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Abstract

We propose a notion of alternating bisimulation for strategic abilities under
imperfect information. The bisimulation preserves formulas of ATL∗ for both
the objective and subjective variants of the state-based semantics with imper-
fect information, which are commonly used in the modeling and verification
of multi-agent systems. Furthermore, we apply the theoretical result to the
verification of coercion-resistance in the ThreeBallot voting system, a voting
protocol that does not use cryptography. In particular, we show that natural
simplifications of an initial model of the protocol are in fact bisimulations
of the original model, and therefore satisfy the same ATL∗ properties, in-
cluding coercion-resistance. These simplifications allow the model-checking
tool MCMAS to terminate on models with a larger number of voters and
candidates, compared with the initial model.

Keywords: Alternating-time Temporal Logic, Bisimulations, Voting
Protocols, Formal Verification.

1. Introduction

Formal languages for expressing strategic abilities of rational agents have
witnessed a steady growth in recent years [1, 2, 3]. Among the most sig-
nificant contributions we mention Alternating-time Temporal Logic [4, 5],
(possibly enriched with strategy contexts [6]), Strategy Logic [7, 8], and
Coalition Logic [9]. These languages allow to express that a group of agents
has a strategy to enforce a certain outcome, regardless of the behavior of the
other agents. That provides syntactical and semantic means to characterize
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winning conditions in multi-player games, notions of equilibrium (e.g. Nash),
strategy-proofness, and so on [7, 10, 11, 12].

However, if logics for strategies are to be applied to the specification
and verification of multi-agent systems (MAS) [13, 14, 15], they need to
be coupled with efficient model checking techniques. Unfortunately, while
in contexts of perfect information we benefit from tractable algorithms for
model checking [5], the situation is rather different once we consider imper-
fect information. In contexts of imperfect information the complexity of the
verification task ranges between ∆P

2 -completeness [16] to undecidability [17],
depending on whether we assume perfect recall. In this setting, comple-
mentary model checking techniques are being investigated, in order to make
the problem feasible in practice, including semantic [18, 19] and syntactic
restrictions [20], as well as approximations [21].

Amongst these, model reduction seems one of the more promising paths.
In particular, reductions by state- and action-space abstraction have proved
to be a valuable tool for efficient verification [22, 23, 24], also in the con-
text of strategic abilities [10, 25, 26, 27]. Within that approach, the “con-
crete” system S to be model-checked is abstracted into a “simpler” model
SA, which typically contains less states and transitions and therefore can
be easier to verify. Then, the verification result is transferred from abstrac-
tion SA to the concrete S by virtue of some preservation result. Normally,
preservation is guaranteed by proving that abstraction SA is similar or bisim-
ilar to S. (Bi)simulations are a powerful tool to analyze the expressiveness
of modal languages, starting with van Benthem’s characterisation of modal
logic as the bisimulation-invariant fragment of first-order logic [28]. How-
ever, (bi)simulations are a lot less understood in logics for strategies, where
they have been studied mostly in the contexts of perfect information scenar-
ios [29, 30, 31].

In this paper, we advance the state-of-the-art by introducing simulations
and bisimulations for alternating-time temporal logic under imperfect infor-
mation. We prove that these (bi)simulations preserve the interpretation of
formulas for the whole syntax of ATL∗, when interpreted with imperfect in-
formation and imperfect recall, for both the objective and subjective variants
of the semantics [2, 32]. Most interestingly for MAS verification, we apply
the (bi)simulations to the model reduction of a class of electronic voting
protocols without encryption.

Electronic voting is often considered as an attractive alternative to paper-
based elections and referendums due to a number of advantages: increased
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accessibility, availability, voter turnout, cost-efficiency, and usability, as well
as speed and accuracy of the voting, counting and publication processes.
However, electronic voting poses a number of challenges: resistance to co-
ercion and other types of fraud, secrecy, anonymity, verifiability, democracy
(the right to vote at most once), accountability, etc. Those threats exist also
in paper voting, but the use of technology magnifies their scope and potential
impact. There are also other issues, specific to electronic voting, such as lim-
ited access to technology and complex interaction between technology and
public understanding and trust in the procedure [33, 34]. In this paper, we
focus on the property of coercion resistance that captures the voters’ ability
to choose freely how they vote: whatever course of action the coercer adopts,
the voter always has a strategy to vote as they intend while appearing to
comply with the coercer’s requirements.

An increasing amount of research has focused recently on the verifica-
tion of many of these properties for various types of voting protocols [35, 36].
The frameworks used for modeling and verifying security properties of voting
protocols include, to mention only a few, process calculi such as the applied
π-calculus or CSP [37, 38, 39], rewriting-based approaches [40, 41, 42], ap-
proaches based on flat transition systems etc.

In this paper, we show how our bisimulation can be used to obtain signifi-
cant model reductions for some voting protocols. In consequence, we develop
a verification procedure for those voting protocols, based on the multi-agent
approach. The main advantage of multi-agent logics is the provision of a
unified specification language for a vast array of properties. Due to that
feature, the logics can for instance serve to disambiguate the variety of in-
formal intuitions behind coercion resistance that are found in the literature,
cf. [43]. Moreover, multi-agent logics allow for a more flexible and expressive
specification of variants of coercion-resistance, involving explicit references
to the dynamics of attacker’s knowledge, as well as the (non)existence of
strategies suitable for the attacker and/or the voter. The same applies to
specification of other important properties, such as individual verifiability,
end-to-end (universal) verifiability, and accountability.

Here, we focus on a particular formalization of coercion resistance, and
verify it for a simplified version of the ThreeBallot voting protocol [44, 45].
Our first results in this line already allow for verification of models with a
larger number of voters and candidates compared to the approach based on
process calculi in [46, 47]. Even more importantly, our experiments show that
bisimulation-based reductions can turn verification from a utterly difficult
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task to something feasible in practice.

1.1. Structure of the Paper and Technical Contributions

The article is structured as follows. In Section 2, we introduce the syntax
and semantics of ATL∗ interpreted under the assumption of imperfect infor-
mation and imperfect recall. In Section 3, we propose the novel relations of
simulation and bisimulation for the setting. Moreover, we prove the main
theoretical result of this paper, namely that the bisimulation preserves the
interpretation of ATL∗ formulas. In Section 4, we show that our notion of
bisimulation does not enjoy the Hennessy-Milner property, and we discuss
some necessary conditions for two models to be logically equivalent. The
results highlight some interesting features of the current semantics of ATL∗

with imperfect information, and might point to a novel semantics for logics
of strategic ability. Further, in Section 5, we present our case study based
on the ThreeBallot voting protocol. We formalize ThreeBallot as a game
structure, and provide two abstractions of the protocol. Then, we point out
that the abstractions are indeed bisimilar with the original game structure.
Finally, in Section 6, we evaluate the gains in terms of verification time, by
comparing model checking of the abstractions to model checking of the orig-
inal model. We conclude in Section 7, and indicate some future directions of
research.

