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SOME COMPUTATIONS OF STABLE TWISTED HOMOLOGY FOR

MAPPING CLASS GROUPS

ARTHUR SOULIÉ

August 16, 2021

Abstract

In this paper, we deal with stable homology computations with twisted coefficients for mapping class groups of
surfaces and of 3-manifolds, automorphism groups of free groups with boundaries and automorphism groups of
certain right-angled Artin groups. On the one hand, the computations are led using semidirect product structures
arising naturally from these groups. On the other hand, we compute the stable homology with twisted coefficients
by FI-modules. This notably uses a decomposition result of the stable homology with twisted coefficients for
pre-braided monoidal categories proved in this paper.

Introduction

Computing the homology of a group is a fundamental question and can be a very difficult task. For example, a
complete understanding of all the homology groups of mapping class groups of surfaces and 3-manifolds remains
out of reach at present time: this is an active research topic (see [20, 23, 28] for constant coefficients and [19, 26] for
twisted coefficients).

In [29], Randal-Williams and Wahl prove homological stability with twisted coefficients for some families of
groups, including mapping class groups of surfaces and 3-manifolds. They consider a set of groups {Gn}n∈N

such that there exist a canonical injections Gn →֒ Gn+1. Let G be the groupoid with objects indexed by natural
numbers, with the groups {Gn}n∈N as automorphism groups and with no morphisms between distinct objects.
We consider Quillen’s bracket construction on G (see [18, p.219]), denoted by UG, and Ab the category of abelian
groups. Randal-Williams and Wahl show that for particular kinds of functors F : UG → Ab (namely coefficients
systems of finite degree, see [29, Section 4]), then the canonical induced maps

H∗ (Gn, F (n)) → H∗ (Gn+1, F (n + 1))

are isomorphisms for N (∗, d) ≤ n with some N (∗, d) ∈ N depending on ∗ and d. The value of the homology for
n ≥ N (∗, d) is called the stable homology of the family of groups {Gn}n∈N and denoted by H∗ (G∞, F∞).

In this paper, we are interested in explicit computations of the stable homology with twisted coefficients for
mapping class groups. On the one hand, using semidirect product structures naturally arising from mapping class
groups, on the strength of Lyndon-Hochschild-Serre spectral sequence and of certain stability results, we prove:

Theorem A (Theorems 2.17 and 2.24). We have:

1. We denote by Γg,1 the isotopy classes of diffeomorphisms restricting to the identity on the boundary component of a
compact connected orientable surface with one boundary component and genus g ≥ 0. Then, for m, n and q natural
numbers such that 2n ≥ 3q + m, there is an isomorphism:

Hq

(
Γn,1, H1 (Σn,1, Z)⊗m

)
∼=

⊕
⌊

q−1
2

⌋
≥k≥0

Hq−(2k+1)

(
Γn,1, H1 (Σn,1, Z)⊗m−1

)
.

Hence, we recover the results of [19] and [26].
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2. We consider the graph G
s
n,k defined as the wedge of n ∈ N circles with k ∈ N distinguished circles joined by arcs

to the basepoint p0 and s − 1 ∈ N extra basepoints joined by new edges to p0. We denote by As
n,k the group of

path-components space of homotopy equivalences of the graph G s
n,k (we refer the reader to Section 2.3.2 for a complete

introduction to these groups). In particular it is the quotient of the mapping class group of some 3-manifold (see Remark
2.21). For s ≥ 2 and q ≥ 1 be natural numbers and F : gr → Ab a reduced polynomial functor where gr denotes the
category of finitely generated free groups. There is an isomorphism:

Hq
(

As
∞,0, F∞

)
= 0.

Moreover, Hq

(
As

n,k, Q

)
= 0 for all natural numbers n ≥ 3q + 3 and k ≥ 0. We thus recover the results of [24] for

holomorphs of free groups.

On the other hand, we deal with stable homology computations for mapping class groups with twisted coef-
ficients factoring through some finite groups. Let (Σ,⊔, ∅) be the symmetric monoidal groupoid with objects the
finite sets, with automorphism groups the symmetric groups and with no morphisms between distinct objects, the
monoidal structure is given by the disjoint union ⊔. Quillen’s bracket construction UΣ is equivalent to the category
FI of finite sets and injections used in [8]. For R a commutative ring, R-Mod denotes the category of R-modules.
We prove the following results.

Theorem B (Proposition 3.9, Proposition 3.10, Example 3.15). Let K be a field of characteristic zero and d be a natural
number. Considering functors F : FI → K-Mod, we have:

1. For n a natural number, we respectively denote by Bn the braid group on n strands and by PBn the pure braid group

on n strands. Then, Hd (B∞, F∞) ∼= Colim
n∈FI

(
Hd (PBn, K)⊗

K
F (n)

)
.

2. Hd

(
Γ

∞

∞,1, F∞

)
∼= Colim

n∈FI

[
⊕

k+l=d

(
Hk (Γn,1, K)⊗

K
Hl

(
(CP∞)×n , K

))
⊗
K

F (n)

]
, where Γ

s
g,1 denotes the isotopy

classes of diffeomorphisms permuting the marked points and restricting to the identity on the boundary component
of a compact connected orientable surface with one boundary component, genus g ≥ 0 and s ≥ 0 marked points. It

follows from Madsen-Weiss theorem [28] that H2k+1

(
Γ∞

∞,1, F∞

)
= 0 for all natural numbers k.

3. Hd

(
Aut

((
Z∗k

)×∞
)

, F∞

)
= 0 for a fixed natural number k ≥ 2d+ 1 (where ∗ denotes the free product of groups).

Moreover, we may make further explicit calculations for specific polynomial FI-modules F using the formulas
of Theorem B, although it generally requires some non-trivial extra work: the key point is to understand the
FI-module structure of the left-hand terms in the formula. Namely, the action of the symmetric group Sn on
the homology group Hq (PBn, K) is studied in [8, Example 5.1.A] using the computations of [1] and the one on
⊕

k+l=d

(
Hk (Γ−,1, K)⊗

K
Hl

(
(CP∞)×− , K

))
is induced by the action of the symmetric groups on the homology of

CP∞. Therefore we can understand the FI-module structure of the associated pointwise tensor product and then
compute the colimit with respect to FI.

The proof of Theorem B requires a splitting result for the twisted stable homology for some families of groups:
this decomposition consists in the graded direct sum of tensor products of the homology of an associated category
with the stable homology with constant coefficients. Namely, we assume that the category (UG, ♮, 0) is pre-braided
homogeneous (we refer the reader to Section 1 for an introduction to these notions) such that the unit 0 is an initial
object. For a functor F : UG → Ab, we denote by H∗ (UG, F) the homology of the category UG with coefficient in F
(we refer the reader to the papers [13, Section 2] and [10, Appendice A] for an introduction to this last notion). We
prove the following statement.

Theorem C (Theorem 3.2) . Let K be a field. For all functors F : UG → K-Mod, we have a natural isomorphism of
K-modules:

H∗ (G∞, F∞) ∼=
⊕

k+l=∗

(
Hk (G∞, K)⊗

K
Hl (UG, F)

)
.
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If the groupoid G is symmetric monoidal, then Theorem C recovers the previous analogous results [10, Propo-
sitions 2.22, 2.26].

The paper is organized as follows. In Section 1, we recall notions on Quillen’s bracket construction, pre-braided
monoidal categories and homogeneous categories. In Section 2, after setting up the general framework for the
families of groups we will deal with and applying Lyndon-Hochschild-Serre spectral sequence, we prove the
various results of Theorem A. In Section 3, the first part is devoted to the proof of the decomposition result
Theorem C. Then we deal with the twisted stable homology for mapping class groups with non-trivial finite
quotient groups and prove Theorem B.

General notations. We fix R a commutative ring and K a field throughout this work. We denote by R-Mod the
categories of R-modules.

Let Cat denote the category of small categories. Let C be an object of Cat. We use the abbreviation Obj (C) to
denote the objects of C. For D a category, we denote by Fct (C,D) the category of functors from C to D. If 0 is
initial object in the category C, then we denote by ιA : 0 → A the unique morphism from 0 to A. The maximal
subgroupoid G r (C) is the subcategory of C which has the same objects as C and of which the morphisms are
the isomorphisms of C. We denote by G r : Cat → Cat the functor which associates to a category its maximal
subgroupoid.

We take the convention that the set of natural numbers N is the set of nonnegative integers {0, 1, 2, . . .}. We
denote by (N,≤) the category of natural numbers considered as a directed set. For all natural numbers n, we
denote by γn the unique element of Hom(N,≤) (n, n + 1). For all natural numbers n′ such that n′ ≥ n, we denote by
γn,n′ : n → n′ the unique element of Hom(N,≤) (n, n′), composition of the morphisms γn′−1 ◦γn′−2 ◦ · · · ◦γn+1 ◦γn.
The addition defines a strict monoidal structure on (N,≤), denoted by ((N,≤) ,+, 0).

We denote by Gr the category of groups, by ∗ the coproduct in this category, by Ab the full subcategory of Gr

of abelian groups and by gr the full subcategory of Gr of finitely generated free groups. Recall that the free product
of groups ∗ defines a monoidal structure over gr, with the trivial group 0Gr the unit, denoted by (gr, ∗, 0Gr). We
denote by × the direct product of groups and by Aut (G) the automorphism group of a group G.

Acknowledgement. The author wishes to thank most sincerely Christine Vespa, Nathalie Wahl and Geoffrey Powell,
for their reading, suggestions and advice. He would also like to thank Aurélien Djament, Nariya Kawazumi and
Antoine Touzé for the attention they have paid to his work and helpful discussions. Additionally, he would like
to thank the anonymous referee for his careful reading, comments and corrections.
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1 Categorical framework

This section recollects the notions of Quillen’s bracket construction, pre-braided monoidal categories and homoge-
neous categories for the convenience of the reader. It takes up the framework of [29, Section 1]. For an introduction
to braided monoidal categories, we refer to [27, Section XI]. Standardly, a strict monoidal category will be denoted
by (C, ♮, 0), where ♮ : C× C → C is the monoidal structure and 0 is the monoidal unit. If the category is braided,
we denote by bC−,− its braiding. We fix a strict monoidal groupoid (G, ♮, 0) throughout this section.

