algorithm using mixture of Gaussian, generalized Gaussian priors are
indicated as GMM and GGMM in Table 2. Results obtained with BM3D algorithm [12] are
also included for reference purposes. To stay with the focus of this paper, i.e., on the effect
of image priors on EPLL-based algorithms, BM3D will be excluded from our performance
comparison discussions. The denoising performance of the algorithms are measured in terms
of Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity (SSIM) [62]. As can be
observed in Table 2, in general, GGMM prior provides better PSNR performance than the
GMM prior. In terms of SSIM values (shown in the bottom part of Table 2), GGMM prior
is comparable to GMM. In order to demonstrate the effect of fixed ν values compared to
the more flexible GGMM prior, we compare the results of GGMM against GMM (ν = 2),
Laplacian Mixture Model (GGMM with ν = 1) and hyper-Laplacian mixture model (GGMM
with ν = 0.5) priors in the same scenarios for σ = 5, 20 and 60. These results are shown in
Table 3. GGMM prior provides better PSNR performance on average than the fixed-shape
priors. The differences in denoising performance can also be verified visually in Figure 13,
Figure 14 and Figure 15. The denoised images obtained using GGMM prior show much fewer
artifacts as compared to GMM-EPLL results, in particular in homogeneous regions. On the
other hand, GGMM prior is also able to better preserve textures than LMM and HLMM.

Prior fitness for image denoising. In this work, we have considered non-blind image de-
noising. That is, the noise standard deviation is assumed to be known. In this setting, if
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(a) Reference x

22.12 / 0.3679

(b) Noisy y

30.43 / 0.8678

30.43 / 0.8678

30.43 / 0.8678

30.43 / 0.8678

(c) GMM (ν = 2)

30.47 / 0.8686

30.47 / 0.8686

30.47 / 0.8686

30.47 / 0.8686

(d) GGMM (.3 6 ν 6 2)

30.39 / 0.8666

30.39 / 0.8666

30.39 / 0.8666

30.39 / 0.8666

(e) LMM (ν = 1)

28.48 / 0.8522

28.48 / 0.8522

28.48 / 0.8522

28.48 / 0.8522

(f) HLMM (ν = 0.5)

Figure 13. (a) Close in on the image Castle from the BSDS testing dataset, (b) a noisy version degraded
by additive white Gaussian noise with standard deviation σ = 20 and (c)-(f) results of EPLL under four patch
priors: GMM, GGMM, LMM and HLMM, respectively. PSNR and SSIM are given in the bottom-left corner.
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(a) Reference x

22.14 / 0.3972

(b) Noisy y

30.17 / 0.8690

30.17 / 0.8690

30.17 / 0.8690

30.17 / 0.8690

(c) GMM (ν = 2)

30.28 / 0.8681

30.28 / 0.8681

30.28 / 0.8681

30.28 / 0.8681

(d) GGMM (.3 6 ν 6 2)

30.04 / 0.8578

30.04 / 0.8578

30.04 / 0.8578

30.04 / 0.8578

(e) LMM (ν = 1)

29.05 / 0.8421

29.05 / 0.8421

29.05 / 0.8421

29.05 / 0.8421

(f) HLMM (ν = 0.5)

Figure 14. (a) Close in on the standard image Cameraman. (b) a noisy version degraded by additive white
Gaussian noise with standard deviation σ = 20 and (c)-(f) results of EPLL under four patch priors: GMM,
GGMM, LMM and HLMM, respectively. PSNR and SSIM are given in the bottom-left corner.
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(a) Reference x

22.11 / 0.4764

(b) Noisy y

29.75 / 0.8694

29.75 / 0.8694

29.75 / 0.8694
29.75 / 0.8694

(c) GMM (ν = 2)

30.03 / 0.8729

30.03 / 0.8729

30.03 / 0.8729
30.03 / 0.8729

(d) GGMM (.3 6 ν 6 2)

