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Image restoration with generalized Gaussian mixture model patch priors

Charles-Alban Deledalle* T, Shibin Parameswaran®, and Truong Q. Nguyen®

Abstract. Patch priors have became an important component of image restoration. A powerful approach in this
category of restoration algorithms is the popular Expected Patch Log-likelihood (EPLL) algorithm.
EPLL uses a Gaussian mixture model (GMM) prior learned on clean image patches as a way to
regularize degraded patches. In this paper, we show that a generalized Gaussian mixture model
(GGMM) captures the underlying distribution of patches better than a GMM. Even though GGMM
is a powerful prior to combine with EPLL, the non-Gaussianity of its components presents major
challenges to be applied to a computationally intensive process of image restoration. Specifically,
each patch has to undergo a patch classification step and a shrinkage step. These two steps can be
efficiently solved with a GMM prior but are computationally impractical when using a GGMM prior.
In this paper, we provide approximations and computational recipes for fast evaluation of these two
steps, so that EPLL can embed a GGMM prior on an image with more than tens of thousands of
patches. Our main contribution is to analyze the accuracy of our approximations based on thorough
theoretical analysis. Our evaluations indicate that the GGMM prior is consistently a better fit for
modeling image patch distribution and performs better on average in image denoising task.

Key words. Generalized Gaussian distribution, Mixture models, Image denoising, Patch priors.

AMS subject classifications. 68U10, 62H35, 94A08

1. Introduction. Image restoration is the process of recovering the underlying clean im-
age from its degraded or corrupted observation(s). The images captured by common imaging
systems often contain corruptions such as noise, optical or motion blur due to sensor limi-
tations and/or environmental conditions. For this reason, image restoration algorithms have
widespread applications in medical imaging, satellite imaging, surveillance, and general con-
sumer imaging applications. Priors on natural images play an important role in image restora-
tion algorithms. Image priors are used to denoise or regularize ill-posed restoration problems
such as deblurring and super-resolution, to name just a few. Classical image priors include
Gibbs distributions [23], total variation which imposes Laplacian [53, 60] or hyper-Laplacian
[30] prior on image gradients, and generalized Gaussian [33, 39, 6, 14] or scaled mixture of
Gaussian [47] priors for wavelet or curvelet coefficients [3]. Alternatively, modeling the dis-
tribution of patches of an image (i.e., small windows usually of size 8 x 8) has proven to be
a powerful solution. In particular, popular patch techniques rely on non-local self-similarity
[5], Fields of experts [51], learned patch dictionaries [1, 19], sparse or low-rank properties of
stacks of similar patches [9, 11, 32, 29], patch re-occurrence priors [36], Gaussian mixture
model prior on image gradients [21] or image patches [62, 61, 26].

Of these approaches, a successful approach introduced by Zoran and Weiss [62] is to model
patch priors of clean natural images using Gaussian Mixture Models (GMM). The agility of
this model lies in the fact that a prior learned on clean image patches can be effectively
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employed to restore a wide range of inverse problems. It is also easily extendable to include
other constraints such as sparsity or multi-resolution patches [57, 43]. The use of GMMs for
patch priors make these methods computationally tractable and flexible. Although GMM
patch prior is effective and popular, in this article, we argue that a mixture of Generalized
Gaussian distributions (GGMM) is a better fit for image patch prior modeling. Compared to
Gaussian models, Generalized Gaussian distributions (GGD) have an extra degree of freedom
controlling the shape of the distribution and they encompass Gaussian and Laplacian models.

The superior patch prior modeling capability of a GGMM over a GMM is illustrated
in Figure 5. The figure shows histograms of six orthogonal 1-D projections of a clustered
subset of a patch database onto the eigenvectors of its covariance matrix. To illustrate the
difference in the shapes (v) and scales () of the distributions, we have chosen a few projections
corresponding to both the most and the least significant eigenvalues. It can be seen that GGD
is a better fit on the obtained histograms than a Gaussian model. Additionally, different
dimensions of the patch follow a different GGD. Hence, it does not suffice to model all the
feature dimensions of a patch database as Laplacian or Gaussian. Therefore, we propose
to model patch priors as Generalized Gaussian Mixture models (GGMM) with a separate
shape and scale parameters for each feature dimension. This differs from the recent related
approach in [42] that considered GGMM where each component has a fix shape parameter for
all directions.

Organization. After explaining the considered patch prior based restoration framework in
Subsection 2.1 and our motivations in Subsection 2.2, we derive our GGMM based restoration
scheme in Section 3. Unlike [42], that incorporates a GGMM prior in a posterior mean estima-
tor based on importance sampling, we directly extend the maximum a posteriori formulation
of Zoran and Weiss [62] for the case of GGMM priors. While such a GGMM prior has the
ability to capture the underlying distribution of clean patches more closely, we will show that
it introduces two major computational challenges in this case. The first one can be thought
of as a classification task in which a noisy patch is assigned to one of the components of the
mixture. The second one corresponds to an estimation task where a noisy patch is denoised
given that it belongs to one of the components of the mixture. Due to the interaction of the
noise distribution with the GGD prior, we first show in Section 3 that these two tasks lead to
a group of one-dimensional integration and optimization problems, respectively. Specifically,
for x € R, these problems are of the following forms

_ )2 v )2 v
(1) / exp <_(tx) - ‘t‘> dt and argmin == + i .
R

202 Y teR 202 Y

for some v > 0, 0 > 0 and A, > 0. These two problems are studied in Section 4 and Section 5,
respectively. In general, they do not admit closed-form solutions but some particular solutions
or approximations have been derived for the estimation/optimization problem [39, 7]. By
contrast, up to our knowledge, little is known for approximating the classification/integration
one (only crude approximations were proposed in [56]).

Contributions. A major contribution of this paper is to develop an accurate approximation
for the classification/integration problem. In particular, we show that our approximation
error vanishes for + — 0 and * — +o0o when v = 1, see Theorem 1 and Theorem 2. We
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next generalize this result for § < v < 2 in Theorem 3 and Theorem 4. On top of that,
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we prove that the two problems enjoy some important desired properties in Proposition 2
and Proposition 3. These theoretical results allow the two quantities to be approximated by
functions that can be quickly evaluated in order to be incorporated in fast algorithms. Our
last contribution is experimental and concerns the performance evaluation of the proposed
model in image denoising scenario, see Section 6. Together with this paper, we have released
our implementation at https://bitbucket.org/cdeledalle/ggmm-epll.

2. Background. In this section we provide a brief background on the use of patch-based
priors in image restoration and a quick overview of popular patch and image priors.

2.1. Image restoration with patch based priors. We consider the problem of estimating
an image u € RY (IV is the number of pixels) from noisy linear observations v = Au + w,
where A : RY — RM is a linear operator and w € RM is a noise component assumed to
be white and Gaussian with variance o2. In this paper, we will focus on standard denoising
problems where A is the identity matrix, but in more general settings, it can account for loss
of information such as blurring. Typical examples for operator A are: a low pass filter (for
deconvolution), a masking operator (for inpainting), or a projection on a random subspace (for
compressive sensing). To reduce noise and stabilize the inversion of A, some prior information
is used for the estimation of u. Recent techniques [19, 62, 57] include this prior information
as a model for the distribution of patches found in natural clean images. The Expected Patch
Log-Likelihood (EPLL) algorithm [62] restores an image by maximum a posteriori estimation,
corresponding to the following minimization problem:

N
P
2 argmin — |Au — v|? — log p (P;u
(2) rgmi 552 || ; (Piu)

where P; : RY — R” is the linear operator extracting a patch with P pixels centered at the
pixel with location i (typically, P = 8x8), and p(.) is the a priori probability density function
(i.e., the statistical model of noiseless patches in natural images). While the first term in
eq. (2) ensures that Auw is close to the observations v (this term is the negative log-likelihood
under the white Gaussian noise assumption), the second term regularizes the solution u by
favoring an image such that all of its patches fit the prior model of patches in natural images.

Optimization with half-quadratic splitting. Problem (2) is a large optimization problem
where A couples all unknown pixel values of u and the patch prior is often chosen non-convex.
A classical technique, known as half-quadratic splitting [22, 30], introduces N auxiliary un-
known vectors z; € RP, and alternatively consider the penalized optimization problem, for
8 >0, as

®) argmin. 5751w~ of + 5 3 [Pru - =i — 3 logp (=),

21,..,2NERT €1 ez
When 5 — oo, the problem (3) is equivalent to the original problem (2). In practice, an
increasing sequence of 3 is considered, and the optimization is performed by alternating the
minimization for w and z;. Though little is known about the convergence of this algorithm,
few iterations produce in practice remarkable results.
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Figure 1. [llustrations of zero-mean generalized Gaussian distributions for different values of the shape
parameter v. From left to right: v =2, 1.5, 1, .3. Top: one-dimensional versions with variance A\ = 2. Bottom:
1so-contours of the two-dimensional versions with W being a rotation matrix .