Quillen’s bracket construction. The following definition is a particular case of a more general construction of
[18].

Definition 1.1. [29, Section 1.1] Quillen’s bracket construction on the groupoid G, denoted by UG is the category
defined by:

• Objects: Obj (UG) = Obj (G);

• Morphisms: for A and B objects of G, HomUG (A, B) = colim
G

[HomG (−♮A, B)]. A morphism from A to B

in the category UG is an equivalence class of pairs (X, f ), where X is an object of G and f : X♮A → B is a
morphism of G; this is denoted by [X, f ] : A → B.

• Let [X, f ] : A → B and [Y, g] : B → C be morphisms in the category UG. Then, the composition in the
category UG is defined by [Y, g] ◦ [X, f ] = [Y♮X, g ◦ (idY♮ f )].

It is clear that the unit 0 of the monoidal structure of the groupoid (G, ♮, 0) is an initial object in the category
UG (see [29, Proposition 1.8 (i)]).

Definition 1.2. The strict monoidal category (G, ♮, 0) is said to have no zero divisors if for all objects A and B of
G, A♮B ∼= 0 if and only if A ∼= B ∼= 0.

Proposition 1.3. [29, Proposition 1.7] Assume that the strict monoidal groupoid (G, ♮, 0) has no zero divisors and that
AutG(0) = {id0}. Then, the groupoid G is the maximal subgroupoid of UG.

Henceforth, we assume that the groupoid (G, ♮, 0) has no zero divisors and that AutG(0) = {id0}.

Remark 1.4. Let X be an object of G. Let φ ∈ AutG (X). Then, as an element of HomUG (X, X), we will abuse the
notation and write φ for [0, φ].

Finally, we recall the following lemma.

Lemma 1.5. [29, Proposition 2.4][30, Lemma 1.8] Let C be a category and F an object of Fct (G, C ). Assume that for
A, X, Y ∈ Obj (G), there exist assignments F

([
X, idX♮A

])
: F (A) → F (X♮A) such that:

F
([

Y, idY♮X♮A
])

◦ F
([

X, idX♮A
])

= F
([

Y♮X, idY♮X♮A
])

. (1)

Then, the assignment F ([X, g]) = F (g) ◦ F
([

X, idX♮A
])

for [X, g] ∈ HomUG

(
A, idX♮A

)
defines a functor F : UG → C

if and only if for all A, X ∈ Obj (G), for all g′′ ∈ AutG (A) and all g′ ∈ AutG (X):

F
([

X, idX♮A
])

◦ F
(

g′′
)
= F

(
g′♮g′′

)
◦ F
([

X, idX♮A
])

. (2)

Pre-braided monoidal categories. Assuming that the strict monoidal groupoid (G, ♮, 0) is braided, Quillen’s
bracket construction UG also inherits a strict monoidal structure (see Proposition 1.8). Beforehand, we recall the
notion of pre-braided category, introduced by Randal-Williams and Wahl in [29, Section 1].

Definition 1.6. [29, Definition 1.5] Let (C, ♮, 0) be a strict monoidal category such that the unit 0 is initial. We say
that the monoidal category (C, ♮, 0) is pre-braided if:

• The maximal subgroupoid G r (C, ♮, 0) is a braided monoidal category, where the monoidal structure is in-
duced by that of (C, ♮, 0).
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• For all objects A and B of C, the braiding associated with the maximal subgroupoid bCA,B : A♮B −→ B♮A
satisfies:

bCA,B ◦ (idA♮ιB) = ιB♮idA : A −→ B♮A. (3)

Remark 1.7. A braided monoidal category is always pre-braided but the converse is false. Indeed, for a pre-braided
monoidal category, the opposite of condition (3) (i.e. bCA,B ◦ (ιB♮idA) = idA♮ιB) does not hold generally speaking,
whereas this is a necessary property for a braided monoidal category. For instance, the category (Uβ, ♮, 0) is pre-
braided monoidal but not braided since bβ

1,2 ◦ (ι1♮id2) 6= id2♮ι1 (see [29, Remark 5.24] if more details are required).

Finally, we give the effect of Quillen’s bracket construction over the strict braided monoidal groupoid (G, ♮, 0).

Proposition 1.8. [29, Proposition 1.8] Suppose that the strict monoidal groupoid (G, ♮, 0) has no zero divisors and that
AutG(0) = {id0}. If the groupoid (G, ♮, 0) is braided, then the category (UG, ♮, 0) is pre-braided monoidal. If the groupoid
(G, ♮, 0) is symmetric, then the category (UG, ♮, 0) is symmetric monoidal.

The monoidal structure on the category (UG, ♮, 0) is defined on objects as for (G, ♮, 0) and defined on morphisms by
letting, for [X, f ] ∈ HomUG (A, B) and [Y, g] ∈ HomUG (C, D):

[X, f ] ♮ [Y, g] =
[

X♮Y, ( f ♮g) ◦
(

idX♮
(

bGA,Y

)−1
♮idC

)]
.

In particular, the canonical functor G → UG (see Remark 1.4) is monoidal.

Homogeneous categories. The notion of homogeneous category is introduced by Randal-Williams and Wahl in
[29, Section 1], inspired by the set-up of Djament and Vespa in [10, Section 1.2]. With two additional assumptions,
Quillen’s bracket construction UG from a strict monoidal groupoid (G, ♮, 0) is endowed with an homogeneous
category structure. This type of category is very useful to deal with homological stability with twisted coefficients
questions (see [29]) or to work on the stable homology with twisted coefficient (see [10], [11] and Section 3.1).

Let (C, ♮, 0) be a small strict monoidal category in which the unit 0 is also initial. For all objects A and B of C,
we consider the morphism ιA♮idB : 0♮B −→ A♮B and a set of morphisms:

FixA (B) = {φ ∈ Aut (A♮B) | φ ◦ (ιA♮idB) = ιA♮idB} .

Since (C, ♮, 0) is assumed to be small, HomC (A, B) is a set and AutC(B) defines a group (with composition of
morphisms as the group product). The group AutC(B) acts by post-composition on HomC (A, B):

AutC(B)× HomC(A, B) −→ HomC(A, B).

(φ, f ) 7−→ φ ◦ f

Definition 1.9. Let (C, ♮, 0) be a small strict monoidal category where the unit 0 is initial. We consider the following
axioms:

• (H1): for all objects A and B of the category C, the action by post-composition of AutC(B) on HomC (A, B)
is transitive.

• (H2): for all objects A and B of the category C, the map AutC (A) → AutC (A♮B) sending f ∈ AutC (A) to
f ♮idB is injective with image FixA (B).

The category (C, ♮, 0) is homogeneous if it satisfies the axioms (H1) and (H2).

As a consequence of the axioms (H1) and (H2), we deduce that:

Lemma 1.10. If (C, ♮, 0) is a homogeneous category, then HomC (B, A♮B) ∼= AutC (A♮B)/AutC (A) for all objects A and
B and where AutC (A) acts on AutC (A♮B) by precomposition.

We now give the two additional properties so that if a strict monoidal groupoid (G, ♮, 0) satisfy them, then
Quillen’s bracket construction UG is homogeneous.

Definition 1.11. Let (C, ♮, 0) be a strict monoidal category. We define two assumptions.

5



• (C): for all objects A, B and C of C, if A♮C ∼= B♮C then A ∼= B.

• (I): for all objects A, B of C, the morphism AutC (A) → AutC (A♮B) sending f ∈ AutC (A) to f ♮idB is
injective.

Theorem 1.12. [29, Theorem 1.10] Let (G, ♮, 0) be a braided monoidal groupoid with no zero divisors. If the groupoid G

satisfies (C) and (I), then UG is homogeneous.

2 Twisted stable homologies of semidirect products

This section introduces a general method to compute the stable homology with twisted coefficients using semidi-
rect product structures arising naturally from the families of mapping class groups. We first establish the general
result of Corollary 2.3 for the homology of semidirect products with twisted coefficients. These results are fi-
nally applied in Section 2.3 to compute explicitly some homology groups with twisted coefficients for mapping
class groups of orientable surfaces and automorphisms of free groups with boundaries. Beforehand, we take this
opportunity to introduce the following terminology:

Definition 2.1. A family of groups is a functor G− : (N,≤) −→ Gr such that for all natural numbers n, G− (γn) :
Gn →֒ Gn+1 is an injective group morphism.

2.1 A general result for the homology of semidirect products

First, we present some properties for the homology with twisted coefficients for a semidirect product and prove
the general statement of Corollary 2.3.

Let Q be a groupoid with objects indexed by the natural numbers. An object of Q is thus denoted by n, where
n is its corresponding indexing natural number. We denote by AutQ (n) = Qn the automorphism groups and
assume that there are no morphisms between distinct objects. We assume that there exists a family of groups
K− : (N,≤) → Gr and a functor AQ : Q → Gr such that Kn is any free goup and AQ (n) = Kn for all natural
numbers n. We denote by AQ,n : Qn → AutGr (Kn) the group morphism induced by the functor AQ for each
natural number n. Hence, we form the split short exact sequence:

1 // Kn
kn

// Kn ⋊

AQ,n

Qn
qn

// Qn // 1 (4)

and we denote by sn : Qn → Kn ⋊

AQ,n

Qn the canonical splitting of qn. For all natural numbers n, we fix Mn a

R

[
Kn ⋊

AQ,n

Qn

]
-module. We abuse the notation and write Mn for the restriction of Mn from Kn ⋊

AQ,n

Qn to Kn. Then

we can construct the following long exact sequcence in homology, analogous to the Gysin sequence for homology:

Proposition 2.2. For Mn an R

[
Kn ⋊

AQ,n

Qn

]
-module, the short exact sequence (4) induces a long exact sequence:

· · · // H∗+1 (Qn, H0 (Kn, Mn))

d2
∗+1,0

��

H∗−1 (Qn, H1 (Kn, Mn))
ϕ∗

// H∗

(
Kn ⋊

AQ,n

Qn, Mn

)
ψ∗

// H∗ (Qn, H0 (Kn, Mn))

d2
∗,0

��

H∗−2 (Qn, H1 (Kn, Mn)) // · · ·

(5)

where
{

d2
p,q

}
p,q∈N

denote the differentials of the second page of the Lyndon-Hochschild-Serre spectral sequence associated

with the short exact sequence (4).
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Proof. Applying the Lyndon-Hochschild-Serre spectral sequence to the short exact sequence (4), we obtain the
following convergent first quadrant spectral sequence:

E2
pq : Hp

(
Qn, Hq (Kn, Mn)

)
=⇒ Hp+q

(
Kn ⋊

AQ,n

Qn, Mn

)
. (6)

Since Kn is a free group, Hq (Kn, Mn) = 0 for q ≥ 2. The result is a classical consequence of the fact that the spectral
sequence (6) has only two rows. In particular, the map ϕ∗ is defined by the composition:

H∗−1 (Qn, H1 (Kn, Mn)) ։ H∗−1 (Qn, H1 (Kn, Mn)) /Im
(

d2
∗+1,0

)
→֒ H∗

(
Kn ⋊

AQ,n

Qn, Mn

)
;

the map ψ∗ is the coinflation map CoinfQn
Kn ⋊

AQ,n
Qn

(Mn), induced by the composition:

H∗

(
Kn ⋊

AQ,n

Qn, Mn

)
։ Ker

(
d2
∗,0

)
→֒ H∗ (Qn, H0 (Kn, Mn)) .