30.21 / 0.8737

30.21 / 0.8737

30.21 / 0.8737
30.21 / 0.8737

(e) LMM (ν = 1)

29.27 / 0.8495

29.27 / 0.8495

29.27 / 0.8495
29.27 / 0.8495

(f) HLMM (ν = 0.5)

Figure 15. (a) Close in on the standard image Barbara. (b) a noisy version degraded by additive white
Gaussian noise with standard deviation σ = 20 and (c)-(f) results of EPLL under four patch priors: GMM,
GGMM, LMM and HLMM, respectively. PSNR and SSIM are given in the bottom-left corner.
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15 20 25 30

28

28.5

29

29.5

30

Figure 16. Evolution of performance of EPLL with a GGMM, LMM (ν = 1) and a GMM (ν = 2) under
misspecification of the noise standard deviation σ. Performances are measured in terms of PSNR on the BSDS
dataset corrupted by a Gaussian noise with standard deviation σ = 20. For each of the three priors, EPLL has
been run assuming σ was ranging from 15 to 30.

the restoration model is accurate, one should ideally achieve optimal restoration performance
when using the true degradation. To verify this, we conducted a denoising task with image
corrupted with noise with standard deviation σ = 20. We used GMM, LMM and GGMM
priors in the restoration framework with assumed σ values ranging from 15 to 30. Figure 16
shows the evolution of average restoration performance over 40 images from BSDS testing set
(kept aside for validation, as mentioned above) with varying noise variances. GGMM prior
attains its best performance when the noise variance used in the restoration model matches
with the ground truth σ = 20. In contrast to GGMM, GMM (resp., LMM) reaches its best
performance at a larger (resp., lower) value of σ than the correct noise used during degrada-
tion. This is because GMM tends to under-smooth clean patches (resp., over-smooth) so that
a larger (resp., lower) value of σ is required to compensate the mismatch between the assumed
prior and the actual distribution in the restoration model. This indicates that GGMM is a
better option to model distribution of image patches than GMM or LMM.

Influence of our approximations. All previous experiments using GGMM patch priors were
conducted based on the two proposed approximations introduced in Section 4 and Section 5.
In Figure 17 and Table 4, we provide a quantitative illustration of the speed-ups provided by
these approximations and their effect on denoising performance. Timings were carried out
with Matlab 2018a on an Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz (neither multi-core
paralellization nor GPUs acceleration were used). Figure 17a shows the result obtained by
calculating original discrepancy function via numerical integration and the shrinkage function
via Halley’s root-finding method. This makes the denoising process extremely slow and takes
10 hours and 29 minutes for denoising an image of size 128×128 pixels. The approximated
discrepancy function provides 4 orders of magnitude speed-up with no perceivable drop in
performance (Figure 17b). In addition, incorporating the shrinkage approximation provides
further acceleration that allows the denoising to complete in less than 2 seconds with a very
minor drop in PSNR/SSIM. As indicated in the detailed profiles on Table 4, the shrinkage
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29.49 / 0.877

(a) No approx. (10h 29m)

29.47 / 0.875

(b) Approx. discrepancy (2s54)

29.48 / 0.875

(c) Approx. disc. & shrink. (1s63)

Figure 17. Results obtained by GGMM-EPLL on a 128 × 128 cropped image of the BSDS testing dataset
damaged by additive white Gaussian noise with σ = 20. These are obtained respectively by (a) evaluating the
classification and shrinkage problem with numerical solvers (numerical integration and Halley’s root-finding
method), (b) approximating the classification problem only, and (c) approximating both problems. PSNR and
SSIM are given in the bottom-left corner. Running time (averaged on ten runs) of the overall GGMM-EPLL
are indicated on the captions: our accelerations lead to a speed-up of ×15, 000 and ×1.5 respectively.