Minimization with respect to u. Considering all z; to be fixed, optimizing (3) for w corre-
sponds to solving a linear inverse problem with a Tikhonov regularization, and has an explicit
solution known as the linear minimum mean square estimator (or often referred to as Wiener
filtering):

o romin L 2P P
4) @ = argmin o LAu — ol + 5 D [P~ ]
€L
2 -1 2
_ t Bo t. t Bo ts

where P!P; is a diagonal matrix whose i-th diagonal element corresponds to the number of
patches overlapping the pixel of index 4.
Minimization with respect to z;. Considering u to be fixed, optimizing (3) for z; leads to

(6) Z; < argmin é”le — z;i|* —logp(z;) where 2z; =P .
z; ERP 2

which corresponds to the maximum a posterior denoising problem under the patch prior p of a
patch z; contaminated by Gaussian noise with variance 1//5. The solution of this optimization
problem strongly depends on the properties of the chosen patch prior.
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Figure 2. Illustrations of the iso-lines of (a-d) four two-dimensional priors based on sparse analysis reg-
ularization with 0 < v < 2 and a dictionary Q@ € R**? with four directions. From left to right: the shape
parameter varies respectively as v =2, 1.5, 1, .3.

2.2. Overview of image/patch priors.

Whitening priors. A popular attempt in designing image priors, that can be applied to
patch priors, considers a whitening transform W € RP*P i e., an orthogonal transform that
decorrelated entries of z. Typically, the transform W can be chosen by principal component
analysis on a dataset of clean patches [11], or based on some prior knowledge, e.g., by assuming
decorrelations in the Fourier or wavelet domain [33]. Considering decorrelated and indepen-
dent transform coefficients allows for the prior distribution to be separable in the transformed
domain (i.e., with independent marginals). Early works on wavelet representations of images
(e.g., Mallat, 1989 [33] and Moulin and Liu, 1999 [39]) suggested modeling such coefficients
by a zero-mean generalized Gaussian distribution (GGD) of the form

(7) p(2) < exp (=p"[Wz]y)

where p > 0 and v > 0. Here, choosing 1 < v < 2 models each coefficient by a bell shape
distribution with small tails (the Gaussian distribution for v = 2), see first row on Figure 1(a-
b). Image patches are thus assumed to be concentrated on a convex cluster (an ellipsoid for
v = 2), see second row on Figure 1(a-b). In this setting, the coefficients tend to get closer and
closer to zero (shrinkage) as p increases (becomes a linear shrinkage for v = 2). Consequently,
this leads to diminishing edge features which yields over-smoothed images. To circumvent this
issue v < 1 is considered. It corresponds to modeling each coefficient by a distribution with
a peak at zero (non differentiability) and large tails, see first row on Figure 1(c-d). Image
patches are thus assumed to be spread on an union of orthogonal subspaces aligned with the
directions of the rows of W, see second row on Figure 1(c-d). In this case, the shrinkage
behaves as a thresholding operator such that most coefficients are set to zeros — sparsity —
and a few non-zero coefficients are (more or less) preserved — robustness. As a consequence,
under this scheme, edges can be expected to be preserved and resulting images are sharper.
With such a prior, the maximum a posteriori problem corresponding to (2) is referred to as ¢,
regularization on the orthogonal dictionary whose atoms are the rows of W. The subsequent
optimization problem is well-known to be convex for v > 1, and thus v = 1 is a popular choice
for practical applications.
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Synthesis sparse priors. More recent works have shown that the distribution of clean image
patches can be better modeled by assuming they are sparse combinations of the columns of a
redundant dictionary D € RP*Q, Q > P (i.e., composed of linearly dependent atoms). This is
typically achieved with undecimated (a.k.a, shift-invariant) wavelets [54, 8] or, more generally,
frames [17, 34]. A dictionary can also be learned on a large dataset of clean patches with the
k-SVD algorithm [1]. This is to suggest that the coefficients of an image are spread on a
union of non-orthogonal subspaces aligned with the columns of D, see Figure 2. The so-called
synthesis regularization framework [20], applied to image patches in [19, 57], corresponds to
the following choice of prior distribution

(8) p(z) xexp(—p”|al;,) subjectto z= Da,

where p > 0 and v > 0. Similar to the whitening framework, choosing v < 1 enforces sparsity
without penalizing large non-zero coefficients. A difficulty with such an approach is to deal
with the non-orthogonality of the dictionary in the non-convex setting v < 1. Typically, the
authors of [19, 57| consider the case v = 0 for which greedy techniques such as orthogonal
matching pursuit can be employed [10].

Analysis sparse priors. Alternatively, the distribution of clean images can also be captured
by modeling the correlations of its patches with the rows of a redundant dictionary Q € RO*F
that does not require to span the set of clean images (€2 can be rank deficient). This is the
case with the Total-Variation model [53] that considers the gradient of an image €2 = V, and
any type of filter bank analysis. Similar to the synthesis framework, the dictionary can also
be learned on a large dataset of clean patches with the analysis k-SVD algorithm [52]. This
suggests that the correlations of an image are spread on a union of non-orthogonal subspaces
aligned with the rows of Q. The analysis regularization framework [20], corresponds to the
following choice of prior

9) p(2) o exp (=p"[Qz]7)

where p > 0 and v > 0. Again, choosing v < 1 enforces correlations to be mostly zeros —
co-sparsity — and a few large non-zero correlations. A difficulty with such an approach is to
cope with the non-injectivity of €.

GMM priors. Rather than modeling clean patches as spread on a union of non-orthogonal
sub-spaces, an alternative is to consider a union of ellipsoids (called clusters). To this end,
the authors of [61, 62] suggested using a zero-mean Gaussian mixture model (GMM) prior!,
that, for any patch z € R”, is given by

K
(10) p(2) =Y wiNp(2;0p, i)

k=1

where K is the number of components, w; > 0 are weights such that ) , wy = 1, and
Np(0p, X)) denotes the multi-variate Gaussian distribution with zero-mean and covariance

!To enforce the zero-mean assumption, patches are first centered on zero, then denoised using eq. (6), and,
finally, their initial means are added back. In fact, one can show that it corresponds to modeling p(z — z) with
a GMM where z; = £ Y,z for all 1 < j < P.
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Figure 3. Illustrations of the iso-lines of (a-c) three two-dimensional zero-mean Gaussian distributions and
(d) their mizture with weights 1/2, 1/3 and 1/6 respectively.

3, € RPXP . An illustration of a GMM and its components is given in Figure 3. The hyper-
parameters wy, and 3y can be learned using the Expectation Maximization algorithm [13] on
a large dataset of clean patches [62]. As will be discussed in detail in Section 3, such a prior
in the optimization problem (6) will require (i) looking for the cluster k* that best explains
the given patch z, (ii) performing whitening by projecting z over the main directions of that
cluster (given by the eigenvectors of 3y« ), and (iii) applying a linear shrinkage on the coeffi-
cients with respect to the spread of the cluster (encoded by the eigenvalues). As a function
of z, the resulting approach is a piece-wise linear estimator (PLE) [61]. Last but not least,
when K = 1, this approach is equivalent to the whitening approach with pW = 21_1/ % and
v =2

An advantage of the GMM prior over sparse priors is that all parameters of the prior model
(i.e., 3) and wy) are learned offline. As a consequence, provided that the training dataset
is representative of the image to be restored, no regularization parameters are required to be
tuned during runtime?. By contrast, synthesis (resp. analysis) sparse priors often consider
dictionaries D (resp. ©2) with atoms of unit or prescribed norm. Consequently, the scaling of
the prior controlled by p cannot be fixed once for all images, but will depend on the specific
underlying image and the inverse problem that is being solved (i.e., A and o). For this reason,
the parameter p must be tuned by the practitioner by trial and error, cross-validation or other
dedicated techniques such as [24, 15, 25, 49, 12].

Note that the overview given here is mainly to provide a background for our method and
is far from being exhaustive. Beyond the four aforementioned priors, many other image and
patch priors have been proposed in the literature, including Gaussian scale mixtures [47],
Fields-of-Experts [51], Total Generalized Variation [4] and Student mixture models [55] to
just cite a few that we have omitted.

In this paper, we propose to fill the gap between sparse regularization techniques and
GMM priors. To this end we suggest using a mixture of generalized Gaussian distributions

2Though all regularization parameters are learned, the solver for eq. (2) will have some free internal param-
eters, controlling the convergence, that require some tuning.
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Figure 4. Illustrations of the iso-lines of (a-c) three two-dimensional zero-mean generalized Gaussian
distributions with 0 < v < 2 and (d) their mizture with weights 1/2, 1/3 and 1/6 respectively.

that will enable image patches to be spread over clusters that are bell shaped in some directions
while being peaky in others, see Figure 4. While the use of GMM priors leads to piece-wise
linear estimator, our GGMM prior will lead to a piecewise non-linear shrinkage estimator.