Corollary 2.3. Let n be a natural number. Assume that the free group Kn acts trivially on the R-module Mn. Then, for all
natural numbers q ≥ 1:

Hq−1

(
Qn, H1 (Kn, R)⊗

R
Mn

)
⊕ Hq (Qn, Mn) ∼= Hq

(
Kn ⋊

AQ,n

Qn, Mn

)
. (7)

Proof. As Mn is a trivial Kn-module:

H1 (Kn, Mn) ∼= H1 (Kn, R)⊗
R

Mn and H0 (Kn, Mn) ∼= Mn,

and the coinflation map ψ∗ = CoinfQn
Kn ⋊

AQ,n
Qn

(Mn) is equal to the corestriction map CoresQn
Kn ⋊

AQ,n
Qn

(Mn). Hence, de-

noting by H∗ (qn, Mn) the map induced in homology by qn : Kn ⋊

AQ,n

Qn → Qn, we deduce that ψ∗ = H∗ (qn, Mn).

By the functoriality of group homology, the splitting sn : Qn → Kn ⋊

AQ,n

Qn of qn induces a splitting in homol-

ogy H∗ (sn, Mn) of H∗ (qn, Mn). Hence, H∗ (pn, Mn) is an epimorphism and a fortiori Ker
(

d2
∗,0

)
∼= H∗ (Qn, Mn).

Therefore, d2
∗,0 = 0 and the exact sequence (5) gives a split short exact sequence of abelian groups for every q ≥ 1:

1 // Hq−1

(
Qn, H1 (Kn, R)⊗

R
Mn

)
ϕq

// Hq

(
Kn ⋊

AQ,n

Qn, Mn

)
Hq(qn,Mn)

// Hq (Qn, Mn) // 1. (8)

2.2 Properties of the twisted coefficients

Our aim here is to study the twisted coefficients H1 (Kn, R)⊗
R

Mn appearing in Corollary 2.3 so as to prove Lemma

2.9. This last result will be useful to prove Theorem 2.24. We now make the following further assumptions that:

• the groupoid Q is a braided strict monoidal category (we denote by (Q, ♮, 0) the monoidal structure);

• there exists a free group K such that Kn ∼= K∗n and that that K− (γn) = ιK ∗ idKn (where γn denotes the unique
element of Aut(N,≤) (n, n + 1)) for all natural numbers n;
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• the functor AQ takes values in the subcategory gr ⊂ Gr and defines a strict monoidal functor (Q, ♮, 0) →
(gr, ∗, 0).

These assumptions allow to define the functor K− on the category UQ:

Lemma 2.4. Assigning AQ

([
1, idn+1

])
= K− (γn) for all natural numbers n, we define a functor AQ : UQ → gr.

Proof. We use Lemma 1.5 to prove this result: namely, we show that relations (1) and (2) of this lemma are satisfied.
It follows from the fact that K− is a functor on (N,≤), that the relation (1) of Lemma 1.5 is satisfied by AQ. Let n
and n′ be natural numbers such that n′ ≥ n, let q ∈ Qn and q′ ∈ Qn′ . We denote by eKn′

the neutral element of Kn′ .
Since AQ is monoidal, we compute for all k ∈ Kn:

(
AQ

(
q′♮q

)
◦ AQ

([
n′, idn′+n

]))
(k) =

(
AQ

(
q′
)
∗ AQ (q)

) (
eKn′

∗ k
)

= eKn′
∗ AQ (q) (k)

=
(
AQ

([
n′, idn′+n

])
◦ AQ (q)

)
(k) .

Hence, the relation (2) of Lemma 1.5 is satisfied by AQ.

Recollections on strong polynomial functors. We deal here with the concept of strong and very strong poly-
nomial functors, which will be useful to prove Theorems 2.17 and 2.24. We refer the reader to [31, Section 3] for
a complete introduction to these notions for pre-braided monoidal categories as source category, extending the
previous framework due to Djament and Vespa in [12] for symmetric monoidal categories. They also are particu-
lar case of coefficient systems of finite degree introduced by Randal-Williams and Wahl in [29], thus providing a
natural setting to study homological stability.

From now we fix (M, ♮, 0) a pre-braided strict monoidal category such that the monoidal unit 0 is an initial
object. For all objects X of M, the monoidal structure ♮ defines the endofunctor X♮− : M → M, which sends the
object Y to the object X♮Y. We define the translation functor τX : Fct (M, R-Mod) → Fct (M, R-Mod) to be the
endofunctor obtained by precomposition by X♮−.

For all objects F of Fct (M, R-Mod) and all objects X of M, we denote by iX (F) : F → τX (F) the natural
transformation induced by the unique morphism [X, idX] : 0 → X of M. This induces iX : IdFct(M,R-Mod) → τX a
natural transformation of Fct (M, R-Mod). Since the category Fct (M, R-Mod) is abelian (since the target category
R-Mod is abelian), the kernel and cokernel of the natural transformation iX exist. We define the functors κX =
ker (iX) and δX = coker (iX). Then:

Definition 2.5. We recursively define on d ∈ N the categories Polstrong
d (M, R-Mod) and VPold (M, R-Mod) of

strong and very strong polynomial functors of degree less than or equal to d to be the full subcategories of
Fct (M, R-Mod) as follows:

1. If d < 0, Polstrong
d (M, R-Mod) = VPold (M, R-Mod) = {0};

2. if d ≥ 0, the objects of Polstrong
d (M, R-Mod) are the functors F such that the functor δX (F) is an object of

Polstrong
d−1 (M, R-Mod) for all objects X ofM; the objects of VPold (M, R-Mod) are the objects F of Pold (M, R-Mod)

such that κX (F) = 0 and the functor δX (F) is an object of VPold−1 (M, R-Mod) for all objects X of M.

For an object F of Fct (M, R-Mod) which is strong of degree less than or equal to n ∈ N, the smallest natural
number d ≤ n for which F is an object of Polstrong

d (M, R-Mod) is called the strong degree of F. If in addition F is
strong very strong polynomial, its strong degree is also the smallest natural number d ≤ n for which F is an object
of VPold (M, R-Mod) and is then also called the very strong degree of F.

Remark 2.6. If in addition the unit 0 of the monoidal structure (M, ♮, 0) is a terminal object, the evanescence functors
automatically vanish and a fortiori the notions of strong and very strong polynomial functors are equivalent.

Furthermore, we have the following property which will be useful for our further work. The result for strong
polynomial functors is already established in [31, Proposition 3.8] and previously for symmetric monoidal cate-
gories [12, Proposition 1.7].
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Proposition 2.7. Let M′ be another pre-braided strict monoidal category such that such that its monoidal unit is an initial ob-
ject. Let α : M → M′ be a strong monoidal functor. Then, the precomposition by α provide functors VPoln (M′, R-Mod) →
VPoln (M, R-Mod) which preserves the degree of polynomiality.

Proof. Let X an object of M and F be an object of Fct (M, R-Mod). Since α is strong monoidal, we deduce that

there is a natural equivalence τX (F ◦ α) ∼=
(

τα(X)F
)
◦ α. It is a standard fact that the precomposition by α is an

exact functor. Then the universal properties of the kernel and cokernel imply that there are natural equivalences

δX (F ◦ α) ∼=
(

δα(X)F
)
◦ α and κX (F ◦ α) ∼=

(
κα(X)F

)
◦ α. The results then follow from a straightforward recursion

on the degree of polynomiality.

First homology functor. Recall that the homology group H1 (−, R) defines a functor from the category Gr to the
category R-Mod (see for example [6, Section 8]). Hence, we introduce the following functor:

Definition 2.8. The homology groups {H1 (Kn, R)}n∈N assemble to define a functor H1 (AQ, R) : UQ → R-Mod

by the composite H1 (−, R) ◦ AQ. It is called the first homology functor of AQ.

If R = Z and Kn is finitely generated for all natural numbers n, the target category of H1 (AQ, R) is the full
subcategory ab ⊂ Ab of finitely generated abelian groups. Let m be a natural number. We then define a functor
H1 (AQ, Z)⊗m : UQ → ab by the composite −⊗m ◦ H1 (AQ, Z) where −⊗m : ab → ab sends an object G to G⊗m.

Lemma 2.9. If the groups Kn are finitely generated free for all n, then the functor H1 (AQ, Z)⊗m is very strong polynomial
of degree m.