Table 4
Runtime profiles (averaged over ten runs) of GGMM-EPLL corresponding to the denoising experiment

shown in Figure 17. These profiles are obtained respectively by evaluating the classification and shrinkage
problem with numerical solvers (numerical integration and Halley’s root-finding method), approximating the
classification problem only, and approximating both problems. Profiles are split into discrepancy, shrinkage
and patch extration/reprojection. Speed-up with respect to the no-approximation (first column) are indicated in
parenthesis and major accelerations in green. Percentage of time taken for each step with respect to the overall
execution time (first row), are indicated below each time reading and bottlenecks are indicated in red.

No approximations Approx. discrepancy Approx. disc. & shrink.

Total 10h 29m 15s 2.54s (×15, 000) 1.63s (×23, 000)

100% 100%
×1.5−−−−→ 100%

Discrepancy 10h 29m 14s 1.44s (×26, 000) 1.44s (×26, 000)

>99.99% 56.69% 88.34%

Shrinkage 1.08s 1.08s (×1) 0.17s (×6.3)

<0.001% 42.52% 10.43%

Patch extraction

and reprojection
0.02s 0.02s (×1) 0.02s (×1)

<0.001% 0.79% 1.23%

approximation provides an acceleration of six-fold to the shrinkage calculation step itself and
leads to an overall speed-up of 1.5 due to the larger bottleneck caused by discrepancy function
calculation. The approximately 23,000× speed-up realized without any perceivable drop in
denoising performance underscores the efficacy of our proposed approximations.
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7. Conclusions and Discussion. In this work, we suggest using a mixture of generalized
Gaussians for modeling the patch distribution of clean images. We provide a detailed study
of the challenges that one encounters when using a highly flexible GGMM prior for image
restoration in place of a more common GMM prior. We identify the two main bottlenecks in
the restoration procedure when using EPLL and GGMM – namely, the patch classification
step and the shrinkage step. One of the main contributions of this paper, is the thorough
theoretical analysis of the classification problem allowing us to introduce an asymptotically
accurate approximation that is computationally efficient. In order to tackle the shrinkage
step, we collate and extend the existing solutions under GGMM prior.

Our numerical experiments indicate that our flexible GGMM patch prior is a better fit
for modeling natural images than GMM and other mixture distributions with constant shape
parameters such as LMM or HLMM. In image denoising tasks, we have shown that using
GGMM priors, often, outperforms GMM when used in the EPLL framework.

Nevertheless, we believe the performance of GGMM prior in these scenarios falls short
of its expected potential. Given that GGMM is persistently a better prior than GMM (in
terms of log-likelihood), one would expect the GGMM-EPLL to outperform GMM-EPLL
consistently. We postulate that this under-performance is caused by the EPLL strategy that
we use for optimization. That is, even though the GGMM prior may be improving the quality
of the global solution, the half quadratic splitting strategy used in EPLL is not guaranteed to
return a better solution due to the non-convexity of the underlying problem. For this reason,
we will focus our future work in designing specific optimization strategies for GGMM-EPLL
leveraging the better expressivity of the proposed prior model for denoising and other general
restoration applications.

Another direction of future research will focus on extending this work to employ
GGMMs/GGDs in other model-based signal processing tasks. Of these tasks, estimating
the parameters of GGMM directly on noisy observations is a problem of particular interest,
that could benefit from our approximations. Learning GMM priors on noisy patches has been
shown to be useful in patch-based image restoration when clean patches are not available a
priori, or to further adapt the model to the specificities of a given noisy image [66, 60, 26].
Another open problem is to analyze the asymptotic behavior of the minimum mean square es-
timator (MMSE) shrinkage with GGD prior, as an alternative to MAP shrinkage. This could
be useful to design accurate approximations for other general inference frameworks. Last but
not least, characterizing the exact asymptotic behaviors of the convolution of two arbitrary
GGDs, as investigated in [57], is still an open question. To the best of our knowledge, our
study is the first attempt towards this goal but in ours one of the GGD is always Gaussian
(noise). Extending our study to the general GGD case (or even specific cases such as Lapla-
cian) is a challenging problem that is of major interest in signal processing tasks where noise
is not Gaussian but instead follows another GGD.
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padakis for fruitful discussions.