3. Generalized Gaussian Mixture Models. In this paper, we aim to learn K orthogonal
transforms such that each of them can map a subset (cluster) of clean patches into independent
zero-mean coefficients. Instead of assuming the coefficients to be identically distributed, we
consider that both the scale and the shape of their distributions may vary from one coordinate
to another (within the same transform). Our motivation to assume such a highly flexible
model is based on the observation illustrated in Figure 5. Given one of such transform and
its corresponding cluster of patches, we have displayed the histogram of the patch coefficients
for six different coordinates. It can be clearly observed that the shape of the distribution
varies depending on the coordinate. Some of them are peaky with heavy tails, and, therefore,
would not be faithfully captured by a Gaussian distribution, as done in EPLL [62]. By
contrast, some others have a bell shape, and so would not be captured properly by a peaky
and heavy tailed distribution, as done by analysis sparse models [20]. This shows that one
cannot simultaneously decorrelate and sparsify a cluster of clean patches for all coordinates.
Since some of the coordinates reveal sparsity while some others reveal Gaussianity, we propose
to use a more flexible model that can capture such variations. We propose using a multi-variate
zero-mean generalized Gaussian mixture model (GGMM)

K
(11) p(2) =Y wpG(2;0p, *), L")
k=1

where K is the number of components and wy > 0 are weights such that ), wy =1. The
notation G(0p, X, ) denotes the P-dimensional generalized Gaussian distribution (GGD) with
zero-mean, covariance 3 € RP*F (symmetric positive definite) and shape parameter v € RY,
whose expression is

P
(12) G(z:0p, B.v) = exp |-1Z5 P2ly|  with Jal = 3 |l
j=1

_Kk
2|Eu|1/2
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Figure 5. Histograms of the projection of 200,000 clean patches on 6 eigenvectors j = 1,2,3,4,62 and 63
of the covariance matriz of one component k of the mizture (with weight wi, = 1.3%). The contribution of each
clean patch in the histograms is given by its membership values onto this component k (as obtained during the E-
Step of EM). For each histogram, a generalized Gaussian distribution was adjusted by estimating the parameters
X and v by moment estimation (as obtained during the M-Step of our modified EM). For comparisons, we have
also provided illustrations of the best fit obtained with a Gaussian distribution.

L(1/m)
L'(3/v1)

(13) where K = H 1/V> and X2 = x1/2
’ T(1/vp)
TG/vp)

Denoting the eigen decomposition of matrix 3 by ¥ = UAU? such that U € RP*" is unitary
and A = diag(A¥, N5, ..., \%)? is diagonal with positive diagonal elements ()\f)2, »1/2 in the
above expression is defined as »/2 = UAY? and =72 = A~1/2U" is its inverse.

When v is a constant vector with all entries equal to v; = 2, G(0p, X, v) is the multi-
variate Gaussian distribution N (0p,X) (as used in EPLL [62]). When all v; = 1, it is
the multi-variate Laplacian distribution and the subsequent GGMM is a Laplacian Mixture
Model (LMM). When all v; < 1, it is the multi-variate hyper-Laplacian distribution and the
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subsequent GGMM is a hyper-Laplacian Mixture Model (HLMM). Choosing K = 1 with a
constant vector v corresponds to ¢, regularization after whitening with pW = 2;1/ . But
as motivated earlier, unlike classical multivariate GGD models [3, 45, 42], we allow for the
entries of v to vary from one coordinate j to another. To the best of our knowledge, the
proposed work is the first one to consider this fully flexible model.

Proposition 1. The multi-variate zero-mean GGD can be written as

P
(14) Q(Z;OP,E,V)ZHg(mj;O,)\j,l/j) with x=U'z
j=1
where  G(x;0,\,v) = ’{ exp | — u Y
5 Uy Ay 2)\]} )\V
where K = —— and A, = A L/v)

T(1/v)

where © +— G(x;0,\,v) is a real, even, unimodal, bounded and continuous probability density
function. It is also differentiable everywhere except for x =0 when v < 1.

L@/v)

The proof follows directly by injecting the eigen decomposition of ¥ in (12) and basic
properties of x — |z|”. Proposition 1 shows that, for each of the K clusters, eq. (12), indeed,
models a prior that is separable in a coordinate system obtained by applying the whitening
transform U®. Not only is the prior separable for each coordinate j, but the shape (v;) and
scale (\;) of the distribution may vary. As observed in Figure 5, the proposed GGMM models
the underlying distributions of a cluster of clean-patches much better than GGM.

Patch denoising under GGMM prior. We now explain why solving (6) is non-trivial when
using a GGMM patch prior. In this case, for a noisy patch Z with variance o2, equation (6)
becomes

K
(15) Z < argmin %”2 — z|%? —log Zwkg(z; 0p, B*), V(k))]
zeRP <40 —1

Due to the multi-modality of the GGMM prior, this optimization problem is highly non-
convex. To circumvent this issue, we follow the strategy used by EPLL [62] in the specific
case of Gaussian mixture model prior. The idea is to restrict the sum involved in the logarithm
in eq. (15) to only one component k*. If we consider the best k* to be given (the strategy to
select the best k* will be discussed in the next section), then eq. (15) is approximated by the
following simpler problem

~ . E_Z 2 * * 2 — Z 2 * —1/2
(16) =« sgin {”202"10gg<z;op,z<k>,u<’f ) =B s znz} .
zE

The main advantage of this simplified version is that, by virtue of Proposition 1, the underlying
optimization becomes tractable and can be separated into P one-dimensional optimization
problems, as:

(17) 2=Uz where ;=57 (z;) with 2=U'2



IMAGE RESTORATION WITH GENERALIZED GAUSSIAN MIXTURE MODEL PATCH PRIORS 11

1 v r(1
(18) and s () € argmin 75 (¢ —2)” + ‘iz where A, = A FE?’;Z; .

While the problem is not necessarily convex, its solution Sy is always uniquely defined almost
everywhere (see, Section 5). We call this almost everywhere real function s”, : R — R
shrinkage function. When v = 2, it is a linear function that is often referred to as Wiener
shrinkage. When v # 2, as we will discuss in Section 5, it is a non-linear shrinkage function
that can be computed in closed form for some cases or with some approximations.

Now, we address the question of finding a strategy for choosing a relevant component k*
to replace the mixture distribution inside the logarithm. The optimal component k* can be
obtained by maximizing the posterior as

(19) k* € argmax p(k | 2) = argmax wgp(Z | k) = argmin — log wy, — logp(Z | k)

1<k<K 1<k<K 1<k<K
where the weights of the GGMM corresponds to the prior probability wy = p(k). We next use
the fact that the patch Z (conditioned on k) can be expressed as Z = z + n where z and n
are two independent random variables from distributions G(0p, =k v®)y and N (0p, 021dp)
respectively. It follows that the distribution of z is the convolution of these latter two, and
then

(20) —logp(z | k) = —log G(z — z;0p, 2% L") N (2;0p,0%Idp) dz .
RP

We next use Proposition 1 to separate this integration problem into P one-dimensional inte-
gration problems as

(21) —logp(Z | k)= (&) with &= Uz,
j=1

(22) where  f\(z) = —log/ Gz —t;0,\,v) - N(t;0,0%) dt .
R

We call the real function f7, : R — R the discrepancy function which measures the goodness
of fit of a GGD to the noiéy value z. When v = 2, this function is quadratic with x. For
v # 2, as we will discuss in Section 4, it is a non-quadratic function, that can be efficiently
approximated based on an in-depth analysis of its asymptotic behavior.

The next two sections are dedicated to the analysis and approximations of the discrepancy
function f”, and the shrinkage function s ,, respectively.

4. Discrepancy function: analysis and approximations. From its definition given in
eq. (22), the discrepancy function reads for v > 0, 0 > 0 and A > 0, as

(23)  fY\(x) = log \/21?0 %F”(l 7 o /_ Z exp (-%‘@j) exp [— (t’)] dt

It corresponds to the negative logarithm of the distribution of the sum of a zero-mean gen-
eralized Gaussian and a zero-mean Gaussian random variables. When v = 2, the generalized
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Gaussian random variable becomes Gaussian, and the resulting distribution is also Gaussian
with zero-mean and variance o2 + A2, and then

1 x2
2 _ 2 2
(24) oA (T) = 5 [log 2 +log(o” + \°) + 024—)\2]

Remark 1. For v = 2, a direct consequence of (24) is that —logp(Z | k) is as an affine
function of the Mahanalobis distance between z and Op for the covariance matriz »®) 4 621dp:

1
25 —logp(2 | k) = = | Plog2m + log |=®) + 6%1dp| + 2¢(Z¥) + o2Idp) 12
2

When v = 1, the generalized Gaussian random variable becomes Laplacian, and the distri-
bution resulting from the convolution also has a closed form which leads to the following
discrepancy function

2
(26) ;,\(x) = log(2v2)\) — % — log [e@l erfc (\/;a + i) + e % erfe (_\/ga + i)] ,
refer to Appendix A for derivation.

To the best of our knowledge, there are no simple expressions for other values of v. One
solution proposed by [56] is to express this in terms of the bi-variate Fox-H function [37].
This, rather cumbersome expression, is computationally demanding. In practice, this special
function requires numerical integration techniques over complex lines [46], and is thus difficult
to numerically evaluate it efficiently. Since, in our application, we need to evaluate this
function a large number of times, we cannot utilize this solution.

In [56], the authors have also proposed to approximate this non-trivial distribution by an-
other GGD. For fixed values of o, A and v, they proposed three different numerical techniques
to estimate its parameters X and v/ that best approximate either the kurtosis, the tail or the
cumulative distribution function. Based on their approach, the discrepancy function fUV’ \()

would thus be a power function of the form z* .

In this paper, we show that f”, does, indeed, asymptotically behave as a power func-
tion for small and large values of i:, but the exponent can be quite different for these two
asymptotics. We believe that these different behaviors are important to be preserved in our
application context. For this reason, f”, cannot be modeled as a power function through
a GGD distribution. Instead, we providé an alternative solution that is able to capture the
correct behavior for both of these asymptotics, and that also permits fast computation.

4.1. Theoretical analysis. In this section, we perform a thorough theoretical analysis of
the discrepancy function, in order to approximate it accurately. Let us first introduce some
basic properties regarding the discrepancy function.