Proof. Recall that the free product gives a symmetric monoidal structure (Gr, ∗, 0Gr) (which restricts to gr), that
the direct sum defines a symmetric monoidal structure (Ab,⊕, 0Gr) (which restricts to ab) and that symmetric
monoidal categories are particular cases of pre-braided monoidal ones. By the result of the homology of a free
product of groups (see for example [33, Corollary 6.2.10]), the first homology group is a strong monoidal functor
H1 (−, R) : (Gr, ∗, 0Gr) → (Ab,⊕, 0Gr) and a fortiori so is the restriction H1 (−, R) : gr → ab. As AQ is a strict
monoidal functor, then H1 (AQ, Z) is a strong monoidal functor. This is a well-known fact that the m-th tensor
power functor −⊗m : ab → ab is very strong polynomial of degree m (see [10, Appendice A] for example). Then
the result follows from Proposition 2.7.

Pointwise tensor product. We finally recall the following result, used to prove Theorem 2.24. For M a pre-
braided strict monoidal category such that such that its monoidal unit is an initial object, the pointwise tensor
product of two objects of Fct (M, R-Mod) defines an object of Fct (M, R-Mod), assigning

(
M ⊗

R
M′

)
(X) = M (X)⊗

R
M′ (X)

for M, M′ ∈ Fct (M, R-Mod) and for all objects X of M.

Lemma 2.10. If M and M′ are strong polynomial functors, then M ⊗
R

M′ is a strong polynomial functor.

Proof. We fix an object X of M. Since the translation functor τX commutes with all limits, and as a colimit of a
natural transformation between Id and τX, the functor δX commutes with the (pointwise) product ×. Let d be the
largest of the two strong polynomial degrees. Hence, δX · · · δX︸ ︷︷ ︸

d+1 times

(M × M′) = 0 and therefore M ⊗
R

M′ is a strong

polynomial functor of degree less than or equal to d + 1.

2.3 Applications

Many families of mapping class groups fall within the framework of Section 2.1. Corollary 2.3 is the key result to
compute the homology with twisted coefficients for these families of groups.
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2.3.1 Mapping class groups of orientable surfaces

Let Σs
g,i denote a smooth compact connected orientable surface with (orientable) genus g ∈ N, s ∈ N marked

points and i ∈ {1, 2} boundary components, with I : [−1, 1] → ∂Σs
g,i a parametrized interval in the boundary if

i = 1 and p = 0 ∈ I a basepoint. We denote by Γ
s
g,1 (respectively Γ

[s]
g,1) the isotopy classes of diffeomorphisms of

Σs
g,1 preserving the orientation, restricting to the identity on a neighbourhood of the parametrized interval I and

permuting (respectively fixing) the marked points. If s = 0, we omit it from the notation. Recall that, up to isotopy,
fixing the interval I is the same as fixing the whole boundary component pointwise. When there is no ambiguity,
we omit the parametrized interval I from the notation.

Let ♮ be the boundary connected sum along half of each interval I. For two decorated surfaces Σs1
g1,1 and Σs2

g2,1,

the boundary connected sum Σ
s1
g1 ,1♮Σ

s2
g2,1 is defined as the surface obtained from gluing Σ

s1
g1,1 and Σs2

g2,1 along the

half-interval I+1 and the half-interval I−2 , and I1♮I2 = I−1
⋃

I+2 . The homeomorphisms being the identity on a
neighbourhood of the parametrized intervals I1 and I2, we canonically extend the diffeomorphisms of Σ

s1
g1,1 and

Σs2
g2 ,1 to Σ

s1
g1,1♮Σ

s2
g2,1. For completeness, we refer to [29, Section 5.6.1], for technical details.

We denote by Γg,2 the isotopy classes of diffeomorphisms of Σ0
g,2 preserving the orientation and fixing the

boundary components pointwise. Recall that R is a commutative ring and we assume that the various mapping
class groups act trivially on it.

The following result is an essential tool for our work:

Theorem 2.11. [2] Let g ≥ 1, s ≥ 0 be natural numbers and x be a marked point in the interior of Σs
g,1. Forgetting x

induces a map ωs : Γ
[s+1]
g,1 → Γ

[s]
g,1 which defines the following short exact sequence:

1 // π1

(
Σs

g,1, x
)

// Γ
[s+1]
g,1

ωs
// Γ

[s]
g,1

// 1. (9)

Gluing a disc with a marked point Σ1
0,1 on the boundary component without the interval I induces the following short exact

sequence:

1 // Z // Γg,2
ρ

// Γ
1
g,1

// 1. (10)

For all natural numbers g and s, we denote by ax
Σs

g,1
the action of the mapping class group Γ

[s]
g,1 on the funda-

mental group π1

(
Σs

g,1, x
)

.

Lemma 2.12. The short exact sequence (9) splits.

Proof. We denote by Diff∂0,points
(

Σn
g,1

)
the space of diffeomorphisms of the surface Σn

g,1 which fix the boundary
pointwise and fix the marked points. We recall that the exact sequence (9) is constructed from the long exact

sequence of homotopy groups with the locally trivial fibration Diff∂0,points
(

Σ1+s
g,1

)
ω̂s
→֒ Diff∂0,points

(
Σs

g,1

)
→ Σg,1 \

{s points} using the fact that π1

(
Diff∂0,points

(
Σs

g,1

))
= 0 by [17, Théorème 1]. Namely the fibre ω̂s is defined by

forgetting that the additional marked point is fixed and induces the morphism ωs : Γ
[s+1]
g,1 → Γ

[s]
g,1.

We consider Emb
(

Σ1
0,1, Σ1

0,1♮Σ
s
g,1

)
the space of embeddings taking I−

Σ1
0,1

to I−
Σ1

0,1♮Σs
g,1

and such that the comple-

ment of Σ1
0,1 in Σ1

0,1♮Σ
s
g,1 ≃ Σ1+s

g,1 is diffeomorphic to Σs
g,1. Using the parameterised isotopy extension theorem [7,

II 2.2.2 Corollaire 2], there is a fibration sequence

Diff∂0,points
(

Σs
g,1

) ̺s
→֒ Diff∂0,points

(
Σ1

0,1♮Σ
s
g,1

)
→ Emb

((
Σ1

0,1

)
,
(

Σ1
0,1♮Σ

s
g,1

))
,

which long exact sequence of homotopy groups defines a morphism π0 (̺s) : Γ
[s]
g,1 → Γ

[s+1]
g,1 . More precisely, for all

ϕ ∈ Diff∂0,points
(

Σs
g,1

)
, the morphism ̺s is explicitly defined by ̺s (ϕ) = idΣ1

0,1
♮ϕ. Implicitly, we identify Σs

g,1 with
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Σ0
0,1♮Σ

s
g,1: there is a self-embedding e : Σs

g,1 →֒ Σs
g,1 (the complement of whose image is a disc). Then ω̂s ◦ ̺s (ϕ)

is defined on the image of e by e ◦ ϕ ◦ e−1 and by the identity on the complement of the image of e. Therefore
the choice of an isotopy of self-embeddings from e to the identity of Σs

g,1 induces a homotopy from ω̂s ◦ ̺s to the

identity of Diff∂0,points
(

Σs
g,1

)
. Hence, ω̂s ◦ ̺s (ϕ) is isotopic to ϕ: the composition ω̂s ◦ ̺s is thus isotopic to the

identity. We deduce that π0 (̺s) : Γ
[s]
g,1 → Γ

[s+1]
g,1 is a 1-sided inverse of the map ωs : Γ

[s+1]
g,1 → Γ

[s]
g,1. Therefore the

morphism π0 (̺s) is injective and provides a splitting of the exact sequence (9), which defines an isomorphism

Γ
[s+1]
g,1

∼= π1

(
Σs

g,1, x
)

⋊

ax
Σs

g,1

Γ
[s]
g,1.

Hence, applying Corollary 2.3 to this situation, we obtain:

Proposition 2.13. Let n, s and q ≥ 1 be natural numbers. Let Mn be a R
[
Γ
[s+1]
n,1

]
-module on which π1

(
Σs

n,1, x
)

acts

trivially. Then:

Hq

(
Γ
[s+1]
n,1 , Mn

)
∼= Hq−1

(
Γ
[s]
n,1, H1

(
Σs

n,1, R
)
⊗
R

Mn

)
⊕ Hq

(
Γ
[s]
n,1, Mn

)
. (11)

Computation of Hd

(
Γ∞,1, H1 (Σ∞,1, Z)⊗m

)
. An application of Proposition 2.13 is to compute the stable homol-

ogy groups Hd

(
Γ∞,1, H1 (Σ∞,1, Z)⊗m

)
for all natural numbers m and d. First, let us introduce a suitable groupoid

for our work, inspired by [29, Section 5.6]. We fix a unit disc with one marked point denoted by Σ1
0,1 and a torus

with one boundary component denoted by Σ0
1,1. Recall that by the classification of surfaces, for all g, s ∈ N, there

is an homeomorphism Σs
g,1 ≃

(
♮
s
Σ1

0,1

)
♮

(
♮
g
Σ0

1,1

)
.

Definition 2.14. Let M2 be the skeleton of the groupoid defined by:

• Objects: the surfaces Σs
g,1 for all natural numbers g and s, with I : [−1, 1] → ∂Σs

g,1 a parametrized interval in
the boundary and p = 0 ∈ I a basepoint;

• Morphisms: AutM2

(
Σs

g,1

)
= Γ

s
g,1 for all natural numbers g and s.

Let Mg
2 be the full subgroupoid of M2 on the objects {Σn,1}n∈N

. As stated in the proof of [29, Proposition 5.18],

the boundary connected sum ♮ induces a strict braided monoidal structure
(
M

g
2 , ♮, (Σ0,1, I)

)
.