Part of the experiments presented in this paper were carried out using the PlaFRIM
experimental testbed, supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux,
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Appendix A. Proof of equation (23).

Proof. For ν = 1, using Γ(1) = 1 and Γ(3) = 2, we obtain

f1
σ,λ(x) = log(2
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Therefore we have with a = 2σ2 and b = λ/
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since lim
t→∞

erf(t) = 1 and erfc(t) = 1− erf(t). Similarly, we get
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Plugging these two last expressions in (42) and rearranging the terms conclude the proof.

Appendix B. Proof of Proposition 2.

Proof. Starting from the definition of fνσ,λ and using the change of variable t → σt,
eq. (reduction) follows as

(46) fνσ,λ(x) = − log

∫
R
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]
dt = log σ+fν1,λ/σ

(x
σ

)
.

Properties (even) and (unimodality) hold since the convolution of two real even unimodal
distributions is even unimodal [64, 50]. Property (lower bound at 0) follows from (even),
(unimodality) and the fact that the convolution of continuous and bounded real functions are
continuous and bounded.

Appendix C. Proof of Theorem 1.

Lemma C.1. Let a > 0 and b > 0. For x in the vicinity of 0, we have

1

2abx
log

[
erfc(ax+ b) + e−4abx erfc(−ax+ b)

2 erfc(b)

]
= −1 +

(
ab− ae−b

2

erfc(b)
√
π

)
x+ o(x) .(47)
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Proof. Since erfc′(x) = −2e−x
2

√
π

and erfc′′(x) = 2xe−x
2

√
π

, using second order Taylor’s expan-

sion for x in the vicinity of 0, it follows that

erfc(ax+ b) ∼
0

erfc(b)− 2ae−b
2

√
π

x+
2a2be−b

2

√
π

x2 ,(48)

and erfc(−ax+ b) ∼
0

erfc(b) +
2ae−b

2

√
π

x+
2a2be−b

2

√
π

x2 .(49)

We next make the following deductions

e−4abx erfc(−ax+ b)) ∼
0
e−4abx erfc(b) + e−4abx 2ae−b

2

√
π

x+ e−4abx 2a2be−b
2

√
π

x2 ,(50)

erfc(ax+b)+e−4abx erfc(−ax+b)) ∼
0

(1+e−4abx)

(
erfc(b)+

2a2be−b
2

√
π

x2

)
−(1−e−4abx)

2ae−b
2

√
π

x ,

erfc(ax+b)+e−4abx erfc(−ax+b))

2 erfc b︸ ︷︷ ︸
A(x)

∼
0

1+e−4abx

2

(
1+

2a2be−b
2

erfc(b)
√
π
x2

)
−(1−e−4abx)

ae−b
2

erfc(b)
√
π
x .

The left-hand side A(x) of this last equation is then, in the vicinity of x = 0, equals to

A(x) =
1 + e−4abx

2

(
1 +

2a2be−b
2

erfc(b)
√
π
x2

)
− (1− e−4abx)

ae−b
2

erfc(b)
√
π
x+ o(x2) .(51)

We next use second-order Taylor’s expansion for e−4abx, leading to

A(x) = (1− 2abx+ 4a2b2x2 + o(x2))

(
1 +

2a2be−b
2

erfc(b)
√
π
x2

)
(52)

− (4abx− 8a2b2x2 + o(x2))
ae−b

2

erfc(b)
√
π
x+ o(x2) ,

= 1− 2abx+

(
4a2b2 − 2a2be−b

2

erfc(b)
√
π

)
x2 + o(x2) .(53)

By using the second-order Taylor’s expansion of log(1 + x), it follows that

log [A(x)] = −2abx+

(
4a2b2 − 2a2be−b

2

erfc(b)
√
π

)
x2 − 2a2b2x2 + o(x2) .(54)