Previous version of the material. This work extends and revises the re-
sults presented in the conference paper [48]. The main technical differences
are as follows. First, our results are now given for the whole language of
ATL∗, while [48] considered only its restricted fragment ATL. Secondly, we
correct a mistake in the main preservation result. In the previous version,
we erroneously used a weaker notion of bisimulation, which actually does not
preserve even formulas of ATL. We discuss the details, and point out some
differences between the two definitions in Section 3.3. Thirdly, we report
completely new theoretical research in Section 3.4 (computational complex-
ity of checking for bisimulation) and Section 4 (Hennessy-Milner property and
necessary conditions for logical equivalence of models). Finally, we revise the
implementation of our ThreeBallot models, and present entirely new exper-
imental results. In particular, we extend our model checking experiments
to the imperfect information semantics of ATL, for which the bisimulation-
based reductions were in fact designed.

Regarding the presentation, we add a running example, and streamline
the introduction of the bisimulation, in order to make the concept easier to
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understand.

1.2. Related Work

The literature on both logics for strategies and the formal verification of
voting protocols is extensive and rapidly growing. Hereafter we only consider
the works most closely related to the present contribution.

Bisimulations for ATL. An in-depth study of model equivalences in-
duced by various temporal logics appears in [30]. Bisimulations for ATL∗

with perfect information have been introduced in [29]. Since then there
have been various attempts to extend these to more expressive languages
(including Strategy Logic recently [49]), as well as to contexts of imperfect
information [31, 50]. In [50, 51] non-local model equivalences for ATL with
imperfect information have been put forward. However, these works do not
deal with the imperfect information/imperfect recall setting here considered,
nor do they provide a local account of bisimulations. Finally, in [48] we
provided a different notion of bisimulation for ATL only with imperfect in-
formation and imperfect recall. We remarked in the introduction that such
definition was flawed and provided a counterexample in Section 3.3. The
present contribution is also aimed at rectifying this result.

Verification of Voting Protocols. Our work is inspired by recent
contributions on the verification of voting protocols, mostly by using the
π-calculus and CSP [37, 38, 39]. Some existing attempts at verification of e-
voting protocols follow this approach by using one of the security verifiers [52,
53], or even a general equivalence checker for a process algebra [46, 47, 54],
where privacy-type and anonymity properties of the protocols are verified
by using CSP. An important strand in verification of voting protocols is
based on specifications in first-order logic or linear logic. The verification
is done by means of theorem proving [55, 56, 57, 58] or bounded model
checking (BMC) [35, 59, 60, 61]. In particular [61] presents a BMC-based
analysis of risk-limiting audits and [58] applies theorem proving to automated
verification of the Selene voting protocol. In [35] the authors define two
semantic criteria for single transferable vote (STV) schemes, then show how
BMC and SMT solvers can be used to check whether these criteria are met.
In [47] the authors construct CSP models of the ThreeBallot system and use
them to produce an automated formal analysis of their anonymity properties.
Finally, some challenges and solutions for verification of end-to-end verifiable
systems were addressed in [62, 63].
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An issue that can be identified with many of the above approaches is
that the description of the system, and the property to be verified, are not
clearly distinguished. We emphasize that multi-agent logics allow for a clear
separation of the two. Moreover, they provide a wider variety of properties,
including ones that are related to the existence of the attacker’s strategies.
Last but not least, they give reasonable hope for interesting verification per-
formance. In our experiments, we have been able to model-check ThreeBallot
models with 5 voters and 2 candidates, or 4 candidates and 3 voters, while
e.g. the results in [47] are provided for at most 3 voters and 2 candidates.
In this respect, the closest work to ours is the recent paper [64], presenting
some experimental results for verification of the voting protocol SELENE,
based on the multi-agent logic ATLir.

2. The Formal Setting

In this section, we introduce the syntax of the Alternating-time Tempo-
ral Logic ATL∗ [5], and present its semantics for agents with imperfect in-
formation and imperfect recall, defined on imperfect information concurrent
game structures (iCGS). The assumption of imperfect information means
that agents can only partially observe the global state of the system. Thus,
they have to make their decisions, and execute their strategies, with only
partial knowledge about the current situation. The assumption of imperfect
recall means that they do not necessarily memorize all of their past observa-
tions. This does not mean that the agents have no memory at all. However,
an agent’s recall of the past must be encapsulated in the current local state
of the agent.

The formal definitions and notation follow [17].

2.1. Concurrent Game Structures

Concurrent game structures have originally been introduced in [5] in a
perfect information setting. Here we consider their version for contexts of
imperfect information [65].

Definition 1. A concurrent game structure with imperfect information, or
iCGS, is a tuple G = ⟨Ag,AP,S, s0,Act,{∼i}i∈Ag, d,→, π⟩ such that

• Ag is a nonempty and finite set of agents. Subsets A ⊆ Ag of agents
are called coalitions.
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• AP is a set of atomic propositions, or atoms.

• S is a non-empty set of states and s0 ∈ S is the initial state of G.

• Act is a finite non-empty set of actions. A tuple a⃗ = (ai)i∈Ag ∈ ActAg is
called a joint action.

• For every agent i ∈ Ag, ∼i is an equivalence relation on S, called the
indistinguishability relation for i.

• d ∶ Ag×S → (2Act∖{∅}) is the protocol function, satisfying the property
that, for all states s, s′ ∈ S and any agent i, s ∼i s′ implies d(i, s) =
d(i, s′). That is, the same (non-empty) set of actions is available to
agent i in indistinguishable states.

• →⊆ S × ActAg × S is the transition relation such that, for every state
s ∈ S and joint action a⃗ ∈ ActAg, (s, a⃗, s′) ∈→ for some state s′ ∈ S
iff ai ∈ d(i, s) for every agent i ∈ Ag. We normally write s

a⃗Ð→ r for
(s, a⃗, r) ∈→.

• π ∶ S → 2AP is the state-labeling function.

By Def. 1 at any given state s, every agent i ∈ Ag can perform the enabled
actions in d(i, s). A joint action a⃗ fires a transition from state s to some state
s′ only if each ai is enabled for agent i in s. Further, every agent i is equipped
with an indistinguishability relation ∼i, with s ∼i s′ meaning that i cannot
tell state s from state s′, i.e., agent i possesses the same information, makes
the same observation in the two states. In particular, the same actions are
enabled in indistinguishable states.

Example 1. Consider a two-stage voting system with a simple anti-coercion
mechanism. In the first stage, the voter casts her vote for one of the can-
didates; we assume for simplicity that there are only two candidates in the
election. In the second stage, the voter has the option to send a signal –
by an independent communication channel – that flips her vote to the other
candidate. After that, the election official publishes the result of the election
(action pub). However, a dishonest official can also decide not to publish
the outcome (action np). An iCGS modeling the scenario for a single voter
(represented by agent 1) is depicted in Figure 1. The election official is rep-
resented by agent 2; the dotted lines indicate that the official does not directly
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Figure 1: Simple model of 2-stage voting. Dotted lines represent indistinguishability for
agent 2 (the election official).

see the choices made by the voter. Note that this toy model is in fact a turn-
based game, i.e., in every state only a single agent has a choice of decision
while the other agent is passive.