For all natural numbers g, we denote by aΣg,1 the action of the mapping class group Γg,1 on the fundamental

group π1
(
Σg,1, p

)
. We define a functor A

M
g
2

: Mg
2 → Gr to be the fundamental groups π1 (Σ1,1, p) and π1 (Σ0,1, p)

on the objects Σ1,1 and Σ0,1, and then inductively A
M

g
2

(
Σn,1♮Σn′,1

)
= π1 (Σn,1, p) ∗ π1

(
Σn′,1, p

)
for all natural

numbers n, and assigning the morphism aΣg,1 (ϕ) for all ϕ ∈ Γg,1. Recall that the group π1 (Σn,1, p) is free of rank
2n. By Van Kampen’s theorem (see for example [21, Section 1.2]), the group A

M
g
2

(
Σn,1♮Σn′,1

)
is isomorphic to the

fundamental group of the surface Σn,1♮Σn′,1: our assignment is thus consistent.
Hence, it follows from Lemma 2.4:

Proposition 2.15. The functor A
M

g
2

:
(
M

g
2 , ♮, Σ0

0,1

)
→ (gr, ∗, 0Gr) is strict monoidal and extends to a functor π1 (−, p) :

UM
g
2 → gr by assigning for all natural numbers n and n′:

π1 (−, p)
([

Σn′,1, idΣn′+n,1

])
= ιπ1(Σn′,1,p) ∗ idπ1(Σn,1,p).

For all natural numbers n, since the free group π1 (Σn,1, x) acts trivially on the homology group H1 (Σn,1, Z),
we have an isomorphism:

H1

(
π1 (Σn,1, x) , H1 (Σn,1, Z)⊗m

)
∼= H1 (Σn,1, Z)⊗(m+1) .
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Also, the action of Γn,2 on H1 (Σn,1, Z)⊗m is induced by the one of Γn,1 via the surjections ω0 ◦ ρ : Γn,2 ։ Γ
1
n,1 ։

Γn,1. It follows from Lemma 2.9 that the functor H1

(
A

M
g
2
, Z

)⊗m
is very strong polynomial of degree m. Using

the terminology of [5] and [9], H1

(
A

M
g
2
, Z

)⊗m
is thus a coefficient system of degree m. Hence, it follows from the

stability results of Boldsen [5] or Cohen and Madsen [9] that:

Theorem 2.16. [5, Theorem 4.17][9, Theorem 0.4] Let m, n and q be natural numbers such that 2n ≥ 3q + m:

Hq

(
Γn,2, H1 (Σn,1, Z)⊗m

)
∼= Hq

(
Γn,1, H1 (Σn,1, Z)⊗m

)
.

Then, we prove:

Theorem 2.17. Let m, n and q be natural numbers such that 2n ≥ 3q + m. Then, there is an isomorphism:

Hq

(
Γn,1, H1 (Σn,1, Z)⊗m

)
∼=

⊕
⌊

q−1
2

⌋
≥k≥0

Hq−(2k+1)

(
Γn,1, H1 (Σn,1, Z)⊗m−1

)
.

Proof. For the purposes of this proof, we abbreviate H1 (Σn,1, Z)⊗m by H(m). The Lyndon-Hochschild-Serre spec-
tral sequence with coefficients given by H(m) associated with the short exact sequence (10) has only two non-
trivial rows. Hence, for all natural numbers n ≥ 1, we obtain the following long exact sequence where we denote

λq = Hq

(
ρ, H(m)

)
:

· · ·
d2

q+1,0
// Hq−1

(
Γ

1
n,1, H(m)

)
// Hq

(
Γn,2, H(m)

) λq
// Hq

(
Γ

1
n,1, H(m)

) d2
q,0

// · · · . (12)

Recall from Corollary 2.3 that, denoting ϕ
sp
q a splitting of ϕq : Hq−1

(
Γn,1, H(m+1)

)
→ Hq

(
Γ

1
n,1, H(m)

)
(which

exists by the splitting lemma for abelian groups), the isomorphism of Proposition 2.13 is defined by

ϕ
sp
q ⊕ Hq

(
ω0, H(m)

)
: Hq

(
Γ

1
n,1, H(m)

)
∼= Hq−1

(
Γn,1, H(m+1)

)
⊕ Hq

(
Γn,1, H(m)

)
.

Let us consider the projection pr : Hq−1

(
Γn,1, H(m+1)

)
⊕ Hq

(
Γn,1, H(m)

)
։ Hq

(
Γn,1, H(m)

)
. Then, fixing a natu-

ral number n so that 2n ≥ 3q + m and applying Theorem 2.16 (the isomorphism it gives being induced by ω0 ◦ ρ),
the composition

Hq

(
ω0 ◦ ρ, H(m)

)−1
◦ pr ◦

(
ϕ

sp
q ⊕ Hq

(
ω0, H(m)

))

defines a splitting of λq. Therefore λq is split-injective and we obtain from the long exact sequence (12) the follow-
ing isomorphism for 2n ≥ 3q + m:

Hq

(
Γ

1
n,1, H(m)

)
∼= Hq

(
Γn,2, H(m)

)
⊕ Hq−2

(
Γ

1
n,1, H(m)

)
.

Now we again apply Proposition 2.13 to the homology groups Hq

(
Γ

1
n,1, H(m)

)
and Hq−2

(
Γ

1
n,1, H(m)

)
. Then it

follows from Theorem 2.16 that we have the following isomorphism for 2n ≥ 3q + m:

Hq−1

(
Γn,1, H(m+1)

)
⊕ Hq

(
Γn,2, H(m)

)
∼= Hq

(
Γn,2, H(m)

)
⊕ Hq−2

(
Γn,1, H(m)

)
⊕ Hq−3

(
Γn,1, H(m+1)

)
.

Note that the summand Hq

(
Γn,2, H(m)

)
on both side of this isomorphism is the image of the split-injective mor-

phism λq. Hence the image through the differential d2
q,0 gives the following isomorphism for 2n ≥ 3q + m:

Hq−1

(
Γn,1, H(m+1)

)
∼= Hq−2

(
Γn,1, H(m)

)
⊕ Hq−3

(
Γn,1, H(m+1)

)
.

The result then follows by induction on q.

Remark 2.18. In [26, Theorem 1.B.], Kawazumi leads the analogous computation for cohomology. The method
and techniques used in [26] are different from the ones presented here. Using the Universal Coefficient-type
theorem for twisted coefficients (see for example [16, Théorème I.5.5.2]), Theorem 2.17 recovers the computation
[26, Theorem 1.B.].
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Computation of Hd

(
Γ

1
∞,1, Z

)
. Another application of Proposition 2.13 is to compute the stable homology groups

Hd

(
Γ

1
∞,1, Z

)
for all natural numbers d. Using Proposition 2.13 with constant module Z and Theorem 2.17 with

m = 1, we prove:

Corollary 2.19. Let n and q be natural numbers such that 2n ≥ 3q. Then, there is an isomorphism for all m ≥ 0:

Hq

(
Γ

1
n,1, H1 (Σn,1, Z)⊗m

)
∼=

⊕
⌊

q−1
2

⌋
≥k≥0

Hq−(2k+1)

(
Γn,1, H1 (Σn,1, Z)⊗m−1

)

⊕
⌊

q−2
2

⌋
≥k≥0

Hq−(2k+2)

(
Γn,1, H1 (Σn,1, Z)⊗m

)
.

In particular

Hq

(
Γ

1
n,1, Z

)
∼=

⊕

⌊ q
2⌋≥k≥0

Hq−2k (Γn,1, Z) .

Using other techniques (namely an equivalence of classifying spaces), Bödigheimer and Tillmann prove the
more general result:

Theorem 2.20. [4, Corollary 1.2] Let q and n be natural numbers such that n ≥ 2q. For all natural numbers s

Hq

(
Γ
[s]
n,1, Z

)
∼=

⊕

k+l=q

(
Hk (Γn,1, Z)⊗

Z
Hl

(
(CP∞)×s , Z

))

where CP∞ denotes the infinite dimensional complex projective space.

2.3.2 Automorphisms of free groups with boundaries

Let Gn,k denote the topological space consisting of a wedge of n ∈ N circles together with k distinguished circles
joined by arcs to the basepoint. For s ∈ N, let G s

n,k be the space obtained from Gn,k by wedging s − 1 edges at the

basepoint. We denote by Htpy∗

(
G s

n,k; ∂
)

the space of homotopy equivalences of Gn,k that preserve the basepoint
and restrict to the identity on each of the k distinguished circles and the s basepoints. Let As

n,k be the group of

path-components of Htpy∗

(
G s

n,k; ∂
)

. For instance, for n a natural number and denoting by Fn the free group of

rank n, then A1
n,0 is isomorphic to the automorphism group of Fn (denoted by Aut (Fn)) and A2

n,0 is isomorphic to
the holomorphs of the free group Fn. We refer the reader to [22] and [24] for more details on these groups.

Remark 2.21. We denote by Ms
n,k the connected sum

(
♯n
(
S1 × S2)) ♯

(
♯k
(
S1 × D2)) ♯

(
♯s
(
D3)) and by π0Diff

(
Ms

n,k

)

the isotopy classes of diffeomorphisms of Ms
n,k (a.k.a. the mapping class group of Ms

n,k). Recall from [22, Theorem
1.1] that there is a short exact sequence

1 // Ks
n,k

// π0Diff
(

Ms
n,k

)
// As

n,k
// 1 ,

where Ks
n,k is generated by Dehn twists along embedded 2 spheres (and is a product of at most n + k + s copies of

Z/2Z). Hence the automorphism of free groups with boundaries As
n,k can be viewed as a quotient of the mapping

class group of the 3-manifold Ms
n,k.

For k, n ∈ N, we denote by Autn,k the subgroup of Aut (Fn+k) of automorphisms that take each of the last
k generators to a conjugate of itself. Denoting by Htpy∗ (Gn,k; [∂]) the space of homotopy equivalences of Gn,k
that preserve the basepoint and fixing the k distinguished circles up to a rotation, then Autn,k is the group of
path-components of Htpy∗ (Gn,k; [∂]). Restricting the elements of Htpy∗ (Gn,k; [∂]) to their rotations of the k distin-

guished circles defines a fibration Htpy∗ (Gn,k; ∂) → Htpy∗ (Gn,k; [∂]) →
(
S1)k

. The homotopy long exact sequence
associated with this fibration provides an exact sequence
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Zk // An,k
// Autn,k

// 1

(actually, by [25, Section 2], the left hand map is injective and this is a short exact sequence), which gives a
surjective map An,k ։ Autn,k. For k, n ∈ N, we denote by aAn,k

the composition A1
n,k → An,k ։ Autn,k →֒

Aut (Fn+k) where the map A1
n,k → An,k forgets the basepoint. We recall the following useful result:

Lemma 2.22. [22] Let n, k and s ≥ 2 be natural numbers. There is a split short exact sequence

1 // Fn+k
// As

n,k
// As−1

n,k
// 1, (13)

where the map As
n,k → As−1

n,k forgets the last basepoint and a fortiori As
n,k

∼= (Fn+k)
s−1

⋊ A1
n,k where A1

n,k acts diagonally

on (Fn+k)
s−1 via the map aAn,k

: A1
n,k → Aut (Fn+k).