Proposition 2. Let v > 0, ¢ > 0, A > 0 and f;, as defined in eq. (22). The following
relations hold true

(reduction) for(@) =logo + f{,(x/0)



IMAGE RESTORATION WITH GENERALIZED GAUSSIAN MIXTURE MODEL PATCH PRIORS 13

G(0,v = 2,)) x N'(0,1) fia() ¥i(2)
10
3
10 |
2
5 5
! N
Q
N
o 0
0 0
-10 0 10 -5 0 5 0 5 10
T log

Figure 6. From left to right: the convolution of a Gaussian distribution with standard deviation A = 2
with a Gaussian distribution with standard deviation o = 1, the corresponding discrepancy function and log-
discrepancy function.

(even) foa(@) = foa(=2),
(unimodality) |z > [y < fﬁx(\ = (!y\)
(lower bound at 0) melﬁg o (T) = [ (0) > —

The proofs can be found in Appendix B. Based on Proposition 2, we can now express the
discrepancy function f y(z) : R = R in terms of a constant 7§ and another function ¢¥ :
R% — R, both of which can be parameterized by only two parameters A > 0 and v > 0, as

FKolelo) i 2
27 /(@) =1 2 N v
27 Joalw) =log o+ 75, + { 0 otherwise ,
(28) where  §(2) =log [f{y(z) —7%] and = f1,(0) .

We call 5 the log-discrepancy function.

At this point, let us consider an instructive toy example for the case when v = 2. In this
case, from eq. (24), we can deduce that the log-discrepancy function is a log-linear function
(i.e., a linear function of log x)

(29) pX(2) = alogz + 8,
(30) and 73 = 3 [log2r +log(1+ \?)] ,
(31) where a=2 and f=—log2—log(l+ \?).

Here, the slope a = 2 reveals the quadratic behavior of the discrepancy function. Figure 6
gives an illustration of the resulting convolution (a Gaussian distribution), the discrepancy
function (a quadratic function) and the log-discrepancy (a linear function with slope 2). Note
that quadratic metrics are well-known to be non-robust to outliers, which is in complete
agreement with the fact that Gaussian priors have thin tails.
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G(0,v =1,)) * N'(0,1) fi(@)
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Figure 7. From left to right: the convolution of a Laplacian distribution with standard deviation A = 2
with a Gaussian distribution with standard deviation o = 1, the corresponding discrepancy function and log-
discrepancy function.

Another example is the case of v = 1. From eq. (26), the log-discrepancy is given by

(32) o) () = log [log [2erfe (1)] —log [e@ erfc (% + %) +e S erfc (-% + %)H )

(33) and v} = %logQ + log A — % —log [erfc (%)] .

Unlike for v = 2, this function is not log-linear and thus f; ) is not a power function. Never-
theless, as shown by the next two theorems, it is also asymptotically log-linear for small and
large values of x.

Theorem 1. The function cp}\ is asymptotically log-linear in the vicinity of O

(34) o) () T logz + 31,

(35) where a1 =2 and [ = —log\+log

erfc (%) A

1exp( L) 1]

The proof can be found in Appendix C.

Theorem 2. The function goi is asymptotically log-linear in the vicinity of +oo
(36) Ph(x) ~ axloga + o |
1
(37) where «as =1 and (o= 5 log2 —log \ .

The proof can be found in Appendix D.

Theorem 1 and Theorem 2 show that wi has two different asymptotics that can be ap-
proximated by a log-linear function. Interestingly, the exponent a; = 2 in the vicinity of 0
shows that the Gaussian distribution involved in the convolution prevails over the Laplacian
distribution and thus, the behavior of f; ) s quadratic. Similarly, the exponent as = 1 in the
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vicinity of +o0o shows that the Laplacian distribution involved in the convolution prevails over
the Gaussian distribution and the behavior of fU1 y is then linear. These results are supported
by Figure 7 which illustrates the resulting convol{ltion, the discrepancy function (eq. (26)) and
the log-discrepancy function (eq. (32)). Furthermore, the discrepancy function f!, shares a
similar behavior with the well-known Huber loss function [28], known to be more robust to
outliers. This is again in complete agreement with the fact that Laplacian priors have heavier
tails.

In the case % < v < 2, even though ¢f has no simple closed form expression, the similar
conclusions can be made as a result of the next two theorems.

Theorem 3. Let v > 0. The function X is asymptotically log-linear in the vicinity of 0

[e'e) _3 t| v
t2e " _ (Y]
/—oo ©’ P |: (AV> :|
o2 1"
— | — dt
/oo6 : b |: ()‘V> :|

Theorem 4. Let % < v <2, then ¢Y is asymptotically log-linear in the vicinity of +oo

o5 (x) vl logx + 31,

where a1 =2 and By =—log2+1log|1—

The proofs can be found in Appendix E.

@K (x) ~ azlogz + By .

I'(1/v)
T(3/v)

where as =v and [o=—viog\— glog

The proofs rely on a result of Berman (1992) [2] and is detailed in Appendix F.

Remark 2. For v > 2, an asymptotic log-linear behavior with as = 2 and B2 = —log2 can
be obtained using exactly the same sketch of proof as the one of Theorem 4.

Remark 3. For v =2, we have goi 18 linear, f1 = —log 2 —log (1 + )\2) and By = —log2 —
log A2, which shows that Theorem 4 cannot hold true for v = 2.

Remark 4. Forv =1, Theorem 1 and Theorem 2 coincide with Theorem 3 and Theorem 4.

Remark 5. For 0 < v < %, though we did not succeed in proving it, our numerical simula-
tions also revealed a log-linear asymptotic behavior for x — oo in perfect agreement with the
expression of g and PBa given in Theorem 4.

Again, the exponent a; = 2 in the vicinity of 0 shows that the Gaussian distribution in-
volved in the convolution prevails over the generalized Gaussian distribution and the behavior
of f7 is then quadratic. Similarly, the exponent ap = v in the vicinity of +oo shows that
the generalized Gaussian distribution involved in the convolution prevails over the Gaussian
distribution and the behavior of f7, is then a power function of the form z”. These results
are supported by Figure 8 that illustrates the resulting convolution, the discrepancy function
and the log-discrepancy function for v = 1.5 and v = .3. Moreover, the discrepancy function
f;’, y with < 1 shares a similar behavior with well-known robust M-estimator loss functions
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G(0,v =1.5,)) « N'(0,1) (@) o) (x)
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Figure 8. From left to right: the convolution of a generalized Gaussian distribution with standard deviation
A = 2 with a Gaussian distribution with standard deviation o = 1, the corresponding discrepancy function and
log-discrepancy function. From top to bottom: the GGD has a shape parameter v = 1.5 and .3, respectively.

[27]. In particular, the asymptotic case for v — 0 resembles the Tukey’s bisquare loss, known
to be insensitive to outliers. This is again in complete agreement with GGD priors having
larger tails as v goes to 0.

Figure 9 shows the evolution of the log-discrepancy function for various values of v in
the context of three different signal-to-noise ratio A/o (SNR). One can observe that as the
SNR decreases (resp., increases), the left (resp., right) asymptotic behavior starts dominating
over the right (resp., left) asymptotes. In other words, for v < 2, the intersection of the two
asymptotes goes to +00 (resp., —o0). Last but not least, for 0 < v < 2, the log-discrepancy
function ¢ is always concave and since ap < « it is thus upper-bounded by its left and right
asymptotes.

From Theorem 3, Theorem 4 and Remark 5, we can now build two asymptotic log-linear
approximations for ¢¥, with 0 < v < 2, and subsequently an asymptotic power approximation
for f¥, by using the relation (27). Next, we explain the approximation process of the in-
between behavior, as well as its efficient evaluation.
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SNR: A\/o =0.25 SNR: A/o =10 SNR: \/o = 400

v=20.3
v=1.0
v=15
v=2.0

0 5 10 15 0 5 10 15 0 5 10 15
log x log x log

Figure 9. Illustrations of the log-discrepancy function for various 0 < v < 2 and SNR \/o.

4.2. Numerical approximation. We now describe the proposed approximation of the dis-
crepancy function f{', through approximating @ of the log-discrepancy function as

(38) fia(@) =% +exp@(z) where A% = f1,(0) .

Based on our previous theoretical analysis, a solution preserving the asymptotic, increasing
and concave behaviors of ¢} , can be defined by making use of the following approximations

(39) @5(x) = arlog|z| + 1 — rec(ar log|z| + B1 — azlog |z| — B2)
where rec is a so-called rectifier function that is positive, increasing, convex and satisfies

(40) Ill)llloo rec(z) =0 and rec(z) LT

In this paper, we consider the two following rectifying functions
T

(41) relu(x) = max(0,z) and softplus(x)= hlog [1 + exp (h

) n>o0.
as coined respectively in [40] and [18]. Using the function relu (Rectified linear unit) leads
to an approximation @Y that is exactly equal to the asymptotes of ¢} with a singularity at
their crossing point. In this paper, we will instead use the function softplus as it allows the
approximation of ¢ to converge smoothly to the asymptotes without singularity. Its behavior
is controlled by the parameter h > 0. The smaller the value of h is, the faster the convergence
speed to the asymptotes.

The parameter h should be chosen such that the approximation error between @ () and
@5 (x) is as small as possible. This can be done numerically by first evaluating ¢ (z) with
integration techniques for a large range of values x, and then selecting the parameter h by
least square. Of course, the optimal value for h depends on the parameter A and v.