Runs. Given an iCGS G as above, a run is a finite or infinite sequence
λ = s0a⃗0s1 . . . in ((S ⋅ ActAg)∗ ⋅ S) ∪ (S ⋅ ActAg)ω such that for every j ⩾ 0,

sj
a⃗jÐ→ sj+1. Given a run λ = s0a⃗0s1 . . . and j ⩾ 0, λ[j] denotes the j + 1-th

state sj in the sequence; while λ⩾j denotes run sj a⃗jsj+1 . . . starting from λ[j].
We denote by Run(G) the set of all runs in iCGS G. For a coalition A ⊆ Ag
of agents, a joint A-action denotes a tuple a⃗A = (ai)i∈A ∈ ActA of actions, one
for each agent in A. For coalitions A ⊆ B ⊆ Ag of agents, a joint A-action
a⃗A is extended by a joint B-action b⃗B, denoted a⃗A ⊑ b⃗B, if for every i ∈ A,
ai = bi. Also, a joint A-action a⃗A is enabled at state s ∈ S if for every agent
i ∈ A, ai ∈ d(i, s).
Epistemic neighbourhoods. Given a coalition A ⊆ Ag of agents, the
collective knowledge relation ∼EA is defined as ⋃i∈A ∼i, while the common
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knowledge relation ∼CA is the transitive closure (⋃i∈A ∼i)+ of ∼EA. Then,
CGA(q) = {q′ ∈ S ∣ q′ ∼CA q} is the common knowledge neighbourhoods (CKN),
of state q for coalition A in the iCGS G. We will omit the superscript G
whenever it is clear from the context.

Uniform strategies. We now recall a notion of strategy adapted to iCGS
with imperfect information [65].

Definition 2. A (uniform) strategy for an agent i ∈ Ag is a function σ ∶ S →
Act that is compatible with d and ∼i, i.e.,

• for every state s ∈ S, σ(s) ∈ d(i, s);

• for all states s, s′ ∈ S, s ∼i s′ implies σ(s) = σ(s′).

By Def. 2 a strategy has to be uniform in the sense that in indistinguish-
able states it must return the same action. Such strategies are also known as
observational in the literature on game theory and control theory. Note that
in this paper we use memoryless strategies, whereby only the current state
determines the action to perform. This choice is dictated by the application
in hand, namely voting protocols, where the unbounded recall is not needed.
Namely, the information available to the agents is fully encoded in global
states together with help of indistinguishability relations1. Note that the
finite memory of a given depth of recall can be obtained in practical setting
by introducing an adequate number of special variables, i.e., dimensions in
iCGSs whose states are valuations of variables.

Perfect recall strategies with imperfect information can be defined sim-
ilarly, as memoryless strategies on tree unfoldings of iCGS. We leave this
extension for future work.

A strategy for a coalition A of agents is a set σA = {σa ∣ a ∈ A} of
strategies, one for each agent in A. Given coalitions A ⊆ B ⊆ Ag, a strategy
σA for coalition A, a state s ∈ S, and a joint B-action b⃗B ∈ ActB that is enabled
at s, we say that b⃗B is compatible with σA (in s) whenever σA(s) ⊑ b⃗B. For

states s, s′ ∈ S and strategy σA, we write s
σA(s)ÐÐÐ→ r if s

a⃗Ð→ r for some joint
action a⃗ ∈ ActAg that is compatible with σA.

There exist two alternative semantics of strategic operators under im-
perfect information, corresponding to two different notions of success for a

1Therefore memoryless strategies already encode the agent’s memory of all her past
observations.
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strategy. The idea of subjective ability [66, 65] requires that a winning strat-
egy must succeed from all the states that the coalition considers possible in
the initial state of the play. The alternative notion of objective ability [2]
assumes that it suffices for the strategy to succeed from the initial state
alone. Accordingly, we define two notions of the outcome of a strategy σA at
state s, corresponding to the objective and the subjective interpretation of
alternating-time operators. Fix a state s and a strategy σA for coalition A.

1. The set of objective outcomes of σA at s is defined as outGobj(s, σA) =
{λ ∈ Run(G) ∣ λ[0] = s and for all j ⩾ 0, λ[j] σA(λ[j])ÐÐÐÐ→ λ[j + 1]}.

2. The set of subjective outcomes of σA at s is defined as outGsubj(s, σA) =
⋃

i∈A,s′∼is
outGobj(s′, σA).

2.2. Alternating-Time Temporal Logic.

We now introduce the alternating-time temporal logic ATL∗ to be inter-
preted on iCGS.

Definition 3 (ATL∗). The language of ATL∗ is formally defined by the fol-
lowing grammar, where p ∈ AP and A ⊆ Ag:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ→ ϕ ∣ ⟪A⟫ψ
ψ ∶∶= ϕ ∣ ¬ψ ∣ ψ → ψ ∣Xψ ∣ ψUψ

Formulas ϕ are called state formulas of ATL∗, or simply formulas of ATL∗.
Formulas ψ are sometimes called path formulas of ATL∗.

The ATL∗ operator ⟪A⟫ intuitively means that ‘the agents in coalition A
have a (collective) strategy to achieve . . . ’, where the goals are LTL formulas
built by using operators ‘next’ X and ‘until’ U . We define A-formulas as
the formulas in ATL∗ in which A is the only coalition appearing in ATL∗

modalities.
Traditionally, ATL∗ under imperfect information has been given either

state-based or history-based semantics, and several variations have been con-
sidered on the interpretation of strategy operators. Here we present both the
objective and subjective variants of the state-based semantics with imperfect
information and imperfect recall.
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Definition 4. Given an iCGS G, a state formula ϕ, and path formula ψ,
the subjective (resp. objective) satisfaction of ϕ at state s and of ψ in path
λ, denoted (G, s)⊧x ϕ and (G, λ)⊧x ψ for x= subj (resp. x= obj), is defined
recursively as follows:

(G, s) ⊧x p iff p ∈ π(s)
(G, s) ⊧x ¬ϕ iff (G, s) /⊧x ϕ
(G, s) ⊧x ϕ→ ϕ′ iff (G, s) /⊧x ϕ or (G, s) ⊧x ϕ′

(G, s) ⊧x ⟪A⟫ψ iff for some σA, for all λ ∈ outGx(s, σA), (G, λ) ⊧x ψ
(G, λ) ⊧x ϕ iff (G, λ[0]) ⊧x ϕ
(G, λ) ⊧x ¬ψ iff (G, λ) /⊧x ψ
(G, λ) ⊧x ψ → ψ′ iff (G, λ) /⊧x ψ or (G, λ) ⊧x ψ′

(G, λ) ⊧x Xψ iff (G, λ⩾1) ⊧x ψ
(G, λ) ⊧x ψUψ′ iff for some j ⩾ 0, (G, λ⩾j) ⊧x ψ′

and for all k,0 ⩽ k < j implies (G, λ⩾k) ⊧x ψ

Example 2. Consider the simple voting model in Example 1. Clearly, the
voter cannot enforce a win of any candidate, since the election official might
block the publication of the outcome: G, q0 ⊧ ¬⟨⟨1⟩⟩Fwin1∧¬⟨⟨1⟩⟩Fwin2. On the
other hand, she can prevent any given candidate from being elected, by casting
her vote for the other candidate: G, q0 ⊧ ⟨⟨1⟩⟩G¬win1 ∧ ⟨⟨1⟩⟩G¬win2. Finally,
the voter and the official together can get any arbitrary candidate elected:
G, q0 ⊧ ⟨⟨1,2⟩⟩Fwin1∧⟨⟨1,2⟩⟩Fwin2. Note that the truth value of formulae in q0

does not depend on whether we use the subjective or the objective semantics.
The difference between the two semantics can be demonstrated, e.g., in

state q3. In that state, the election official has the objective ability to make
candidate 1 win (G, q3 ⊧obj ⟨⟨2⟩⟩Fwin1) by playing pub regardless of anything.
On the other hand, there is no uniform strategy for 2 that guarantees the
same from all the states indistinguishable from q3 (i.e., from q3, q4, q5, q6). In
consequence, G, q3 ⊧subj ¬⟨⟨2⟩⟩Fwin1.