Dividing both sides by 2abx then concludes the proof,

1

2abx
log

[
erfc(ax+ b) + e−4abx erfc(−ax+ b))

2 erfc b

]
= −1 +

(
ab− ae−b

2

erfc(b)
√
π

)
x+ o(x) .(55)
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Proof of Theorem 1. We first rewrite ϕ1
λ(x) as

ϕ1
λ(x) = log

[
log

[
2 erfc

(
1

λ

)]
− log

[
e
√
2x
λ erfc

(
x√
2

+
1

λ

)
+ e−

√
2x
λ erfc

(
− x√

2
+

1

λ

)]]
,

= log

[√
2x

λ

]
+ log

−1− λ√
2x

log

erfc
(
x√
2

+ 1
λ

)
+ e−

2
√
2x
λ erfc

(
− x√

2
+ 1

λ

)
2 erfc

(
1
λ

)
 .(56)

Next, using Lemma C.1 with a = 1/
√

2 and b = 1/λ, it follows that

ϕ1
λ(x) = log

[√
2x

λ

]
+ log

[
−

(
1√
2λ
− e−

1
λ2

√
2 erfc( 1

λ)
√
π

)
x+ o(x)

]
,(57)

= log

[
x2

λ

]
+ log

[
e−

1
λ2

erfc( 1
λ)
√
π
− 1

λ
+ o(1)

]
,(58)

= log

[
x2

λ

]
+ log

[
1√
π

e−
1
λ2

erfc( 1
λ)
− 1

λ

]
+ o(1) ,(59)

where the last equation follows from the first-order Taylor expansion of log(a+ x).

Appendix D. Proof of Theorem 2.

Lemma D.1. Let a > 0 and b > 0. For x in the vicinity of +∞, we have

1

2abx
log

[
erfc(ax+ b) + e−4abx erfc(−ax+ b)

2

]
= −2 + o (1) .(60)

Proof. We have lim
x→+∞

erfc(x) = 0 and lim
x→+∞

erfc(−x) = 2, it follows that

erfc(−ax+ b) ∼
+∞

2 ,(61)

e−4abx erfc(−ax+ b) ∼
+∞

2e−4abx ,(62)

erfc(ax+ b) + e−4abx erfc(−ax+ b)

2
∼

+∞
e−4abx ,(63)

log

[
erfc(ax+ b) + e−4abx erfc(−ax+ b)

2

]
∼

+∞
−4abx ,(64)

1

2abx
log
[
erfc(ax+ b) + e−4abx erfc(−ax+ b)

]
∼

+∞
−2 ,(65)

where we have used the knowledge that f ∼ g implies that log f ∼ log g.

Proof of Theorem 2. By writing ϕ1
λ as in eq. (56) and using Lemma D.1 with a = 1/

√
2

and b = 1/λ, it follows that

ϕ1
λ(x) = log

[√
2x

λ

]
+ log

[
1 +

λ√
2x

log erfc

(
1

λ

)
+ o (1)

]
= log

[√
2x

λ

]
+ o (1) .
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Appendix E. Proof of Theorem 3.

Proof. We first decompose the term exp
(
− (x−t)2

2

)
involved in the definition of fν1,λ and

rewrite ext using its power series

fν1,λ(x) =− log
1√
2π

ν

2λνΓ(1/ν)
− log

∫ ∞
−∞

exp

(
−(x− t)2

2

)
exp

[
−
(
|t|
λν

)ν]
dt ,(66)

=− log
1√
2π

ν

2λνΓ(1/ν)
− log

∫ ∞
−∞

e−
x2

2 exte−
t2

2 exp

[
−
(
|t|
λν

)ν]
dt ,(67)

=− log
1√
2π

ν

2λνΓ(1/ν)
+
x2

2
− log

∫ ∞
−∞

∞∑
k=0

(xt)k

k!
e−

t2

2 exp

[
−
(
|t|
λν

)ν]
dt .(68)