Figure 10 gives an illustration of our approximations of the log-discrepancy and the
corresponding distribution obtained with relu and softplus. On this figure the underlying
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e G (0, v = 0.8, \) * N(0, 1)
J A = = = Softplus approx.
FA Relu approx.
A
01 r i
Log-discrepancy ¢¥
= = = Softplus approx. 0 —
2 r Relu approx. 1
-1 0 1 2 3 0 10 20
log x T

Figure 10. Illustrations of our approximations of X and the corresponding underlying posterior distribution
N(0,v,\) xG(0,1) (where v = .8 and A =4). The blue curves have been obtained by evaluating the convolution
using numerical integration techniques for all x. The dashed curves are obtained using the proposed relu- and
softplus-based approximations that have closed-form expressions.

functions have been obtained by numerical integration for a large range of value of z. One
can observe that using softplus provides a better approximation than relu.

Our approximation for ff \(2) is parameterized by six scalar values: W, a1, B, ag, Ba
and h that depend only on the original parameters A\ and v. From our previous analysis, we
have that a; = 2 and ay = v. The other parameters are non-linear functions of A and v. The
parameters ’yﬁ, B1 and (o require either performing numerical integration or evaluating the
special function I'. As discussed, the parameter h requires numerical integration for various x
and then optimization. For these reasons, these values cannot be computed during runtime.
Instead, we pre-compute these four parameters offline for 10,000 different combinations of A
and v values in the intervals [1073,103] and [0.3, 2], respectively (the choice for this range will
be motivated in Section 6). The resulting values are then stored in four corresponding look-
up-tables. During runtime, these parameters are retrieved online by bi-linear extrapolation
and interpolation. The four look-up-tables are given in Figure 11. We will see in Section 6
that using the approximation ff , results in substantial acceleration without significant loss of
performance as compared to computing ff y directly by numerical integration during runtime.

5. Shrinkage functions: analysis and approximations. Recall that from its definition
given in eq. (18), the shrinkage function is defined for v > 0, ¢ > 0 and A > 0, as

—$)2
(42) Sy(T) € argmin (z 1)

gnin <o A
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Figure 11. Look-up-tables used to store the values of the parameters v5, b1, bz and h for various .3 < v < 2
and 1073 < A < 10%. A regular grid of 100 values has been used for v and a logarithmic grid of 100 values has
been used for X. This leads to a total of 10,000 combinations for each of the four look-up-tables.

5.1. Theoretical analysis. Except for some particular values of v (see, Subsection 5.2),
Problem (42) does not have explicit solutions. Nevertheless, as shown in [39], Problem (42)
admits two (not necessarily distinct) solutions. One of them is implicitly characterized as

0 if 0<v<1l and |z|< 7Y,
v )\(l’) — { | | A

(43) %o, t* otherwise ,

where t* =z — Sign(t*)VUQA;VWV_I )

(2-1)(2—20) = (2A\V) 7 if v<l1,

and Ty =
A o2\t otherwise (v =1) .

The other one is obtained by changing |z| < 7§ to |z| < 7§ in (43), and so they coincide
for almost every (z,,0,v). As discussed in [39], for v > 1, s¥ () is differentiable, and for
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Figure 12. lllustrations of the shrinkage function for various 0 < v < 2 and SNR \/o.

v < 1, the shrinkage exhibits a threshold 73 that produces sparse solutions. Proposition 3
summarizes a few important properties.

Proposition 3. Let v > 0, 0 > 0, A > 0 and s; , as defined in eq. (18). The following
relations hold true

(reduction) Soa(T) = O'SILA (g) ,
(odd) So(T) = =55\ (=)

. y 0,z] o >0
(shrinkage) soa(@) € { [z,0] otherwise
(increasing with ) T 2 X2 & 8, (11) = s\ (22)
(increasing with \) AL 2 A& sy () = 80, (2)
(kill low SNR) lim s, (2) =0,

Z—0
(keep high SNR) Alim Spa(T) = .
Z—+o0

The proofs can be found in Appendix G. These properties show that Sy.» is indeed a shrinkage
function (non-expansive). It shrinks the input coefficient x according to the model v and the
modeled signal to noise ratio g (SNR). When z is small in comparison to the SNR, it is likely
that its noise component dominates the underlying signal, and is, therefore, shrunk towards
0. Similarly, when x is large, it will likely be preserved. This is even more likely when v is
small, since in this case large coefficients are favored by the prior. Illustrations of shrinkage
functions for various SNR and v are given in Figure 12.

5.2. Numerical approximations. The shrinkage function s ,, implicitly defined in (43)
does not have a closed form expression in general. Nevertheless, for fixed values of x, o, A, v,
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Table 1
Shrinkage function under generalized Gaussian priors

v Shrinkage s” , (z) Remark
<1 r—~yz' "t O YY i ] > Y ~ Hard-thresholding
0 otherwise [39]

. Soft-thresholding
1 sign(z) max <\x| - 0> [16]

4/3 x+7<3<x—3<+$> [7]

(VE+ R =)

4

3/2 sign(z) [7]

)\2

m X Wiener (LMMSE)

2 7\?
with v =vo“)\,;Y and (= x2+4(§) .

s (x) can be estimated using iterative solvers such as Newton descent or Halleys root-finding
method. These approaches converge quite fast and, in practice, reaches a satisfying solution
within ten iterations. However, since in our application of interest we need to evaluate this
function a large number times, we will follow a different path in order to reduce computation
time (even though we have implemented this strategy).

As discussed earlier, s” , is known in closed form for some values of v, more precisely:
v ={1,4/3,3/2,2} (as well as v = 3 but this is out of the scope of this study), see for instance
[7]. When v = 2, we retrieve the linear minimum mean square estimator (known in signal
processing as Wiener filtering) and related to Tikhonov regularization and ridge regression.
This shrinkage is linear and the slope of the shrinkage goes from 0 to 1 as the SNR increases (see
Figure 12). When v = 1, the shrinkage is the well-known soft-thresholding [16], corresponding
to the maximum a posteriori estimator under a Laplacian prior. When v < 1, the authors of
[39] have shown that (i) the shrinkage admits a threshold with a closed-form expression (given
in eq. (43)), and (ii) the shrinkage is approximately equal to hard-thresholding with an error
term that vanishes when |z| — co. All these expressions are summarized in Table 1.

In order to keep our algorithm as fast as possible, we propose to use the approximation of
the shrinkage given for v < 1 in [39]. Otherwise, we pick one of the four shrinkage functions
corresponding to v = {1,4/3,3/2,2} by nearest neighbor on the actual value of v € [1,2].
Though this approximation may seem coarse compared to the one based on iterative solvers,
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Figure 13. Set of 100 patches, sorted by the norm of their gradient, and generated to be independently
distributed according to (from left to right) a GMM, GGMM, LMM and HLMM. For ease of visualization, only
the top eigendirections corresponding to 80% of the variance have been chosen. Near-constant patches with
variance smaller than 2|Zk|7 have also been discarded.

we did not observe any significant loss of quality in our numerical experiments (see Section 6).
Nonetheless, this alternative leads to 10 times speed-up while evaluating shrinkage.

6. Experimental evaluation. In this section we explain the methodology used to learn and
validate the GGMM model, and present numerical experiments to compare the performance
of the proposed GGMM model over existing GMM-based image denoising algorithms. To
demonstrate the superiority of allowing for a flexible GGMM model, we also present results
using GGMM models with fixed shape parameters, v = 1 (Laplacian mixture model) and
v = 0.5 (Hyper-Laplacian mixture model).

Learning. For consistency purposes, we keep the training data and the number of mixture
components in the models the same as that used in the original EPLL algorithm [62]. Specif-
ically, we train our models on 2 million clean patches extracted from Berkeley Segmentation
Dataset (BSDS) [35]. We learn K = 200 zero-mean generalized Gaussian mixture compo-
nents from patches of size 8 x 8. Parameter estimation is carried out using the Expectation-
Maximization (EM) algorithm [13], that is known to monotonically increase the likelihood
and converge to a local minimum. For applying EM to GGMM learning, we leverage stan-
dard strategies used for parameter estimation for GGD and/or GGMM that are reported in
previous works [33, 3, 38, 45, 31]. We opted for a warm-start training by initializing our
GGMM model with the GMM model from [62] and with initial values of shape parameters
as 2. The EM algorithm is run until convergence or for a preset number of iterations (e.g.,

100 iterations). We noticed that a shape parameter V;k) < .3, leads to numerical issues and

V](.k) > 2 leads to a local minima with several degenerate components. For this reason, we

impose the constraint that the learned shape parameters satisfy V](.k) € [.3,2]. This observation

is consistent with earlier works that have attempted to learn GGMM shape parameter from
data [50]. Lastly, for learning Laplacian mixture model (LMM) and hyper-Laplacian mixture
model (HLMM), we use the same procedure described above but force all shape parameters
to be equal to 1 or 0.5, respectively.

Model validation. As discussed in Section 3, Figure 5 illustrates the validity of our model
choices with histograms of different dimensions of a single patch cluster. It clearly shows the
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Figure 14. Average log-likelihood of all non-overlapping patches (with subtracted mean) of each of the 40
tmages of our validation subset of the testing BSDS dataset for the GMM, GGMM, LMM and HLMM. The
total average over the 40 images is shown in the last column.

importance of allowing the shape and scale parameter to vary across dimensions for capturing
underlying patch distributions.