The individual knowledge operator Ki can be added to the syntax of
ATL∗ with the following semantics:

(G, s) ⊧x Kiϕ iff for all s′ ∈ S, s′ ∼i s implies (G, s′) ⊧x ϕ

By considering the subjective interpretation of ATL∗, this operator can
be derived: (G, s) ⊧subj Kiϕ iff (G, s) ⊧subj ⟪i⟫ϕUϕ. There exists no such
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definition for the knowledge operator in ATL∗ with the objective semantics.
The latter is easy to see, as the objective semantics of ⟨⟨i⟩⟩ in (G, s) does not
refer in any way to the states epistemically indistinguishable from s.

3. Simulations and Bisimulations

In this section we introduce a notion of bisimulation for imperfect in-
formation concurrent game structures. Then, we show that it preserves the
meaning of formulas in ATL∗, when interpreted under the assumptions of
imperfect information and imperfect recall, introduced in Section 2.

3.1. Bisimulation for ATL∗ with Imperfect Information and Imperfect Recall

We start with some auxiliary notions and definitions.

Partial strategies and outcome states. A partial (uniform) strategy for
agent i ∈ Ag is a partial function σ ∶ S → Act such that for each s, s′ ∈ S, if
s ∼i s′ then σ(s) = σ(s′). We denote the domain of the partial strategy σ as
dom(σ). Given a coalition A ⊆ Ag, a partial strategy for A is a tuple (σi)i∈A
of partial strategies, one for each agent i ∈ A. The set of partial uniform
strategies for A is denoted PStrA. Given set Q ⊆ S of states and coalition
A ⊆ Ag, we denote by PStrA(Q) the set of partial uniform strategies whose
domain is Q:

PStrA(Q) = {(σi)i∈A ∈ PStrA ∣ dom(σi) = Q for all i ∈ A}

Additionally, given a (total or partial) strategy σA and a state q ∈ dom(σA),
define the set of successor states of q by σ as succ(q, σA) = {s ∈ S ∣ q σA(q)ÐÐÐ→ s},
and put succ(σA) = succ(dom(σA), σA) = ⋃s∈dom(σA) succ(s, σA).
Strategy simulators. Let G,G′ be two iCGS. A simulator of partial strate-
gies for coalition A from G into G′ is a set ST of functions STQ,Q′ ∶ PStrA(Q)→
PStrA(Q′) for some subsets Q ⊆ S and Q′ ⊆ S′. Intuitively, every STQ,Q′

maps each partial strategy σA defined on set Q in the iCGS G into a “corre-
sponding” strategy σ′A defined on Q′ in G′. Typically, we will map strategies
between the common knowledge neighborhoods of “bisimilar” states in G
and G′. We formalize this idea as follows. Let R ⊆ S × S′ be some rela-
tion between states in G and G′. A simulator of partial strategies for coali-
tion A with respect to relation R is a family ST of functions STCA(q),C′

A(q′) ∶
PStrA(CA(q)) → PStrA(C ′

A(q′)) such that q ∈ S, q′ ∈ S′, and qRq′. Note
that, since the functions are indexed by equivalence classes of states, the
following additional property is automatically guaranteed:
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• for every r ∈ S, r′ ∈ S′, if r ∈ CA(q), r′ ∈ C ′
A(q′), and rRr′, then

STCA(q),C′

A(q′) = STCA(r),C′

A(r′).

Simulation and bisimulation. We can now present our notions of simu-
lation and bisimulation on iCGS.

Definition 5 (Simulation). Let G = ⟨Ag,AP,S, s0,Act,{∼i}i∈Ag, d,→, π⟩ and
G′ = ⟨Ag,AP,S′, s′0,Act′,{∼′i}i∈Ag, d′,→′, π′⟩ be two iCGS defined on the same
sets Ag of agents and AP of atoms. Let A ⊆ Ag be a coalition of agents. A
relation ⇛A⊆ S × S′ is a simulation for A iff

1. There exists a simulator ST of partial strategies for A w.r.t. ⇛A, such
that q⇛A q′ implies that:

(a) π(q) = π′(q′);
(b) for every i ∈ A , r′ ∈ S′, if q′ ∼′i r′ then for some r ∈ S, q ∼i r and

r⇛A r′.
(c) For every states r ∈ CA(q), r′ ∈ C ′

A(q′) such that r ⇛A r′, for
every partial strategy σA ∈ PStrA(CA(q)), and every state s′ ∈
succ(r′, ST (σA)), there exists a state s ∈ succ(r, σA) such that
s⇛A s′.

2. If q1 ⇛A q′ and q2 ⇛A q′, then CA(q1) = CA(q2).

A relation ⇚⇛A is a bisimulation iff both ⇚⇛A and its converse ⇚⇛−1
A =

{(q′, q) ∣ q⇚⇛A q′} are simulations.

By Def. 5 if state q′ simulates q, i.e., q ⇛A q′, then 1.(a) q and q′ agree
on the interpretation of atoms; 1.(b) q simulates the epistemic transitions
from q′, that is, information encoded in states is preserved by (bi)similarity;
and 1.(c) for every partial strategy σA, defined on the common knowledge
neighborhood CA(q), we are able to find some partial strategy ST (σA) (the

same for all states in CA(q)) such that the transition relations
ST (σA)ÐÐÐÐ→ and

σAÐ→ commute with the simulation relation ⇛A. Moreover, (2) the simulation
relation is injective when lifted to common knowledge neighborhoods.

Example 3. Let us go back to the simple two-stage voting from Example 1
and Figure 1. We observe that the model is bisimilar for A = {2} to the one
in Figure 2(a). The bisimulation connects q0 with q′0; q1 and q2 with q′1; q3

and q4 with q′3; q5 and q6 with q′6; q7 with q′7; and q8 with q′8. As we will see
in Section 3.2, this implies that the abilities of the election official in both
models must be exactly the same.
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Figure 2: (a) Even simpler model of 2-stage voting (from the point of view of the election
official). (b) Yet simpler model of 2-stage voting.

The iCGS can be reduced even further, and still retain the same abilities
of the singleton coalition {2}, see Figure 2(b). We leave it to the interested
reader to find the bisimulation for {2} between the two models.

Remark 6. Technically, condition (2) in Def. 5 is required as is shown in
the end of this section by a counterexample (cf. Subsection 3.3). The extra
property (2) corrects the statement and proof of Theorem 9 in [48]. Notice
that, for every bisimulation ⇚⇛A defined on G = G′, condition (2) says that
two bisimilar states must lie in the same common knowledge neighborhood,
which is a natural constraint considering that two bisimilar states should
satisfy the same formulas in ATL∗.

3.2. Preservation Theorem

In order to show that bisimilar states satisfy the same formulas in ATL∗,
we prove the following auxiliary result. Hereafter, runs λ ∈ S+, λ′ ∈ S′+ are
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A-bisimilar, or λ⇚⇛A λ′ iff for every i ⩾ 0, λ[i]⇚⇛A λ′[i]

Proposition 7. If q⇛A q′ then for every strategy σA, there exists a strategy
σ′A such that

(∗) for every run λ′ ∈ outG′x (q′, σ′A), for x ∈ {subj, obj}, there exists an
infinite run λ ∈ outGx(q, σA) such that λ⇛A λ′.