Let k and s be fixed natural numbers. Let As,k be the groupoid with the spaces G s
n,k as its objects and As

n,k as
automorphism groups for all natural numbers. For s = 1 and k = 0, A1,0 is the maximal subgroupoid of the
category gr of finitely generated free groups and we denote by i : A1,0 → gr the inclusion functor. Moreover
the coproduct ∗ induces a strict symmetric monoidal structure (A1,0, ∗, 0Gr) by restriction and we thus define the
symmetric monoidal category (UA1,0, ∗, 0Gr). The functor i lifts to the category UA1,0 by sending a morphism

[Fn2−n1 , g] : Fn1 → Fn2 of UA1,0 (where g ∈ Aut (Fn2)) to the morphism g ◦
(

ιFn2−n1
∗ idFn1

)
: Fn1 →֒ Fn2 of gr: since

f ◦ ιFn = ιFn for all f ∈ Aut (Fn), the relation (2) is trivially satisfied and the result follows from Lemma 1.5. Then
i is a faithful functor and UA1,0 can be seen as a subcategory of gr.

Let k and s ≥ 1 be natural numbers. Precomposing by the surjection As
n,k ։ As−1

n,k ։ · · · ։ A1
n,k, the mor-

phisms
{

aAn,k

}
n∈N

assemble to define a functor AAs,k
: As,k → Gr such that AAs,k

(n) = Fn+k for all natural

numbers n. Furthermore, we recall the stable homology result for automorphism groups of free groups due to
Galatius for constant coefficients and Djament and Vespa for twisted coefficients:

Theorem 2.23. Let q ≥ 1 be a natural number. Then:

• [14] for n ≥ 2q + 1, Hq (Aut (Fn) , Q) = 0;

• [11, Théorème 1] for F : gr → Ab a strong polynomial functor such that F (0Gr) = 0Gr, then Colim
n∈N

(
Hq (Aut (Fn) , F (n))

)
=

0.

Hence, we can establish the main result of Section 2.3.2.

Theorem 2.24. Let s ≥ 2 and q ≥ 1 be natural numbers.

1. Let F : gr → Ab be a strong polynomial functor such that F (0Gr) = 0Gr. The action of As
n,0 on F (n) is induced by

the surjections As
n,0 ։ As−1

n,0 ։ · · · ։ A1
n,0. Then

Colim
n∈N

(
Hq
(

As
n,0, F (n)

))
= 0.

2. For all natural numbers n ≥ 2q + 2 and k ≥ 0, Hq

(
As

n,k, Q

)
= 0.

Proof. Since i : UA1,0 → gr is faithful and the monoidal structure of UA1,0 is induced from the one of gr, i is strong
monoidal. Recall from Remark 2.6 that, since the trivial group 0Gr is a terminal object of gr, F is very strong
polynomial. We then deduce from Proposition 2.7 that the functor F ◦ i : UA1,0 → Ab is very strong polynomial. It

follows from Lemma 2.10 that H1 (F−, Q)⊗
Q

F (−) : UA1,0
i
→ gr → Ab is a strong polynomial functor. Hence, the

first result follows from Corollary 2.3 and Theorem 2.23.
In [23, Theorem 1.1], Hatcher and Wahl prove that the stabilization morphism As

n,k → As
n,k+1 induces an

isomorphism for the rational homology Hq

(
As

n,k, Q

)
∼
→ Hq

(
As

n,k+1, Q

)
if n ≥ 3q + 3. The second result thus

follows from the previous statement.

Remark 2.25. For k = 0 and s = 2, Theorem 2.24 recovers the results [24, Theorem 1.2 (b) and (c)] due to Jensen.
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3 Twisted stable homologies for FI-modules

In this section, we present a general principle to compute the twisted stable homology for mapping class groups
with non-trivial finite quotient groups. First, we give a general decomposition for the twisted stable homology
using functor homology Section 3.1. Then, we can establish in Theorem 3.7 a general formula to compute the stable
homology with twisted coefficients given by functors over categories associated with the aforementioned finite
quotient groups in Section 3.2. This allows one to set explicit formulas for the stable homology with coefficients
given by FI-modules for braid groups, mapping class groups of orientable surfaces and some particular right-
angled Artin groups in Section 3.3. Throughout Section 3, we fix K a field.

3.1 General decomposition for the twisted stable homology using functor homology

In this first subsection, we prove a decomposition result for the stable homology with twisted coefficients for
families of groups whose associated groupoid is braided strict monoidal and satisfies the assumptions of Theorem
1.12 (see Theorem 3.2). It extends a previous analogous result due Djament and Vespa in [10, Section 1 and 2] when
the ambient monoidal structure is symmetric. It will be a key step to prove Theorem 3.7. We refer the reader to the
papers [13, Section 2] and [10, Appendice A] for an introduction to homological algebra in functor categories and
we assume that all the definitions, properties and results there are known.

Throughout Section 3.1, we consider (G, ♮, 0) a small braided strict monoidal groupoid, with objects indexed
by the natural numbers. An object of G is thus denoted by n, where n is its corresponding indexing natural
number. We denote the automorphism group AutG (n) by Gn and assume that there are no morphisms between
distinct objects. These groups define a family of groups G− : (N,≤) → Gr such that G− (γn) : Gn → Gn+1 is the
injective group morphism which sends ϕ ∈ Gn to ϕ♮id1.

We assume that G has no zero divisors, that AutG(0) = {id0} and that it satisfies the properties (C) and
(I) of Definition 1.11. By Theorem 1.12, the monoidal structure ♮ extends to Quillen’s bracket construction and
defines pre-braided homogeneous category (UG, ♮, 0). Also, the unit 0 is an initial object in UG and we recall that
ιn = [n, idn] : 0 → n denotes the unique morphism in UG from 0 to n. Hence, we have canonical morphisms
idn♮ιn′−n : n → n′ in UG, for all natural numbers n and n′ such that n′ ≥ n.

We fix F an object of Fct (UG, K-Mod). Our goal is to compute the stable homology of the family of groups G−

with coefficients given by F. Namely, we are interested in the computation of

Colim
n∈(N,≤)

(H∗ (Gn, F (n)))

the colimit of the homology groups H∗ (Gn, F (n)) with respect to the morphisms

H∗
(
G− (γn) , F

(
idn♮ι1

))
: H∗ (Gn, F (n)) → H∗ (Gn+1, F (n + 1))

induced by the functoriality in two variables of group homology with respect to the morphisms G− (γn) and
F
(
idn♮ι1

)
).

Notation 3.1. We denote by G∞ the colimit of the groups Gn with respect to the morphisms G− (γn) and by
G− (γ∞) : Gn → G∞ the associated canonical group morphism. Let F∞ be the colimit of the Gn-modules F (n)
with respect to the morphisms F

(
idn♮ι1

)
. Let H∗ (G∞, F∞) be the homology group of the colimit G∞ with coeffi-

cient in the colimit F∞: it coincides with Colim
n∈(N,≤)

(H∗ (G (n) , F (n))) (since group homology commutes with filtered

colimits).

As categories with one object, the groups {Gn}n∈N are subcategories of UG: for each natural number n, we
have a canonical faithful functor iGn : Gn → UG. We denote by Π : G∞ × UG → UG the projection functor and by
Π∗ the precomposition by Π. Thanks to the functoriality of the homology of categories, we define for each natural
number n a morphism

ΨF,n : H∗ (Gn, F (n)) → H∗ (G∞ × UG, Π
∗F)

induced by restriction along the functor (G− (γ∞)× iGn) ◦ ∆Gn : Gn → G∞ × UG, where ∆Gn : Gn → Gn × Gn is
the diagonal functor. Then it formally follows from the previous definitions that for all natural numbers n:

H∗
(
G− (γn) , F

(
idn♮ι1

))
◦ ΨF,n+1 = ΨF,n.

15



A fortiori the morphisms {ΨF,n}n∈N
are natural with respect to (N,≤). Hence, the colimit with respect to (N,≤)

defines a unique morphism:
ΨF : H∗ (G∞, F∞) → H∗ (G∞ × UG, Π

∗F) .

Let us state the main result of this section.

Theorem 3.2. Let K be a field and (UG, ♮, 0) be a pre-braided homogeneous category as detailed before. For all functors
F : UG → K-Mod, the morphism ΨF is a K-modules isomorphism. Moreover, ΨF decomposes as a natural isomorphism:

H∗ (G∞, F∞) ∼=
⊕

k+l=∗

(
Hk (G∞, K)⊗

K
Hl (UG, F)

)
.

Proof. Note that the morphism ΨF is a morphism of δ-functors commuting with filtered colimits. Recall that the
category Fct (UG, K-Mod) has enough projectives, provided by direct sums of the standard projective generators
functors PUG

n = K [HomUG (n,−)] for all natural numbers n. Therefore, we only have to show that ΨF is an isomor-
phism when F = PUG

n . Indeed, for an ordinary functor F, there is an epimorphism from a direct sum of standard
projective generators to F and K-Mod is an abelian category: the result then follows from a straightforward recur-
sion on the homological degree on the long exact sequence induced by this epimorphism.

We deduce from Lemma 1.10 that we have the following isomorphism of Gm-sets for all natural numbers
m ≥ n:

HomUG (n, m) ∼= Gm/Gm−n.

Hence PUG
n (m) ∼= K [Gm] ⊗

K[Gm−n]
K as Gm-modules. Therefore, it follows from Shapiro’s lemma that:

H∗

(
Gm, PUG

n (m)
)
∼= H∗ (Gm−n, K) .