Since GGMM (and obviously, GMM) falls into the class of generative models, one can also
assess the expressivity of a model by analyzing the variability of generated patches and its
ability to generate relevant image features (edges, texture elements etc.). This can be tested
by selecting a component k of the GGMM (or GMM) with probability wy and sampling
patches from the GGD (or GD) as described in [41]. Figure 13 presents a collage of 100
patches independently generated by this procedure using GMM, GGMM, LMM and HLMM.
As observed, patches generated from GGMM show greater balance between strong/faint edges,
constant patches and subtle textures than the models that use constant shape parameters such
as GGM, LMM and HLMM.

The superiority of our GGMM model over GMM, LMM or HLMM models can also be
illustrated by comparing the log-likelihood (LL) achieved by these models over a set of clean
patches from natural images. Note that, to maintain objectivity, the models have to be tested
on data that is different than the dataset used during training. To this end, we compute the
LL of the four above-mentioned models on all non-overlapping patches of 40 randomly selected
images extracted from BSDS testing set [35], which is a different set than the training images
used in the EM algorithm (parameter estimation/model learning). One can observe that not
only GGMM is a better fit than GMM, LMM and HLMM on average for the 40 images, but
it is also a better fit on each single image.

Denoising evaluation. Following the verification of the model, we provide a thorough evalu-
ation of our GGMM prior in denoising task by comparing its performance against EPLL that
uses a GMM prior [62] and with our LMM and HLMM models explained above. For the ease
of comparison, we utilize the pipeline that was prescribed for the original EPLL [62] algorithm.
Specifically, we subject the noisy images to 5 iterations of the denoising procedure with the
estimate from one iteration fed in as the input for the next one. The iterative procedure is
initialized using first estimate & = y and with the parameter 3 set to #{1,4,8, 16,32} for
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Table 2
Image denoising performance comparison of EPLL algorithm with different priors. PSNR and SSIM values
are obtained on the BSDS test set (average over 60 images), and on siz standard images corrupted with 3
different levels of noise. BMS8D algorithm results are also included for reference purposes.

o Algo. BSDS barbara cameraman  hill  house lena  mandrill Avg.
PSNR
BM3D  37.33  38.30 38.33 36.03  39.79  38.70 35.24 37.37
5 GMM 37.26  37.58 38.13 35.92 38.83 38.50 35.21 37.27
GGMM 37.33 37.72 38.18 35.92 38.91 38.52 35.22 37.34
LMM 37.31 37.83 38.15 35.87 38.90 38.49 35.17 37.32
HLMM  36.85  37.42 37.70 35.40 38.33 38.08 34.75 36.86
BM3D  29.38  31.81 30.39 28.59  33.79  33.02 26.62 29.50
20 GMM 29.35 29.74 30.10 28.45  32.77  32.37 26.62 29.41
GGMM 29.43 30.08 30.22 28.50 33.01 32.59 26.68 29.50
LMM 29.29 30.21 30.01 28.38 33.23 32.72 26.46 29.37
HLMM  28.48 29.34 29.00 2771 3254 32.11 25.47 28.56
BM3D  24.81 26.26 25.39 2449 28.73 28.16 21.71 24.90
60 GMM 24.54 23.78 25.10 24.24 2733 27.19 21.56 24.57
GGMM 24.63 23.96 25.27 24.28 27.65 27.49 21.48 24.67
LMM 24.55 23.88 25.10 24.27 27.73 27.55 21.33 24.59
HLMM  23.95 23.17 23.80 23.86  26.97 26.98 20.65 23.98
SSIM
BM3D  .9619 .9643 9617 9507 9567 9435 .9585 9614
5 GMM .9627 9617 .9608 9511 .9474 .9435 .9598 .9619
GGMM .9628 .9618 .9604 9503 9461  .9424 9592 .9619
LMM .9620 9615 .9599 9488 9443 9408 9576 9611
HLMM  .9562 9571 9570 9408 9359  .9352 .9501 .9553
BM3D  .8236 .9050 .8687 7791 8729  .8769 7962 .8260
20 GMM .8313 .8691 .8681 L7813 .8582  .8641 .8048 .8322
GGMM .8296  .8728 .8691 STTTT 8614 8679 .8010 .8307
LMM .8176 .8729 .8599 7639 .8638 .8687  .7849 .8192
HLMM  .7884 .8502 .8426 7325 .8577  .8594 7383 .7907
BM3D  .6373 7562 7572 5802 7917 7753 5012 .6424
60 GMM .6205 .6455 7172 5675 7386  .7281 .5014 .6232
GGMM 6176  .6512 .7318 .5b86G 7564 7416 4769 .6208
LMM .6120 .6475 7299 BB77 L7596 .7443 4614 .6155
HLMM 5775 6117 7025 5268 7487 7338 .3843 .5812

each iteration, respectively. To reduce the computation time of all EPLL-based algorithms,
we utilize the random patch overlap procedure introduced by [44]. That is, instead of ex-
tracting all patches at each iteration, a randomly selected but different subset of overlapping
patches consisting of only 3% of all possible patches is processed in each iteration. For the
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sake of reproducibility, we made our MATLAB/MEX-C implementation available online at
https://bitbucket.org/cdeledalle/ggmm-epll.

The evaluation is carried out on classical images such as Barbara, Cameraman, Hill, House,
Lena and Mandrill, and on 60 images taken from BSDS testing set [35] (the original BSDS test
data contains 100 images, the other 40 were used for model validation experiments). All image
have been corrupted independently by additive white Gaussian noise with standard deviation
o = 5,20 and 60 (with pixel values between [0,255]). The EPLL algorithm using mixture
of Gaussian, generalized Gaussian, Laplacian and hyper-Laplacian priors are indicated as
GMM, GGMM, LMM and HLMM in Table 2. BM3D algorithm [9] also included for reference
purposes. To stay with the focus of this paper, i.e., on the effect of image priors on EPLL-
based algorithms, BM3D will be excluded from our performance comparison discussions. The
denoising performance of the algorithms are measured in terms of Peak Signal to Noise Ratio
(PSNR) and Structural SIMilarity (SSIM) [58]. As can be observed in Table 2, in general,
GGMM prior provides better PSNR performance than the three other priors. In terms of
SSIM, GGMM prior is comparable to GMM. The differences in denoising performance can
also be verified visually in Figure 15, Figure 16 and Figure 17. The denoised images obtained
using GGMM prior show much fewer edge artifacts as compared to GMM-EPLL results. On
the other hand, GGMM prior is also able to better preserve textures than LMM and HLMM.

Prior fitness for image denoising. In this work, we have considered non-blind image de-
noising. That is, the noise standard deviation is assumed to be known. In this setting, if
the restoration model is accurate, one should ideally achieve optimal restoration performance
when using the true degradation. To verify this, we conducted a denoising task with image
corrupted with noise with standard deviation ¢ = 20. We used GMM, LMM and GGMM
priors in the restoration framework with assumed o values ranging from 15 to 30. Figure 18
shows the evolution of average restoration performance over 40 images from BSDS testing set
(kept aside for validation, as mentioned above) with varying noise variances. GGMM prior
attains its best performance when the noise variance used in the restoration model matches
with the ground truth o = 20. In contrast to GGMM, GMM (resp., LMM) reaches its best
performance at a larger (resp., lower) value of o than the correct noise used during degrada-
tion. This is because GMM tends to under-smooth clean patches (resp., over-smooth) so that
a larger (resp., lower) value of o is required to compensate the mismatch between the assumed
prior and the actual distribution in the restoration model. This indicates that GGMM is a
better option to model distribution of image patches than GMM or LMM.

Influence of our approximations. All previous experiments using GGMM patch priors were
conducted based on the two proposed approximations introduced in Section 4 and Section 5.
In Figure 19, we provide a quantitative illustration of the speed-ups provided by these approx-
imations and their effect on denoising performance. Figure 19.(a) shows the result obtained by
calculating original discrepancy function via numerical integration and the shrinkage function
via Halley’s root-finding method. This makes the denoising process extremely slow and takes
6 hours and 20 minutes for denoising an image of size 128x128 pixels. The approximated
discrepancy function provides 4 orders of magnitude speed-up with no perceivable drop in
performance (Figure 19.(b)). In addition, incorporating the shrinkage approximation pro-
vides further acceleration that allows the denoising to complete in less than 2 seconds with a
very minor drop in PSNR/SSIM. Although the shrinkage approximation provides an acceler-
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ation of ten-fold to the shrinkage calculation step, please note that the 10x speed-up is not
reflected in the denoising process due to the major bottleneck caused by discrepancy function
calculation. The approximately 15,000x speed-up realized without any perceivable drop in
denoising performance underscores the efficacy of our proposed approximations.

7. Conclusions and Discussion. In this work, we suggest using a mixture of generalized
Gaussians for modeling the patch distribution of clean images. We then provide a detailed
study of the challenges that one encounters when using a highly flexible GGMM prior for image
restoration in place of a more common GMM prior. We identify the two main bottlenecks in
the restoration procedure using EPLL and GGMM namely the patch classification step and
the shrinkage step. One of the main contributions of this paper, is the thorough theoretical
analysis of the classification problem allowing us to introduce an asymptotically accurate
approximation being computationally efficient. In order to tackle the shrinkage step, we
collate and extend the existing solutions for the shrinkage function under GGMM prior.