Proof. First of all we define the sequence (domn(σA))n∈N, of sets of states in
G such that s ∈ domn(σA) iff s can be reached in at most n steps from CA(q)
by applying actions compatible with strategy σA:

dom0(σA) = CA(q)
domn+1(σA) = domn(σA) ∪⋃{CA(r) ∣ r ∈ ⋃

s∈domn(σA)
succ(s, σA)}

Also, we denote by σnA the partial strategy resulting from restricting σA
to domn(σA).

We now define inductively a sequence (σnA)n∈N of partial strategies in G′
such that dom(σnA) ⊆ dom(σn+1

A ) for every n ∈ N. These partial strategies will
be constructed using strategy σA and mapping ST from point (1) in Def. 5.
The desired sequence of partial strategies σnA, for n ⩾ 1, is defined as follows:

1. dom(σ0
A) = C ′

A(q′) and dom(σn+1
A ) = dom(σnA)∪{r′ ∣ C ′

A(r′)∩succ(σnA) ≠
∅};

2. for all r′ ∈ dom(σ0
A), σ0

A(r′) = STCA(q),C′

A(q′)(σ
0
A)(r′);

3. for all r′ ∈ dom(σn+1
A ),

σn+1
A (r′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σnA(r′) for r′ ∈ dom(σnA)
STCA(r),C′

A(r′)(σ
n+1
A )(r′) for r′ /∈ dom(σnA),C ′

A(r′) ∩ succ(σnA) ≠ ∅,
and r is any state in G s.t. r⇛A r′

We give first a number of properties for this sequence of partial strategies.
First note that, in the last line of the definition of σn+1

A (r′), r can indeed be
chosen arbitrarily, since, by point (2) in Def. 5, whenever r1 ⇛A r′ and
r2 ⇛A r′ we must have CA(r1) = CA(r2), which implies that STCA(r1),C′

A(r′) =
STCA(r2),C′

A(r′).
Further, if C ′

A(r′) ∩ dom(σnA) ≠ ∅ then C ′
A(r′) ⊆ dom(σnA). This is trivial

for n = 0. As for the induction step, if C ′
A(r′)∩ dom(σn+1

A ) ≠ ∅, but C ′
A(r′) /⊆
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dom(σnA), then by induction hypothesis we have C ′
A(r′)∩dom(σnA) = ∅. Fur-

ther, by definition of σn+1
A we obtain C ′

A(r′)∩succ(σnA) ≠ ∅, which is the case
for all r′′ ∈ C ′

A(r′). Hence C ′
A(r′) ⊆ dom(σn+1

A ).
We now show that, whenever we take some u′ ∈ C ′

A(r′)∩succ(σnA) ≠ ∅ with
r′ /∈ dom(σnA), we have {u ∈ domn+1(σA) ∣ u ⇛A u′} ≠ ∅ and, by the induc-
tion hypothesis σn+1

A is uniform over dom(σnA). To see the former, whenever
u′ ∈ C ′

A(r′) ∩ succ(σnA), one can find v′ ∈ dom(σnA) s.t. u′ ∈ succ(v′, σnA(v′)).
By definition of σnA, there exists v ⇛A v′ s.t. v ∈ dom(σnA) and σnA(v′) =
STCA(v),C′

A(v′)(σnA)(v′). From property 1.(c), this implies the existence of u
with u⇛A u′ and u ∈ succ(v, σA(v)), which entails u ∈ dom(σn+1

A ).
We then prove by induction on n that σnA is uniform. The case for

n = 0 is immediate by application to σ0
A of simulator ST of partial strate-

gies. For n > 0, as noted above if C ′
A(r′) ∩ dom(σnA) ≠ ∅ for some r′,

then C ′
A(r′) ⊆ dom(σnA). Therefore, the induction step only needs proof for

r′1, r
′
2 ∈ dom(σn+1

A ) ∖ dom(σnA). So assume, in this case, that r′1 ∼i r′2 for some
i ∈ A, hence C ′

A(r′1) = C ′
A(r′2). Consider then some r1 ⇛A r′1 and r2 ⇛A r′2,

which exist by the previous paragraph. Then condition 1.(b) in Def. 5 im-
plies the existence of some r3 such that r3 ∼i r1 and r3 ⇛A r′2, which then, by
condition (2) implies CA(r1) = CA(r3) = CA(r2), which in turn implies that
STCA(r1),C′

A(r′1) = STCA(r2),C′

A(r′2). Then σn+1
A (r′1) = STCA(r1),C′

A(r′1)(σ
n+1
A )(r′1) =

STCA(r2),C′

A(r′2)(σ
n+1
A )(r′2) = σn+1

A (r′2) as ST is a simulator of partial strategies
which maps uniform strategies for A in G to uniform strategies for A in G′.

As a result, the “limit” partial strategy σA = ⋃
n∈N
σnA defined as σA(r′) =

σnA(r′) whenever r′ ∈ dom(σnA), is also uniform and has dom(σA) = succ(σA).
We then only need to transform it into a (total) uniform strategy by imposing
a fixed action a0 ∈ Act wherever σnA is undefined, that is, introducing the
following uniform strategy σ′A:

σ′A(r′) =
⎧⎪⎪⎨⎪⎪⎩

σA(r′) for r′ ∈ dom(σA)
a0 otherwise

To prove property (∗) for the subjective semantics, consider a run λ′ ∈
outG

′

subj(q′, σ′A). We build inductively the run λ as follows: for the base case,
by condition 1.(b) in Def. 5 (and a short induction on the length of the in-
distinguishability path connecting q′ with λ′[0]), we obtain a state r ∈ CA(q)
such that r ⇛A λ′[0]. Then, set λ[0] ∶= r. For the inductive step, assume
λ[k] has been built, with λ[j]⇛A λ′[j] for all j ⩽ k. Now, we have λ′[k+1] ∈
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succ(λ′[k], σ′A). By definition, σ′A(λ′[k]) = STCA(λ[k]),C′

A(λ′[k])(σA)(λ′[k])
since λ[k] ⇛A λ′[k]. This, by property 1.(c) implies the existence of some
u ∈ succ(λ[k], σA) such that u ⇛A λ′[k + 1]. We then set λ[k + 1] ∶= u, and
obtain the desired result. The same proof works for the objective semantics,
by simply starting the induction with λ[0] = q. Property (∗) is then proved
for both semantics.

By using Proposition 7 we are finally able to prove the main preservation
result of this paper.

Theorem 8. Let G and G′ be iCGS, q ∈ S and q′ ∈ S′ be states such that
q ⇚⇛A q′, and λ ∈ S+ and λ′ ∈ S′+ be runs such that λ ⇚⇛A λ′. Then, for
every state A-formula ϕ and path A-formula ψ,

(G, q) ⊧ ϕ iff (G′, q′) ⊧ ϕ
(G, λ) ⊧ ψ iff (G′, λ′) ⊧ ψ

Proof. The proof is by mutual induction on the structure of ϕ and ψ.
The case for propositional atoms is immediate as (G, q) ⊧ p iff p ∈ π(q),

iff p ∈ π′(q′) by definition of bisimulation, iff (G′, q′) ⊧ p. The inductive cases
for propositional connectives are also immediate.