Taking the colimit with respect to m, we deduce the isomorphism H∗

(
G∞,

(
PUG

n
)

∞

)
∼= H∗ (G∞, K). Recall that

PUG
n is a projective object in UG. Then, using the first Künneth spectral sequence for the product of two categories,

the morphism ΨPUG
n

identifies with:

H∗

(
G∞,

(
PUG

n

)
∞

)
∼= H∗ (G∞, K) ∼= H∗

(
G∞ × UG, Π

∗
(

PUG
n

))
.

The second part of the statement follows applying Künneth formula for homology of categories.

3.2 Framework and first equivalence for stable homology

Throughout the remainder Section 3, we assume that the field K is of characteristic 0.
We consider three families of groups K−, G− and C− which fit into the following short exact sequence in the

category Fct ((N,≤) ,Gr):

0 // K−
k

// G−
c

// C−
// 0 , (14)

where k : K− → G− and c : G− → C− are natural transformations and 0 denotes the constant object of
Fct ((N,≤) ,Gr) at 0Gr.

Let K, G and C denote the groupoids with objects indexed by natural numbers, with no morphisms between
distinct objects, such that AutK (n) = Kn, AutG (n) = Gn and AutC (n) = Cn. We assume that the groupoids G
and C are endowed with braided strict monoidal structures (G, ♮G , 0G) and (C , ♮C , 0C), where ♮G and ♮C are defined
by the addition on objects, such that:

• the morphisms {cn}n∈N induce a strict monoidal functor c : G → C defined by the identity on objects;

• G− (γn) = id1♮G− : Gn →֒ Gn+1 and C− (γn) = id1♮C− : Cn →֒ Cn+1 for all natural numbers n.
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Recall that the associated Quillen’s bracket construction (UG, ♮G , 0) and (UC , ♮C , 0) are pre-braided strict monoidal
by Proposition 1.8. Let O ′

G : (N,≤) → UG and O ′
C : (N,≤) → UC be the faithful and essentially surjective functors

assigning O ′
G (n) = O ′

C (n) = n and O ′
G (γn) = O ′

C (γn) =
[
1, idn+1

]
for all natural numbers n. Using the functors

O
′
G and O

′
C , the natural transformation c : G− → C− identifies the morphisms

[
n′ − n, idn′

]
(with natural numbers

n′ ≥ n) of UG and UC . The criteria (1) and (2) of Lemma 1.5 being trivially checked, the functor c : G → C lifts to a
functor UG → UC , again denoted by c (abusing the notation).

The short exact sequence (14) implies that the braided strict monoidal structure (G, ♮G , 0G) induces a braided
strict monoidal structure on K, denoted by (K, ♮G , 0G), such that:

K− (γn) = id1♮G− : Kn →֒ Kn+1

for all natural numbers n. As for the morphisms {cn}n∈N, the morphisms {kn}n∈N induce a strict monoidal func-
tor k : UK → UG.

We fix F an object of Fct (UG, K-Mod). For all natural numbers n, we abuse the notation and write F (n) for the
restriction of F (n) from Gn to Kn. Our aim is to compute the stable homology H∗ (G∞, F∞) of the family of groups
G− under the assumption that C− is a family of finite groups. A first step is given by the following result:

Proposition 3.3. We assume that the group Cn is finite for each natural number n. Then for all natural numbers q:

Hq (Gn, F (n)) ∼= H0
(
Cn, Hq (Kn, F (n))

)
. (15)

Proof. Applying the Lyndon-Hochschild-Serre spectral sequence for the short exact sequence (14), we obtain the
following convergent first quadrant spectral sequence:

E2
pq : Hp

(
Cn, Hq (Kn, F (n))

)
=⇒ Hp+q (Gn, F (n)) . (16)

Fixing n a natural number, we have for p 6= 0:

Hp
(
Cn, Hq (Kn, F (n))

)
= 0,

since Cn is a finite group. Hence, the second page of the spectral sequence (16) has non-zero terms only on the 0-th
column and zero differentials. A fortiori, the convergence gives that E2 = E∞ and this gives the desired result.

Let us now focus on a key property for the homologies of the kernels {Kn}n∈N which improves Proposition
(3.3). Recall that, as Kn is a normal subgroup of Gn, the map conjn : Gn → AutGr (Kn) sending an element g ∈ Gn
to the left conjugation by g is a group morphism.

Lemma 3.4. We define a functor K̃− : UG → Gr assigning K̃− (n) = Kn for all natural numbers n and:

1. for all g ∈ Gn, K̃− (g) ∈ AutGr (Kn) to be conjn (g) : k 7→ gkg−1 for all k ∈ Kn,

2. K̃−
([

1, idn+1
])

= id1♮G−.

Proof. It follows from the first assignment of Lemma 3.4 that we define a functor K̃− : G → Gr. The relation (1)
of Lemma 1.5 follows from the definition of the monoidal product ♮G . Let n and n′ be natural numbers such that
n′ ≥ n, let g ∈ Gn and g′ ∈ Gn′ . We compute for all k ∈ Kn:

(
K̃−
(

g′♮Gg
)
◦ K̃−

([
n′, idn′+n

]))
(k) =

(
g′♮Gg

)
(idn′♮Gk)

(
g′♮Gg

)−1

= idn′♮G

(
gkg−1

)

=
(

K̃−

([
n′, idn′+n

])
◦ K̃− (g)

)
(k) .

Hence, the relation (2) is satisfied a fortiori the result follows from Lemma 1.5.

Lemma 3.4 is useful to prove the following key result.

17



Proposition 3.5. For all natural numbers q, the homology groups
{

Hq (Kn, F (n))
}

n∈N
define a functor Hq (K−, F (−)) :

UC → K-Mod.

Proof. Let P be the category of pairs (G, M) where G is a group and M is a G-module for objects; for (G, M)
and (G′, M′) objects of P , a morphism from (G, M) to (G′, M′) is a pair (ϕ, α) where ϕ ∈ HomGr (G, G′) and
α : M → M′ is a G-module morphism, where M′ is endowed with a G-module structure via ϕ. Using the functor
F : UG → K-Mod, by Lemma 3.4 K̃− defines a functor

(
K̃−, F (−)

)
: UG → P . Recall from [6, Section 8] that group

homology defines a covariant functor H∗ : P → K-Mod for all q ∈ N. Hence the composition with the functor(
K̃−, F (−)

)
: UG → P gives a functor:

Hq (K−, F (−)) : UG → K-Mod.

Moreover, since inner automorphisms act trivially in homology, we deduce that for all natural numbers n, the con-
jugation action of Gn on (Kn, F (n)) induces an action of Cn on H∗ (Kn, F (n)). The monoidal structures (G, ♮G , 0G)
and (C , ♮C , 0C) being compatible, we deduce that the functor Hq (K−, F (−)) factors through the category UC using
the functor c : UG → UC .

Finally, we recall the following classical property for the homology of a category:

Proposition 3.6. [13, Example 2.5] Let C be an object of Cat and let F be an object of Fct (C, R-Mod). Then, H0 (C, F) is
isomorphic to the colimit over C of the functor F : C → R-Mod.

We thus deduce from Propositions 3.3 and 3.5:

Theorem 3.7. Let K−, G− and C− three families of groups fitting in the short exact sequence (14), such that the group Cn
is finite for all natural numbers n and the groupoids G and C are endowed with the aforementioned braided strict monoidal
structures (G, ♮G , 0G) and (C , ♮C , 0C). Then, for all natural numbers q:

Hq (G∞, F∞) ∼= Colim
l∈UC

(
Hq (Kl , F (l))

)
.

Moreover, if F factors through the category UC (in other words, F : UG c
→ UC → K-Mod), then:

Hq (G∞, F∞) ∼= Colim
l∈UC

(
Hq (Kl , K)⊗

K
F (l)

)
.

Proof. Applying Theorem 3.2 to Proposition 3.3, we obtain:

Colim
n∈N

(
H0
(
Cn, Hq (Kn, F (n))

))
∼= Colim

n∈N

(
H0 (Cn, K)⊗

K
H0
(
UC , Hq (K−, F)

))
.

By Proposition 3.6, H0
(
UC , Hq (K−, F)

)
∼= Colim

l∈UC

(
Hq (Kl , F (l))

)
. Since H0 (Cn, K) ∼= K, we deduce the first result.

For the second result, requiring F to factor through UC is actually necessary to define the functor Hq (K−, K) ⊗
K

F (−) : UC → K-Mod using the pointwise tensor product of functors. Then the isomorphism follows from the
universal coefficient theorem for homology.

Remark 3.8. We can generalise Section 3.2 to the setting where K is a field of positive characteristic coprime to the
cardinality of Cn for all n: the key point is that the homology group Hp

(
Cn, Hq (Kn, F (n))

)
= 0 has to vanish for

p 6= 0 which is still true under this alternative assumption (since the multiplication by |Cn| defines an isomorphism
of Hq (Kn, F (n))).

3.3 Applications

We present now how to apply the general result of Theorem 3.7 for various families of groups. Beforehand, we fix
some notations. We denote by Sn the symmetric group on n elements and by S− : (N,≤) → Gr the family of
groups defined by S− (n) = Sn and S− (γn) = id1 ⊔− for all natural numbers n.

Let Σ be the skeleton of the groupoid of finite sets and bijections. Note that Obj (Σ) ∼= N and that the auto-
morphism groups are the symmetric groups Sn. The disjoint union of finite sets ⊔ induces a monoidal structure
(Σ,⊔, 0), the unit 0 being the empty set. This groupoid is symmetric monoidal, the symmetry being given by the
canonical bijection n1 ⊔ n2

∼
→ n2 ⊔ n1 for all natural numbers n1 and n2. The category UΣ is equivalent to the

category of finite sets and injections FI studied in [8].
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3.3.1 Braid groups

We respectively denote by Bn the braid group on n strands and by PBn the pure braid group on n strands. The
braid groupoid β is the groupoid with objects the natural numbers n ∈ N and braid groups as automorphism
groups. It is endowed with a strict braided monoidal product ♮ : β × β −→ β, defined by the usual addition for
the objects and laying two braids side by side for the morphisms. The object 0 is the unit of this monoidal product.
The braiding of the strict monoidal groupoid (β, ♮, 0) is defined for all natural numbers n and m by:

bβ
n,m = (σm ◦ · · · ◦ σ2 ◦ σ1) ◦ · · · ◦ (σn+m−2 ◦ · · · ◦ σn ◦ σn−1) ◦ (σn+m−1 ◦ · · · ◦ σn+1 ◦ σn)

where {σi}i∈{1,...,n+m−1} denote the Artin generators of the braid group Bn+m. We refer the reader to [27, Chapter
XI, Section 4] for more details. By [29, Proposition 5.18], the category Uβ is pre-braided homogeneous.