For x in the vicinity of 0, we can consider |x| 6 1, and then∫ ∞
−∞

∞∑
k=0

∣∣∣∣(xt)kk!
e−

t2

2 exp

[
−
(
|t|
λν

)ν]∣∣∣∣ dt 6
∫ ∞
−∞

∞∑
k=0

|t|k

k!
e−

t2

2 exp

[
−
(
|t|
λν

)ν]
dt ,(69)

6
∫ ∞
−∞

e
− t

2

2
+|t|−

(
|t|
λν

)ν
dt <∞ .(70)

Then, Fubini’s theorem applies and we get

fν1,λ(x) =− log
1√
2π

ν

2λνΓ(1/ν)
+
x2

2
− log

∞∑
k=0

∫ ∞
−∞

(xt)k

k!
e−

t2

2 exp

[
−
(
|t|
λν

)ν]
dt ,(71)

=− log
1√
2π

ν

2λνΓ(1/ν)
+
x2

2
− log

∞∑
k=0

xk

k!

∫ ∞
−∞

tke−
t2

2 exp

[
−
(
|t|
λν

)ν]
dt .(72)

By definition, we have

γνλ , fν1,λ(0) = − log
1√
2π

ν

2λνΓ(1/ν)
− log

∫ ∞
−∞

exp

(
− t

2

2

)
exp

[
−
(
|t|
λν

)ν]
dt .(73)

Moreover, when k is odd, we have∫ ∞
−∞

tke−
t2

2 exp

[
−
(
|t|
λν

)ν]
dt = 0 .(74)

Using third-order Taylor expansion of log(1 + x) for x in the vicinity of 0, it follows that

fν1,λ(x) = γνλ +
x2

2
− log

1 +
x2

2

∫∞
−∞ t

2e−
t2

2 exp
[
−
(
|t|
λν

)ν]
dt∫∞

−∞ e
− t2

2 exp
[
−
(
|t|
λν

)ν]
dt

+ o(x3)

 ,(75)

= γνλ +
x2

2

1−

∫∞
−∞ t

2e−
t2

2 exp
[
−
(
|t|
λν

)ν]
dt∫∞

−∞ e
− t2

2 exp
[
−
(
|t|
λν

)ν]
dt

+ o(x3) .(76)
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Finally, using first-order Taylor’s expansion for log(1 + x), we conclude the proof as

ϕνλ(x) = log

x2

2

1−

∫∞
−∞ t

2e−
t2

2 exp
[
−
(
|t|
λν

)ν]
dt∫∞

−∞ e
− t2

2 exp
[
−
(
|t|
λν

)ν]
dt

+ o(x)


 ,(77)

= 2 log x− log 2 + log

1−

∫∞
−∞ t

2e−
t2

2 exp
[
−
(
|t|
λν

)ν]
dt∫∞

−∞ e
− t2

2 exp
[
−
(
|t|
λν

)ν]
dt

+ o(x) .(78)

Appendix F. Proof of Theorem 4.
We first recall in a lemma, a result extracted from Corollary 3.3 in [4].

Lemma F.1 (Berman). Let p and q be differentiable real probability density functions.
Define for x large enough u(x) = p−1(q(x)) and define v and w as

v(x) = − ∂

∂x
log p(x) and w(x) = − ∂

∂x
log q(x) .(79)

Assume v and w are positive continuous function and regularly oscillating, i.e.:

lim
x,x′→∞
x/x′→1

v(x)

v(x′)
= 1 and lim

x,x′→∞
x/x′→1

w(x)

w(x′)
= 1 .(80)

Suppose that we have

lim
x→∞

w(x)

v(x)
= 0 and lim

x→∞
u(x)w(x) = +∞ ,(81)

then, for x→∞, we have

log

∫ +∞

−∞
p(x− t)q(t) dt ∼ log q(x) .(82)