For ψ = ϕ, suppose that (G, λ) ⊧ ψ, that is, (G, λ[0]) ⊧ ϕ. By assumption,
λ[0] ⇚⇛A λ′[0] as well, and by induction hypothesis (G′, λ′[0]) ⊧ ϕ. Thus,
(G′, λ′) ⊧ ψ.

For ψ =Xψ′, suppose that (G, λ) ⊧ ψ, that is, (G, λ⩾1]) ⊧ ψ′. By assump-
tion, λ⩾1 ⇚⇛A λ′⩾1 as well, and by induction hypothesis (G′, λ′⩾1) ⊧ ψ′. Thus,
(G′, λ′) ⊧ ψ. The inductive cases for ψ = ψ′Uψ′′ and ψ = ψ′Rψ′′ are similar.

For ϕ = ⟪A⟫ψ, (G, q) ⊧ ϕ iff that for some strategy σA, for all λ ∈
outGx(q, σA), (G, λ) ⊧ ψ. By Prop. 7, there exists strategy σ′A s.t. for all
λ′ ∈ outG′x (q′, σ′A), there exists λ ∈ outGx(q, σA) s.t. λ⇚⇛A λ′. By the induction
hypothesis, (G, λ) ⊧ ψ iff (G′, λ′) ⊧ ψ. Hence, (G′, q′) ⊧ ϕ.

Corollary 9. Let G and G′ be iCGS, and q ∈ S, q′ ∈ S′ be states such that
q⇚⇛A q′. Then, for every A-formula ϕ,

(G, q) ⊧ ϕ if and only if (G′, q′) ⊧ ϕ
By Theorem 8 we obtain that bisimilar states preserve the interpretation

of ATL⋆ formulas. More precisely, if states q and q′ are A-bisimilar then they
satisfy the same A-formulas. Observe that only A-formulas are normally
preserved by A-bisimulations. This is already a feature of A-bisimulations
for the case of perfect information [29, Theorem 6].
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3.3. Discussion

In [48] we introduced a different notion of bisimulation for the ATL frag-
ment only of ATL∗. Specifically, the original Def. 6 of bisimulation in [48]
differs from Def. 5 in that it lacks condition 2 (we refer to the paper for
further details). Unfortunately, this weaker notion of bisimulation makes the
preservation theorem false. In this paper we remedy the problem by requir-
ing the injectiveness of the bisimulation relation w.r.t. common knowledge
neighbourhoods, i.e., by including condition 2 in Def. 5.

To illustrate the issue consider the single-agent iCGS with states, actions,
and transitions as illustrated in Fig. 3, and a relation⇐⇒A such that qi⇐⇒A q′i
for i ∈ {0,3} and qi ⇐⇒A q′ij for i, j ∈ {1,2}, as indicated by the red lines in
Fig. 3. A case-by-case analysis shows that⇐⇒A satisfies condition 1 in Def. 5,
and therefore the two iCGS are bisimilar according to the notion presented
in [48]. However, they do not satisfy condition 2. Indeed, we have that
q1 ⇐⇒A q′1j, for j ∈ {1,2}, but C1(q′11) ≠ C1(q′12), and similarly for q2, q′21,
q′22. In particular, the iCGS G1 and G2 do not satisfy the same formulas: we
have (G1, q0) /⊧ ⟨⟨1⟩⟩Fp while (G2, q0) ⊧ ⟨⟨1⟩⟩Fp. Indeed, in G2 a memoryless
strategy for agent 1 to achieve Fp is to choose action a in knowledge set
{q′1,1, q′2,1} and action b in {q′1,2, q′2,2}. Such a strategy is not transferable as a
memoryless strategy into G1, as it would require one bit memory, that is, on
the first visit of knowledge set {q1, q2} agent 1 would play a, then b on the
second visit. Hence, the notion of bisimulation introduced in [48] is too weak
even to preserve formulas in the fragment ATL; while the present Def. 5 does
preserve the whole ATL∗.

3.4. Computational Complexity

Theorem 8 shows that two A-bisimilar iCGS are equivalent with respect
to coalition A’s strategic abilities. This can be useful when verifying abilities
in realistic multi-agent systems. In such cases, the iCGS typically arises
through some kind of product of local components, and suffers from state-
space explosion as well as transition-space explosion. If there is a smaller
bisimilar iCGS, one can use the latter as the input to the model checking
procedure. Since the hardness of the model checking problem for ATL∗ with
imperfect information is mostly related to the size of the model, using an
equivalent reduced iCGS can turn an impossible task into a feasible one.
An interesting question is therefore if one can automatically synthesise such
reduced models, or at least check whether two given iCGS are bisimilar. We
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Figure 3: two iCGS satisfying only condition 1 in Def. 5.

briefly investigate the issue hereafter. We call a pair (G, s), for s in G, a
pointed model.

Theorem 10. Checking A-bisimilarity of two pointed iCGS is in ΣP
5 .

Proof. Complexity-wise, the most problematic part of Def. 5 is the quantifi-
cation over strategy simulators ST . Being a mapping from partial strategies
to partial strategies, ST has exponential size w.r.t. the size of the model,
which suggests at least exponential time for verifying bisimilarity. Fortu-
nately, a closer look at the definition of strategy simulators, and at condition
2 in Def. 5, reveals that ST can be split into local mappings from mutu-
ally disjoint common knowledge neighbourhoods CA in G to unique common
knowledge neighbourhoods C ′

A in G′. Thus, the conceptual structure of Def. 5
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can be (with a slight abuse of notation) summarized as:

bisimilar((G, q), (G′, q′)) iff ∃∃∃(⇚⇛A) simul((G, q), (G′, q′),⇚⇛A)

∧ simul((G′, q′), (G, q),⇚⇛A) ∧ q⇚⇛A q
′,

simul((G, q), (G′, q′),⇚⇛A) iff ∀∀∀(CA ∈ G
′
) ∀∀∀(σA ∈ CA)∃∃∃(σ

′
A ∈ C

′
A)

∀∀∀(q̂ ∈ CA, q̂
′
∈ C

′
A, q̂⇚⇛A q̂

′
) match(q̂, q̂′)

∧ simulepist(q̂, q̂′) ∧ simultrans(CA,C
′
A),

match(q̂, q̂′) iff π(q̂) = π(q̂′),

simulepist(q̂, q̂′) iff ∀∀∀(i ∈ A) ∀∀∀(q̂′ ∼i r
′
) ∃∃∃(r) q̂ ∼i r, r⇚⇛A r

′

simultrans(CA,C
′
A) iff ∀∀∀(r ∈ CA, r

′
∈ C

′
A, r⇚⇛A r

′
) ∀∀∀(s′ ∈ succ(r′, σ′A))

∃∃∃(s ∈ succ(r, σA)) s⇚⇛A s
′.

Notice that all the structures quantified in the above expressions are of
polynomial size with respect to the number of states, transitions, and epis-
temic links in G and G′. Thus, it is relatively straightforward to observe, by
a suitable translation to the QBF problem (i.e., satisfiability of Quantified
Boolean Formulae) that:

1. checking simulepist(q̂, q̂′) and simultrans(CA,C′A) is in ΠP
2 ,

2. checking simul((G, q), (G′, q′),⇚⇛A) is in ΠP
4 ,

3. and thus, finally, checking bisimilar((G, q), (G′, q′)) is in ΣP
5 .