The classical surjections
{

Bn
pn
։ Sn

}

n∈N

, sending each Artin generator σi ∈ Bn to the transposition τi ∈ Sn

for all i ∈ {1, . . . , n − 1} and for all natural numbers n, assemble to define a functor P : Uβ → FI. The functor
P is strict monoidal with respect to the monoidal structures (Uβ, ♮, 0) and (FI,⊔, 0). In addition, they define the
following short exact sequence for all natural numbers n (see for example [3]):

1 // PBn // Bn
pn

// Sn // 1 .

Let PB− : (N,≤) → Gr and B− : (N,≤) → Gr be the families of groups defined by PB− (n) = PBn, B− (n) = Bn
and B− (γn) = PB− (γn) = id1♮− for all natural numbers n. Therefore, by Theorem 3.7:

Proposition 3.9. Let F be an object of Fct (Uβ, K-Mod). For all natural numbers q, Hq (B∞, F∞) ∼= Colim
n∈FI

(
Hq (PBn, F (n))

)
,

and if F factors through the category FI, then:

Hq (B∞, F∞) ∼= Colim
n∈FI

(
Hq (PBn, K)⊗

K
F (n)

)
.

The rational cohomology ring of the pure braid group on n ∈ N strands is computed by Arnol’d in [1]. Namely,
Hq (PBn, Q) is the graded exterior algebra generated by the classes ωi,j for i, j ∈ {1, . . . , n} and i < j, subject to the
relations ωi,jωj,k + ωj,kωk,i + ωk,iωi,j = 0. By the universal coefficient theorem for cohomology and as Hq (PBn, K)
is a finite-dimensional vector space, we deduce that Hq (PBn, K) ∼= Hq (PBn, K).

Moreover, the FI-module structure of the homology groups Hq (PB−, K) is well-known by [8, Example 5.1.A]:
the conjugation action of the symmetric group Sn on Hq (PBn, K) translates into the permutation action of Sn on
the indices i, j ∈ {1, . . . , n} of the generators

{
ωi,j
}

i,j∈{1,...,n}
. Hence, fixing some F ∈ Fct (FI, K-Mod), we have a

complete description of the FI-module structure of the functor Hq (PB−, K)⊗
K

F (−).

3.3.2 Mapping class group of orientable surfaces

We take the notations of Section 2.3.1. Recall that we introduced the groupoid M2 associated with the surfaces

Σs
n,1 for all natural numbers n and s. Let M=

2 be the full subgroupoid of M2 on the objects
{

Σn
n,1

}
n∈N

. By [29,

Proposition 5.18], the boundary connected sum ♮ induces a strict braided monoidal structure
(
M=

2 , ♮,
(

Σ0
0,1, I

))

such that UM=
2 is a pre-braided homogeneous category.

Recall that Diff∂0,points
(

Σn
n,1

)
denotes the space of diffeomorphisms of the surface Σn

n,1 which fix the boundary

pointwise and fix the marked points. Let Diff∂0,permute
(

Σn
n,1

)
be the space of diffeomorphisms of the surface Σn

n,1

which fix the boundary pointwise and permute the marked points. The injections
{

Γ
[n]
n,1

in
→֒ Γn

n,1

}

n∈N

induced by

the inclusions
Diff∂0,points (Σn

n,1
)
→֒ Diff∂0,permute (Σn

n,1
)

provide the following short exact sequence for all natural numbers n:

1 // Γ
[n]
n,1

in
// Γ

n
n,1

pmn
// Sn // 1 .
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The surjections {pmn}n∈N define a strict monoidal functor M=
2 → Σ. Let Γ

[−]
−,1 : (N,≤) → Gr and Γ

−
−,1 : (N,≤) →

Gr be the families of groups defined by Γ
[−]
−,1 (n) = Γ

[n]
n,1, Γ

−
−,1 (n) = Γn

n,1 and Γ
[−]
−,1 (γn) = Γ

−
−,1 (γn) = id1♮− for all

natural numbers n.
From Theorem 2.20, we deduce that for all natural numbers q such that n ≥ 2q:

Hq

(
Γ
[n]
n,1, K

)
∼=

⊕

k+l=q

(
Hk (Γn,1, K)⊗

K
Hl

(
(CP∞)×n , K

))
.

The conjugation action of the symmetric group Sn on Γ
[n]
n,1 is induced by the natural action of Sn on Σn

n,1 given
by permuting the marked points. Hence, according to the decomposition of the classifying space associated with

the pure mapping class groups in [4, Theorem 1], the action of Sn on Hq

(
Γ
[n]
n,1, K

)
corresponds to permuting

the n factors CP∞: the FI-module structure of the homology groups Hq

(
Γ
[n]
n,1, K

)
is thus well-understood using

Künneth formula for Hl

(
(CP∞)×n , Z

)
. A fortiori the homology group H∗ (Γn,1, K) is a trivial Sn-module. Recall

also from [28] that:
H∗ (Γ∞,1, K) ∼= K [κ1, κ2, . . .]

where each κi has degree 2i.
By Theorem 3.7, we deduce that:

Proposition 3.10. Let F be an object of Fct (UM=
2 , K-Mod). For all natural numbers q,

Hq
(
Γ

∞

∞,1, F∞

)
∼= Colim

n∈FI

(
Hq

(
Γ
[n]
n,1, F (n)

))
.

In particular, if F factors through the category FI, then:

Hq
(
Γ

∞
∞,1, F∞

)
∼= Colim

n∈FI


 ⊕

k+l=q

(
Hk (Γn,1, K)⊗

K
Hl

(
(CP∞)×n , K

))
⊗
K

F (n)


 ,

and a fortiori H2k+1

(
Γ∞

∞,1, F∞

)
= 0 for all natural numbers k.

Remark 3.11. The key point for the calculations of Section 3.3.2 to work is to consider a subgroupoid M
′

2 of M2 so

that the braided monoidal structure ♮ restricts to it (i.e
(
M

′

2, ♮,
(

Σ0
0,1, I

))
is a braided monoidal groupoid) and so

that the number of marked evolves linearly with respect to the genus: for instance we could consider the category

with objects
{

Σ2n
n,1

}
n∈N

and all the above results follow mutatis mutandis. However this does not change the

result for the colimit.

3.3.3 Particular right-angled Artin groups

A right-angled Artin group (abbreviated RAAG) is a group with a finite set of generators {si}1≤i≤k with k ∈ N

and relations sisj = sjsi for some i, j ∈ {1, . . . , n}. For instance, the free group on k generators Fk is a RAAG. We
refer to [32] or [15, Section 3] for more details on these groups.

By [15, Proposition 3.1], any RAAG admits a maximal decomposition as a direct product of RAAGs, unique up
to isomorphism and permutation of the factors. A RAAG is said to be unfactorizable if its maximal decomposition
is itself. We refer to [32] or [15, Section 3] for more details on these groups. Moreover, we have the following key
property:

Lemma 3.12. [15, Proposition 3.3] Let A be a fixed unfactorizable RAAG different from Z. For all natural numbers n, we
have the following split short exact sequence:

1 // Aut (A)×n in
// Aut (A×n)

iiiiiiisn
// Sn // 1.
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Let RA be the groupoid with the groups A×n for all natural numbers n as its objects and Aut (A×n) as auto-
morphism groups. By [15, Sections 1 and 5], the direct product × induces a strict symmetric monoidal structure
(RA,×, 0Gr) such that URA is a pre-braided homogeneous category. It is clear that the surjections {sn}n∈N define
a strict monoidal functor S : RA → Σ. Let Aut (A×−) : (N,≤) → Gr and Aut (A)×− : (N,≤) → Gr be the
families of groups defined by Aut (A×−) (n) = Aut (A×n), Aut (A)×− (n) = Aut (A)×n and Aut (A×−) (γn) =

Aut (A)×− (γn) = id1 ×− for all natural numbers n. By Theorem 3.7:

Proposition 3.13. Let F be an object of Fct (URA, K-Mod) and A be a fixed unfactorizable right-angled Artin group

different from Z. For all natural numbers q, Hq (Aut (A×∞) , F∞) ∼= Colim
n∈FI

(
Hq

(
Aut (A)×n , F (n)

))
, and if F factors

through the category FI, then:

Hq
(

Aut
(

A×∞
)

, F∞

)
∼= Colim

n∈FI

(
Hq

(
Aut (A)×n , K

)
⊗
K

F (n)
)

. (17)

Corollary 3.14. Let A be a fixed unfactorizable right-angled Artin group different from Z, such that there exists NA ∈ N

such that Hq (Aut (A) , K) = 0 for 1 ≤ q ≤ NA. Then, for all objects F of Fct (URA, K-Mod) factoring through the
category FI:

Hq
(

Aut
(

A×∞
)

, F∞

)
= 0,

for all natural numbers q such that 1 ≤ q ≤ NA.

Proof. It follows from Künneth Theorem that, for all natural numbers q such that 1 ≤ q ≤ NA, Hq

(
Aut (A)×n , K

)
=

0. Then, the result follows from (17).

Example 3.15. Let Fk be the free group on k generators. By [14, Corollary 1.2], for k ≥ 2q + 1 and q 6= 0,
Hq (Aut (Fk) , K) = 0. Let F be an object of Fct

(
URFk

, K-Mod
)

factoring through the category FI. Then, for
all natural numbers q and k such that 1 ≤ q ≤ k−1

2 :

Hq

(
Aut

(
(Fk)

×∞
)

, F∞

)
= 0.

In particular, Hq

(
Aut

(
(F∞)×∞

)
, F∞

)
= 0 for all FI-module F.
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