Proof of Theorem 4. Using the definition of the discrepancy function,

fν1,λ(x) = − log

∫
R
G(t; 0, λ, ν) · N (x− t; 0, 1) dt = − log

∫ +∞

−∞
p(x− t)q(t) dt .(83)

with q(x) = G(x; 0, λ, ν) and p(x) = N (x; 0, 1). We have

v(x) = − ∂

∂x
log p(x) = 2x and w(x) = − ∂

∂x
log q(x) =

νxν−1

λνν
.(84)

Remark that v and w are positive continuous, and

lim
x,x′→∞
x/x′→1

v(x)

v(x′)
= lim

x,x′→∞
x/x′→1

x

x′
= 1 and lim

x,x′→∞
x/x′→1

w(x)

w(x′)
= lim

x,x′→∞
x/x′→1

( x
x′

)ν−1
= 1 .(85)
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For x > 0 large enough and y > 0 small enough

y = p(x)⇔ y =
1√
2π

exp

(
−x

2

2

)
⇔ x =

√
− log(2π)− 2 log y .(86)

Then, from Proposition 1, we have

u(x)w(x) =
νxν−1

λνν

√
− log(2π)− 2 log q(x)(87)

=
νxν−1

λνν

√
− log(2π)− 2 log

[
κ

2λν

]
+ 2

(
x

λν

)ν
∼ ν
√

2x
3
2
ν−1

λ
3
2
ν

ν

,(88)

and thus, as ν > 2
3 , lim

x→∞
u(x)w(x) =∞. Moreover, for ν < 2, we have

lim
x→∞

w(x)

v(x)
= lim

x→∞

ν

2λν
xν−2 = 0 .(89)

It follows that Lemma F.1 applies, and then for large x

fν1,λ(x) ∼ − log q(x) ∼
(
x

λν

)ν
.(90)

Using that λν = λ
√

Γ(1/ν)
Γ(3/ν) , we conclude the proof since

ϕνλ(x) = log
[
fν1,λ(x)− γνλ

]
∼ ν log x− ν log λν .(91)

Appendix G. Proof of Proposition 3.

Proof. Starting from the definition of sνσ,λ and using the change of variable t → σt,
eq. (reduction) follows as

sνσ,λ(x) = argmin
t∈R

(x− t)2

2σ2
+ λ−νν |t|ν = σargmin

t∈R

(x− σt)2

2σ2
+ λ−νν |σt|ν ,(92)

= σargmin
t∈R

(x/σ − t)2

2
+ (λν/σ)−ν |t|ν = σsν1,λ/σ(x/σ) .(93)

For eq. (odd), we use the change of variable t→ −t

sνσ,λ(−x) = argmin
t∈R

(−x− t)2

2σ2
+ λ−νν |t|ν = −argmin

t∈R

(−x+ t)2

2σ2
+ λ−νν |t|ν ,(94)

= −argmin
t∈R

(x− t)2

2σ2
+ λ−νν |t|ν = −sνσ,λ(x) .(95)

We now prove eq. (shrinkage). Let t = sνσ,λ(x), and since t minimizes the objective, then

λ−νν |t|ν 6
(x− t)2

2σ2
+ λ−νν |t|ν 6

(x− x)2

2σ2
+ λ−νν |x|ν = λ−νν |x|ν ,(96)
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which implies that |t| 6 |x|. Let x > 0 and assume t = sνσ,λ(x) < 0. Since t minimizes the
objective, then

(x− t)2

2σ2
+ λ−νν |t|ν 6

(x+ t)2

2σ2
+ λ−νν |t|ν(97)

which implies that −xt 6 xt and leads to a contradiction. Then for x > 0, sνσ,λ(x) ∈ [0, x],
which concludes the proof since sνσ,λ is odd.