Our numerical experiments indicate that our flexible patch GGMM is a better fit for each
single image than GMM and other mixtures with constant shape parameters such as LMM or
HLMM. In image denoising tasks, we have shown that using GGMM priors often outperforms
GMM when used in the EPLL framework. Nevertheless, we believe the performance of GGMM
prior in these scenarios falls short of its expected potential. Given GGMM is systematically
a better prior than GMM, one would expect the GGMM-EPLL to outperform GMM-EPLL
consistently. We postulate that even though the GGMM prior is improving the quality of
the global solution, the half quadratic splitting strategy used in EPLL has no guarantee to
return a better solution due to the non-convexity of the underlying problem. For this reason,
we will focus our future work in designing specific optimization strategies for GGMM-EPLL
leveraging the better expressivity of the model. Also, preliminary results on inverse problems
indicates that degradation- and prior-specific algorithmic design should be employed to make
GGMM-EPLL more competitive against GMM-EPLL (otherwise they both are on par). The
development of such a formulation designed to adapt according to the properties of chosen
priors and presented degradations is still under investigation.

Acknowledgments. The authors would like to thank Charles Dossal and Nicolas Pa-
padakis for fruitful discussions.

Appendix A. Proof of equation (26).
Proof. For v =1, using I'(1) = 1 and I'(3) = 2, we obtain

1 2 Voa—t
(44) o (@) =log(2v/mo ) — log/ e 22 A dt,
—00
V2z o2 v V2 2 Vo
(45) = log(2y/mo)) — log [ef/ A dt+ef/ e R dt]
o .

+2

Since erf’(t) = 2— it follows that for @ > 0 and b > 0

I

(46) gt [_\/ﬁe& erf <_t _ ﬁ)] _ -t
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30 " 30.53 / 0.

§
29.48 / 0.8504

(f) HLMM (v = 0.5)

Figure 15. (a) Close in on the image Castle from the BSDS testing dataset, (b) a noisy version degraded
by additive white Gaussian noise with standard deviation o = 20 and (c)-(f) results of EPLL under four patch
priors: GMM, GGMM, LMM and HLMM, respectively. PSNR and SSIM are given in the bottom-left corner.
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30.22 / 0.8691

(d) GGMM (3 < v <2)

30.01 / 0.8599 29.00 / 0.8426

() LMM (v =1) (f) HLMM (v = 0.5)
Figure 16. (a) Close in on the standard image Cameraman. (b) a noisy version degraded by additive white

Gaussian noise with standard deviation o = 20 and (c)-(f) results of EPLL under four patch priors: GMM,
GGMM, LMM and HLMM, respectively. PSNR and SSIM are given in the bottom-left corner.
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30.07 / 0.8728

(d) GGMM (3 < v < 2)

30.21 / 0.8730 29.30 / 0.8490

(e) LMM (v =1) (f) HLMM (v = 0.5)
Figure 17. (a) Close in on the standard image Barbara. (b) a noisy version degraded by additive white

Gaussian noise with standard deviation o = 20 and (c)-(f) results of EPLL under four patch priors: GMM,
GGMM, LMM and HLMM, respectively. PSNR and SSIM are given in the bottom-left corner.



30 C. DELEDALLE, S. PARAMESWARAN, AND T.Q. NGUYEN

30 ‘ T
\ GGMM
\ LMM (v =1)
295 L + GMM (1/ = 2) A
— — —Realo
| %  Optimal GGMM
o | %  Optimal LMM
% 29 \ Optimal GMM | -
A~ \
\
\
28.5 - | 1
|
|
28 '
15 20 25 30

Plugged o

Figure 18. FEvolution of performance of EPLL with a GGMM, LMM (v =1) and a GMM (v = 2) under
misspecification of the noise standard deviation o. Performances are measured in terms of PSNR on the BSDS
dataset corrupted by a Gaussian noise with standard deviation o = 20. For each of the three priors, EPLL has
been run assuming o was ranging from 15 to 30.

Therefore we have with a = 202 and b = \/+/2

0'2 0_2
T2 v —\/Toex? t o\ 1" /moex® T o
47 e 22N dt = —Y— " |erf ——l—)] =Y  erfc <—+) ,
| ) o Vae T

oo

since lim erf(¢) =1 and erfc(t) = 1 — erf(¢). Similarly, we get

t—o00

o2

2 Ve —\/moexZ T o
48 e 22 X dif = erfc + = .
(48) /x V2 (ﬂa A>

Plugging these two last expressions in (45) and rearranging the terms conclude the proof. W

Appendix B. Proof of Proposition 2.

Proof. Starting from the definition of f”, and using the change of variable ¢ — ot,
eq. (reduction) follows as

K alt]\" 1 (x — Jt)Q]
49 v = —1 _— — - I A dt ,
(49) o) =—1ox [ o e |- (T} | e |05
B K It \"1 1 (x)o —t)? B y x
=log a—log/]R 2\, /o xp [_ (Ay/0> ] \/%GXP [_2 dt =logo+fi /s <5) ’

Properties (even) and (unimodality) hold since the convolution of two real even unimodal
distributions is even unimodal [59, 48]. Property (lower bound at 0) follows from (even),
(unimodality) and the fact that the convolution of continuous and bounded real functions are
continuous and bounded. [ |
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29.49 / 0.877 29.47 / 0.875 29.48 / 0.875
(a) No approx. (6h20) (b) Approx. discrepancy (2s10) (¢) Approx. disc. and shrink. (1s53)

Figure 19. Results obtained by GGMM-EPLL on a 128 x 128 cropped image of the BSDS testing dataset
damaged by additive white Gaussian noise with o = 20. These are obtained respectively by (a) evaluating the
classification and shrinkage problem with numerical solvers (numerical integration and Halley’s root-finding
method), (b) approzimating the classification problem only, (c) approzimating both problems. PSNR and SSIM
are given in the bottom-left corner. Running time are indicated on the captions: our accelerations lead to a
speed-up of x15,000 and x1.4 respectively.

Appendix C. Proof of Theorem 1.
Lemma C.1. Let a > 0 and b > 0. For z in the vicinity of 0, we have

1 erfc(ax + b) + e =49 erfc(—ax + b) ae™?’
50 1 =-1 b— ——— .
(50) 2abz 8 2 erfe(b) e erfc(b)/m ©+olz)

™
sion for z in the vicinity of 0, it follows that

— 22 —2 .
Proof. Since erfc’(z) = —2¢ = and erfc”(z) = 29”%, using second order Taylor’s expan-

2ae™"  2a2be?
(51) erfc(az + b) v erfc(b) — a\(;% x+ a\/; z?
2ae™”  2a%be
(52) and erfc(—az + b) v erfe(b) + Cij% x a\/; x
We next make the following deductions
—4abx 2ae_b2 —4abx 2a2be_b2 2

(53) e~ 4% erfe(—ax 4 b)) v e 4% erfe(b) + e x+e x*,

V NG

2a2be~t" 206~
erfe(az+b)+e~ 1% erfe(—az+b)) ~ (14¢~abe) (erfc(b)—k—a\l;; a:2> — (1 — e 4abz) a\j%

erfc(az+b)+e 4% erfe(—ax+b))  14e4abe < 2a2be b 2) _ (1—¢~dabe) ae™?

b2

z,

2erfch ) o 2 + erfc(b)\/7_rx erfc(b)ﬁx

-~

A(z)
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The left-hand side A(x) of this last equation is then, in the vicinity of x = 0, equals to

1 —4abx 2) 2b —b? —b?
(54) Az) = +e (1 Ik - (1— e_4abx)Lx + o(z?) .

2 erfc(b)y/T erfc(b)y/m

We next use second-order Taylor’s expansion for e 4% leading to

2a2be Y’
(55) A(x) = (1 — 2abzx + 4a*b*x* + o(2?)) <1 + W:ﬂ)

—b?
— (4abx — 8a*b*z? + 0($2))ersce(wx + o(z?) ,
2a2be~b*
=1-2ab 4a%0* — ————— | 2 %)
(56) abz + < a erfc(b)ﬁ) z* + o(x?)
By using the second-order Taylor’s expansion of log(1 + z), it follows that
(57) log [A(z)] = —2abx + | 4a®b* — M 22 — 2a°b*2? + o(2?)
& - erfe(b) /7 '
Dividing both sides by 2abx then concludes the proof,
(58) 1 o erfc(ax + b) + e 1 erfe(—az 4+ b)) ] it e ae™? s+ o(z) M
2abz ® 2erfch B erfc(b)\/m

Proof of Theorem 1. We first rewrite ¢} (z) as

o) =t o ot (1)] e[ e (2 4 2) e Bt (2 4 )]
%

erfc (\f + %) +e 2\1% erfc (—
2 erfe (%)

A
+log |-1— —1o
0g 2z g

(59) = log [\/E

Next, using Lemma C.1 with a = 1/4/2 and b = 1/, it follows that

o e [V ] e [ (L
(60) ehie) =g | 57| +1on ( N Ry f)wo(x) ,
r 9 /\12
(61) = log )\]—Hog erfc(l)\/%_1\+0<1) ,
L )
| 22 e N 1
(62) =tog | ] 108 | Jms - 5| o).

where the last equation follows from the first-order Taylor expansion of log(a + ). |
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Appendix D. Proof of Theorem 2.
Lemma D.1. Let a > 0 and b > 0. For x in the vicinity of 400, we have
1 erfc(ax + b) + e =19 erfe(—ax + b)
1 =-2 1) .
(63) 5aby 108 5 +o(1)
Proof. We have lim erfc(x) =0 and lim erfe(—x) = 2, it follows that
T—>+400 T—+00
(64) erfc(—ax +b) ~ 2,
“+oo
(65) e erfe(—ax 4+ D) ~ 271907
+o0
(66) erfc(az + b) + e 4% erfe(—ax + b) " tabe
2 +oo
(67) log [erfc(aa: + b) 4 719 erfe(—ax + b)] ~ dabe |
2 +oo
1 —4abx
(68) b log [erfc(ax +b)+e erfc(—ax + b)} fod -2,
where we have used the knowledge that f ~ g implies that log f ~ logg. |

Proof of Theorem 2. By writing ¢} as in eq. (59) and using Lemma D.1 with a = 1/V?2

and b =1/\, it follows that

o) () = log [\/fx + log [1 + \/%x log erfc (;\) + 0(1)} = log [\/fx +o(1) .