We suspect that the upper bound is tight, as we do not see how any of
the quantifier alternations, included in the above QBF translation, could be
collapsed. For the moment, however, we only show the following, and leave
the question of the exact complexity for future work.

Theorem 11. Checking A-bisimilarity of two pointed iCGS is NP-hard.

Proof. We adapt the SAT reduction from [67, Proposition 11]. Let us first
recall the idea of that reduction. Given a Boolean formula Φ in CNF, we
build a 3-agent iCGS GΦ where each literal l from clause ψ in Φ is associated
with a state qψl . Each agent has a different role in the construction: player
1 selects the literals to be satisfied (one literal per clause in Φ), and player
2 chooses the truth values for those literals. Player 3 “simulates” the com-
mon knowledge neighborhood for {1,2}, and thus ensures that a successful
assignment must work for all the clauses in Φ.
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Figure 4: Model MΦ for Φ ≡ C1 ∧C2 with C1 ≡ x1 ∨x2 and C2 ≡ ¬x1 ∨x2. Only transitions
leading to q� are labeled; the other combinations of actions lead to q⊺.

Formally, at state qψl , player 1 indicates a literal from ψ, and player 2
decides on the valuation of the underlying Boolean variable. If 1 indicated a
“wrong” literal l′ ≠ l then the system proceeds to state q⊺ where proposition
yes holds. The same happens if 1 indicated the “right” literal (l) and 2
selected the valuation that makes l true. Otherwise the system proceeds to
the “sink” state q�. Player 1 must select literals uniformly within clauses,
which is imposed by fixing qψl ∼1 q

ψ′

l′ iff ψ = ψ′. Player 2 is to select uniform

valuations of variables, i.e., qψl ∼2 q
ψ′

l′ iff var(l) = var(l′), where var(l) is the
variable contained in l. Finally, all states except q⊺, q� are indistinguishable
for agent 3. An example of the construction is presented in Figure 4. Let
q0 be an arbitrary “literal” state, e.g., the one for the first literal in the first
clause. Then, SAT(Φ) iff (GΦ, q0) ⊧ ⟨⟨1,2,3⟩⟩Xyes according to the subjective
semantics of ATL with imperfect information and imperfect recall.

Now, we construct iCGS G′Φ by adding action skip, available to agent 1 at
every “literal” state, which always enforces a transition to q⊺ regardless of the
actions selected by agents 2 and 3. In particular, G′Φ adds to GΦ a strategy for
coalition {1,2,3} whose only successor state from all the “literal” states is q⊺.
Thus, (GΦ, q0) ⊧ ⟨⟨1,2,3⟩⟩Xyes iff (GΦ, q0) ⇚⇛{1,2,3} (G′Φ, q0), which completes
the reduction.

In sum, the problem of deciding bisimilarity is easier than exponential
time, but still far from practically automatizable. To obtain a reduction,
one must propose the reduced model and the bisimulation according to one’s
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intuition, and verify correctness of the bisimulation by hand. We will show
an extensive example of how this can be done in Section 5.

4. Towards the Hennessy-Milner Property

In this section we show that the notion of bisimulation we introduced in
Section 3 does not enjoy the Hennessy-Milner (HM) property, that is, some
iCGS are logically equivalent (i.e., they satisfy the same formulas in ATL∗)
and yet they are not bisimilar. This is the case for both the subjective and
objective variants of our semantics. More precisely, for x ∈ {sub, obj}, we
say that states q ∈ G and q′ ∈ G′ are A-equivalent, or q ≈xA q′, iff for every
A-formula ϕ, (G, q) ⊧x ϕ iff (G, q′) ⊧x ϕ. The iCGS G,G′ will be omitted as
clear from the context. In other words, relation ≈xA connects those states of
two iCGS that satisfy the same formulas in ATL∗ that refer to coalition A.

In many logics, such as the Hennessy-Milner logic, CTL, CTL∗, ATL
and ATL∗ interpreted under perfect information [29], logical equivalence can
be characterised in a local and efficient way by means of bisimulations. By
contrast, the bisimulations for ATL∗ introduced in this paper are strictly
weaker than logical equivalence ≈xA. In particular, in Section 4.1 we show
that there are iCGS that satisfy the same formulas in ATL∗, while not being
bisimilar. Then, in Section 4.2 we present a necessary local condition that
needs to be satisfied by ≈subjA . As we show, the condition is not sufficient
however. Nevertheless, it is an important piece of the currently partially
known puzzle about the characterisation power of bisimulations for ATL∗

under imperfect information.
In the rest of the section let T ⊆ S and R ⊆ S × S′. We define the image

of T w.r.t. R:

Img(T,R) = {q ∈ S′ ∣ for some q′ ∈ T (q′, q) ∈ R}.

For each q ∈ S, let EA(q) denote the set of all states that are indistinguishable
from q according to the “everybody in A knows” relation ∼EA.

4.1. Failure of the HM Property

We immediately state the failure of the HM property for our notion of
bisimulation for ATL∗ under imperfect information.

Theorem 12. For x ∈ {sub, obj}, there exists iCGS G,G′, and states q, q′,
such that q ≈xAg q

′ and q⇚/⇛Ag q′.
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Figure 5: A counterexample to Hennessy-Milner property for subjective semantics. Avail-
able actions: {a, b, c} for agent 1, {x, y, z} for agent 2.

We prove Theorem 12 first for the subjective and then for the objective
semantics.

Subjective Semantics. Consider the two-agent iCGS in Fig. 5. In each
state agent 1 can execute actions {a, b, c} while agent 2 can execute {x, y, z}.
The transitions shown lead to q⊺ and q′⊺, while the omitted transitions lead
to q� and q′�, respectively. Via case-by-case analysis it can be proved that
qi ≈

subj
Ag qj, q′i ≈

subj
Ag q′j, and qi ≈

subj
Ag q′j, for i, j ∈ {1,2,3,4}, and also q� ≈

subj
Ag q′�,

q⊺ ≈
subj
Ag q′⊺. Therefore, G3 and G4 are Ag-equivalent, i.e., they satisfy the same

Ag-formulas in ATL∗. However, we show that there is no Ag-bisimulation
between the two iGCS. In particular, for any i, j ∈ {1,2,3,4}, state qi cannot
be Ag-bisimular with any state q′j. In the proof we make use of the following
lemma.

Lemma 13. Let A ⊆ Ag. If q⇚⇛A q′ then

1. for all r′ ∈ CA(q′), there exists r ∈ CA(q) such that r⇛A r′;

2. for all r ∈ CA(q), there exists r′ ∈ CA(q′) such that r⇛A r′.

Proof. The thesis of the lemma follows immediately from the observation that
CA(q′) ⊆ Img(CA(q),⇛A), which in turn can be shown via straightforward
induction on the length of the path w.r.t. relation ∼CA that joins q′ with r′.
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Figure 6: A counterexample to the Hennessy-Milner property for objective semantics.

Now, set T = {q1, q2, q3, q4} and T ′ = {q′1, q′2, q′3, q′4}, and note that, for the
partial strategy σAg whose domain is T and is defined by σAg(qi) = (a, x) for
all qi ∈ T , we have succ(T,σAg) = {q⊺}. On the other hand, note that for any
partial strategy σ′Ag whose domain is T ′, we have succ(T ′, σ′Ag) = {q′⊺, q′�}.