We now prove (increasing with x). Let x1 > x2 and define t1 = sνσ,λ(x1) and t2 = sνσ,λ(x2).
Since t1 and t2 minimize their respective objectives, the following two statements hold

(x1 − t1)2

2σ2
+ λ−νν |t1|ν 6

(x1 − t2)2

2σ2
+ λ−νν |t2|ν ,(98)

and
(x2 − t2)2

2σ2
+ λ−νν |t2|ν 6

(x2 − t1)2

2σ2
+ λ−νν |t1|ν .(99)

Summing both inequalities lead to

(x1 − t1)2 + (x2 − t2)2 6 (x1 − t2)2 + (x2 − t1)2 ,(100)

⇒ − 2x1t1 − 2x2t2 6 −2x1t2 − 2x2t1 ,(101)

⇒ t1(x1 − x2) > t2(x1 − x2) ⇒ t1 > t2 (since x1 > x2) .(102)

We now prove (increasing with λ). Let λ1 > λ2 and define t1 = sνσ,λ1(x) and t2 = sνσ,λ2(x).
Since t1 and t2 minimize their respective objectives, the following expressions hold

(x− t1)2

2σ2
+ λ−νν,1 |t1|

ν 6
(x− t2)2

2σ2
+ λ−νν,1 |t2|

ν ,(103)

and
(x− t2)2

2σ2
+ λ−νν,2 |t2|

ν 6
(x− t1)2

2σ2
+ λ−νν,2 |t1|

ν .(104)

Again, summing both inequalities lead to

λ−νν,1 |t1|
ν + λ−νν,2 |t2|

ν 6 λ−νν,1 |t2|
ν + λ−νν,2 |t1|

ν ,(105)

⇒ (λ−νν,1 − λ
−ν
ν,2)|t1|ν 6 (λ−νν,1 − λ

−ν
ν,2)|t2|ν ,(106)

⇒ |t1|ν > |t2|ν (since λ1 > λ2 and ν > 0) .(107)

We now prove (keep high SNR). Consider x > 0. Since λ 7→ sνσ,λ(x) is a monotonic
function and sνσ,λ(x) ∈ [0, x] for all λ, it converges for λ → ∞ to a value ω ∈ [0, x]. Assume
0 < ω < x and let 0 < ε < max(ω, x− ω). By definition of the limit, for λ big enough

0 < ω − ε < t , sνσ,λ(x) < ω + ε .(108)

It follows that x− t > x− (w + ε) > 0, and then

(x− (ω + ε))2

2σ2
+ λ−νν |ω − ε|ν <

(x− t)2

2σ2
+ λ−νν |t|ν .(109)
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Moreover, since ω + ε 6= x, we have for λ big enough

λ−νν |x|ν <
(x− (ω + ε))2

2σ2
+ λ−νν |ω − ε|ν .(110)

Combining the two last inequalities shows that

(x− x)2

2σ2
+ λ−νν |x|ν <

(x− t)2

2σ2
+ λ−νν |t|ν ,(111)

which is in contradiction with the fact that t minimizes the objective. As a consequence,
ω = x, which concludes the proof since sνσ,λ(x) is odd and satisfies (reduction).

We now prove (kill low SNR). Consider x > 0. Since λ 7→ sνσ,λ(x) is a monotonic function

and sνσ,λ(x) ∈ [0, x] for all λ, it converges for λ→ 0+ to a value ω ∈ [0, x]. Assume 0 < ω < x
and let 0 < ε < max(ω, x− ω). Again, we have for λ small enough

(x− (ω + ε))2

2σ2
+ λ−νν |ω − ε|ν <

(x− t)2

2σ2
+ λ−νν |t|ν .(112)

Moreover, since ω 6= ε, we have for λ small enough

x2

2σ2
<

(x− (ω + ε))2

2σ2
+ λ−νν |ω − ε|ν .(113)

Combining the two last inequalities shows that

(x− 0)2

2σ2
+ λ−νν |0|ν <

(x− t)2

2σ2
+ λ−νν |t|ν ,(114)

which is in contradiction with the fact that t minimizes the objective. As a consequence,
ω = 0, which concludes the proof since sνσ,λ(x) is odd and satisfies (reduction).
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