Appendix E. Proof of Theorem 3.
(z—t)?

Proof. We first decompose the term exp (_T) involved in the definition of f}, and

rewrite e*! using its power series

v . 1 v o (x_t)z ’ ’ '
(69) Jia@) ==log ooy Ty~ 108 /_oo P <_ 2 >eXp [_ (A) ] @
B 1 14 o 7§ z 7% _ ﬂ '
(70) = —log Jor T (/) —log /Ooe eTle exp [ ()\V) dt ,
- 1 v 1‘2 oo X (l‘t)k 7% ’t’ v
(71) ~—low ety e Y et ew {_ (A) ] “

® k=0

For z in the vicinity of 0, we can consider |z| < 1, and then

@ [Tyt ()] i

k=0
0o 2 (1)
(73) </ -8 @ < o0

—0o0

o St e Y’
dtg/_ ZFS 2 exp | — )\71, dt,
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Then, Fubini’s theorem applies and we get

2 1"
) fia@) =- -1 -\
(74)  fia(x) logm”\ F(l/u OgZ/ k' e exp[ (/\V dt ,
1 v x? N kot i3 Y
(75) =l oty T2 logkzzok!/_mt © oo {_ <A> } “

By definition, we have

(76) K2 f1,(0) = —log \/12?%;(1/”) —log/_z exp <—t22> exp {— (AH dt .

Moreover, when k is odd, we have

(77) /_Z the= exp [— C\ty‘)q dt =0.

Using third-order Taylor expansion of log(1 + z) for x in the vicinity of 0, it follows that

(78) fia(@) =% +j—log 1+ 2f QQXP{ <%>V} dt+0(1:)
A * fooo eit? exp { (%)V} dt ’
(ro) ey 2? . [ t2e_j exp [_ <%)V} dt +ola®)

v
2 ffooo e~ 2 exp [— (%) } dt
Finally, using first-order Taylor’s expansion for log(1 + z), we conclude the proof as

(80) A () = log ;LQ L f_oooo t2e_§ exp [_ <%|>u] "

2 1= % exp [— (%)V] dt

ffooo t267§ exp {7 <>\i|>y} dt

+ o(x) ,

(81) =2logz —log2+1log | 1—

Appendix F. Proof of Theorem 4.
We first recall in a Lemma, a result extracted from Corollary 3.3 in [2].

Lemma F.1 (Berman). Let p and q be differentiable real probability density functions.
Define for x large enough u(x) = p~'(q(z)) and define v and w as

(82) v(x) = —;clogp(x) and w(x) = —883: logq(z) .
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Assume v and w are positive continuous function and regularly oscillating, i.e.:

(83) T C) I I GO N
z,x’ —00 v(a:’) z,x’'—00 w(a:’)
z/z'—1 x/x' =1
Suppose that we have
(84) xl;n;o 1;)((;0)) =0 and xlgglo u(z)w(z) = 400 ,
then, for r — oo, we have
“+o0
(85) log / p(z — t)q(t) dt ~ log g(z) .

Proof of Theorem 4. Using the definition of the discrepancy function,

—+00

(86) fia(x) = —log/Rg(t;O,)\, v)-N(z—t0,1)dt = —log/ p(z —t)q(t) dt .

—0o0

with ¢(z) = G(z;0,\,v) and p(z) = N (x;0,1). We have

v—1
(87) v(x) = ;x logp(z) =2z and w(z)= (,i logq(z) = Vx)\z
Remark that v and w are positive continuous, and
v—1
(88) i 28 o1 and tm Y8 g (f) —1.
z,2' =00 U l‘/) z,x —o0 T x,x’—00 w(l’l z,2'—oo \T'
z/x'—1 z/x'—1 z/x'—1 z/z'—1
For z > 0 large enough and y > 0 small enough
(89) (#) & y= ——oe (‘TQ)@ V/—log(2m) — 21o
= €T = X —_— Tr = — ™) — .
Yy=">r Yy N p 9 g gY
Then, from Proposition 1, we have
I/{L‘V_l
00  ule)wle) = 25—/ Tog(2m) - 2loga(x)
v—1 v 9pav—1
(91) =2 [ —log(2r) — 2log | — | +2( =) ~ ”‘[# :
AY 22X, Ay 22Y

and thus, as v > 2, lim u(z)w(z) = co. Moreover, for v < 2, we have
Tr—00

(92) TG v2

T—00 Q}(x) T—00 2)\y.’IJ
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It follows that Lemma F.1 applies, and then for large x

T 14
(98) Fiao)~ —logala) ~ (1)
Using that A, = A 11:8)%;, we conclude the proof since
(94) oX(x) =log [f{\(x) —}] ~ viogz —vlog A, . _

Appendix G. Proof of Proposition 3.
Proof. Starting from the definition of s, and using the change of variable t — ot,

eq. (reduction) follows as

_ t)2 t)2

. (z _ . (z—0 _
(95) sya(r) = arthIIrR}m EEYCRERS NV = aargerﬁln 5ot Aot
—$)?
(96) = aartger]gin (x/02 ) + N /o) It = o5t ), (2/0) -

For eq. (odd), we use the change of variable t — —t¢

. (z—-t)? . (—z+t)?
(97) sga(—1) = ar;gergln g7 AV = fargerﬂlgln T Tl
. x—t 2 —U| |V v
(98) = —arfgr]gln ( 202) + XV = —sh ()
€

We now prove eq. (shrinkage). Let t = s¥ (), and since ¢ minimizes the objective, then
p q g oA

- (z—t)? (z — z)?
(99) A S o AT S s

Al = A e

which implies that [¢| < [z|. Let z > 0 and assume t = s ,() < 0. Since ¢ minimizes the
objective, then

(z +t)?
202

(z—1)°

(100) 5o

+ A <

+ A

which implies that —zt < 2t and leads to a contradiction. Then for z > 0, s} \(z) € [0,z],
which concludes the proof since s? , is odd.

We now prove (increasing withﬁ:). Let 1 > x2 and define t; = s, (x1) and t3 = s¥ , (z2).
Since t; and t3 minimize their respective objectives, the following two statements hold’

(r1 —t1)? _ (z1 — t2)? _
1 1 N AT v v < N e )\ l/t Z/’
(101) il < )
)2 )2
(102) and (P21 +)\;”!t2!”<7($2 ) A

202 202
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Summing both inequalities lead to

(103) (21— t1)2 + (z2 — t2)® < (z1 — t2)* + (z2 — 11)? |
(104) = — 2zt — 2:L’gt2 < —2x1t2 — 2.1,‘2251 s
(105) = 1 (.Tl — .CUQ) = tg(xl — .CCQ) = t1 =t (since x> .732) .

We now prove (increasing with A). Let A1 > Ao and define t; = s}, (z) and t2 = s} ().
Since t; and t5 minimize their respective objectives, the following expressions hold

(x—t)* (x —t2)*
(106) gz T At < gz T Al
(x — t2)2 — v (.’E — t1)2 — v
(107) and T‘Q + )\1/,5|t2| < T.’Z + )\V’g|t1| .
Again, summing both inequalities lead to
(108) Attt + A5kl <A TIta]” + A 510"
(109) = (AT =A< = A 2)ll”
(110) = |t1]V = |t2]” (since Ay > Ay and v > 0) .

We now prove (keep high SNR). Consider > 0. Since A — s”,(x) is a monotonic
function and s ,(z) € [0,z] for all A, it converges for A — 0o to a value w € [0,z]. Assume
0 <w <z and let 0 < ¢ < max(w,x — w). By definition of the limit, for A big enough

(111) 0<w—€<tés(”,’A(x)<w+£.
It follows that x — ¢t > x — (w + &) > 0, and then

(x— (w+e))?
202

(z—1)°

112

+ A w—el” < + NV

Moreover, since w + € # z, we have for A big enough

(r— (w+e))?

11 v
(113) Sl <

+ A w—el”.

Combining the two last inequalities shows that

r — X 2
(114) o)

(x — 1)

Al <

A
which is in contradiction with the fact that ¢ minimizes the objective. As a consequence,
w = x, which concludes the proof since s” , () is odd and satisfies (reduction).

We now prove (kill low SNR). Consider z > 0. Since A Sy /)\(3:) is a monotonic
function and s, (x) € [0,x] for all ), it converges for A — 0 to a value w € [0, z]. Assume
0 <w <z andlet 0 < e < max(w,r —w). Again, we have for A small enough

(z—1)°

202

(z = (w+e))?

11
(115) 202

A w —el” < A
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Moreover, since w # €, we have for A small enough

(116)

22 (2 — (w+e))?

ﬁ 20_2 —l—)\,j”\w—a]” .

Combining the two last inequalities shows that

(117)

(z—0)?
202

(z—t)°

AC01Y <

+ A

which is in contradiction with the fact that ¢ minimizes the objective. As a consequence,

w = 0, which concludes the proof since sy , (z) is odd and satisfies (reduction). [ ]
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