So, if we assume the existence of a strategy simulator ST ∶ PStrA(CA(qi))→
PStrA(C ′

A(q′i)), then succ(T ′, ST (σ1
Ag)) = {q′�, q′⊺}, which implies that there

exists q′j ∈ T ′ such that succ(q′j, σ′Ag) = q′�. On the other hand, by Lemma 13,
there exist qi ∈ T such that qi ⇛Ag q′j. But succ(qi, σ1

Ag) = q⊺, which is in con-
tradiction with point 1.(c) in Def. 5, as it cannot be the case that q⊺ ⇛Ag q′�.

Objective Semantics. Consider the single-agent iCGS in Fig. 6 in which
q0 /≈subjAg q′0. Observe first that, by symmetry, we have q0 ≈

x
Ag q1, for x ∈

{subj ,obj}. Hence, the same two strategies (play R, play L) can be executed
in q0 and q1. For each such strategy, its subtree starting from q0 is isomor-
phic to the corresponding tree starting from q′0, we thus have q0 ≈

obj
Ag q

′
0. In

particular, we can establish that qi ≈
obj
Ag q

′
i, for all i ∈ {0,2,3}. On the other

hand, as both q0 ≈
obj
Ag q

′
0 and q1 ≈

obj
Ag q

′
0, the simulator function ST{q0,q1},{q′0}

should satisfy ST{q0,q1},{q′0}(L) = L and ST{q0,q1},{q′0}(L) = R, a contradiction.
Hence, it is not the case that q0⇚⇛Agq′0.

As a consequence of Theorem 12, our notion of bisimulation is sufficient
for the preservation of formulas in ATL∗, but it is not necessary. In particular,
it does not enjoy the Hennessy-Milner property. In the following section we
investigate this problem more closely.
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4.2. Towards a Tight Characterization of ATL∗-Equivalence

In this section we investigate necessary, rather than sufficient, conditions
for logical equivalence. Specifically, we introduce a notion of pre-simulation
and prove that it is implied by logical equivalence for the subjective variant
of the semantics, while being strictly weaker.

Definition 14 (Pre-bisimulation). Let G and G′ be two iCGS defined on the
same sets Ag of agents and AP of atoms. Let A ⊆ Ag be a coalition of agents.
A relation ↝A⊆ S × S′ is a pre-simulation iff there exists a simulator ST of
partial strategies for A w.r.t. ↝A, such that q ↝A q′ implies that conditions
(a) and (b) in Def. 5 hold and

(c’) For every states r ∈ EA(q), r′ ∈ E′
A(q′) such that r ↝A r′, for ev-

ery partial uniform strategy σA ∈ PStrA(EA(q)), and every state s′ ∈
succ(r′, ST (σA)), there exists a state s ∈ succ(r, σA) such that s↝A s′.

A relation ↭A is called pre-bisimulation if both ↭A and ↭−1
A are pre-

simulations.

The key difference between the pre-bisimulations in Def. 14 and the
bisimulations in Def. 5 regards the domains of the partial uniform strategies
mapped by strategy simulator ST : these are common knowledge neighbour-
hoods for bisimulation, and simple collective knowledge neighbourhoods for
pre-bisimulations. Moreover, pre-bisimulation need not to satisfy condition
(2) in Def. 5.

We can now prove the following result.

Theorem 15 (Necessary Conditions on ≈subjA ).

If q ≈subjA q′, then there exists a pre-bisimulation ↭A such that q↭A q′.

Proof. We prove that ≈subjA is a pre-bisimulation. The proof is by contradic-

tion. It is routine to prove that ≈subjA satisfies points (a) and (b) in Def. 5,

we therefore focus on point (c’). Let q ≈subjA q′ and to obtain a contradiction
suppose that σA ∈ PStrA(EA(q)) is such that for every σ′A ∈ PStrA(EA(q′))
there exists r ∈ EA(q), r′ ∈ EA(q′), and s′ ∈ succ(r′, σ′A) such that for every

s ∈ succ(r, σA), we have s /≈subjA s′. This in particular means that for each

such s there exists a formula ϕ
σ′A
s in ATL∗ such that (G, s) ⊧subj ϕσ

′

A
s and

(G′, s′) ⊧subj ¬ϕσ
′

A
s . Now, define formula ϕ

σ′A
r = ⋁s∈succ(r,σA)ϕ

σ′A
s and observe

that ϕ
σ′A
r is true in the next step from r by using σA, whereas this is not the
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Figure 7: Pre-bisimulation does not imply logical equivalence.

case for r′. Finally, let ϕ = ⋀σ′A∈PStrA(EA(q′))ϕ
σ′A
r . To conclude, it suffices to

observe that (G, q) ⊧subj ⟨⟨A⟩⟩Xϕ and (G′, q′) ⊧subj ¬⟨⟨A⟩⟩Xϕ, a contradiction

with q ≈subjA q′.

The following corollary to Theorem 15 deals with the case of objective
semantics.

Corollary 16 (Necessary Condition on ≈objA ). If q ≈objA q′, then for each
uniform strategy σA there exists a uniform strategy σ′A such that:

succ(q′, σ′A) ⊆ Img(succ(q, σA),≈objA )

It should be noted that pre-bisimilarity does not imply logical equivalence
of two models. Consider the two-agent iCGS in Fig. 7. In the states that
are 1-indistinguishable from q1

I (respectively, q′1I) the models are equipped
with a single deterministic transition. In each of the remaining states agent
1 can execute actions {a, b, c} and agent 2 can execute {x, y, z}. We assume
that the transitions that are not depicted in the figure lead to q� or q′�,
respectively. Now, observe that (G7, q1

I) ⊧subj ¬⟨⟨Ag⟩⟩Fp, as it is not possible
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Figure 8: ThreeBallot showing a vote for Bob Smith

to choose a strategies for both agents that select the same pair of actions
over the set of successors of q1

I and leads to q⊺. On the other hand, such
choice is possible for the successors of q′1I , namely it suffices to assign (a, x)
to each q′iI , where i ∈ {1,2,3}, to see that (G8, q′

1
I) ⊧subj ⟨⟨Ag⟩⟩Fp. Finally,

we can define a relation ↭A such that qi ↭A q′i and qiI ↭A q′iI for all i ∈
{1,2,3}, q⊺ ↭A q′⊺, q� ↭A q′�, and q4 ↭A q′3, q4

I ↭A q′
3
I . A case-by-case check

shows that ↭A is a pre-bisimulation. Specifically, conditions (a) and (b) in
Def. 5 are immediate. As regards (c’), notice that for pre-simulations strategy
simulators are defined on collective knowledge neighbourhoods rather than
common knowledge ones. More specifically, CAg(q1) = {q1, q2, q3, q4} and
CAg(q′1) = {q1, q2, q3}, while EAg(q1) = {q1, q2, q3} and EAg(q′1) = {q1, q2, q3}.
Then, while a strategy simulator can be defined on EAg(q1), EAg(q′1), so such
simulator exists on CAg(q1), CAg(q′1).

5. Case Study: the ThreeBallot Voting Protocol

ThreeBallot [44, 45] is a voting protocol that strives to achieve some de-
sirable properties, such as anonymity and verifiability of voting, without the
use of cryptography. We provide a brief illustration of the protocol hereafter
and refer to [44, 45] for further details. Each voter identifies herself at the
poll site, and receives a “multi-ballot” paper to vote with. The multi-ballot
consists of three vertical ribbons – identical except for ID numbers at the
bottom (see Fig. 8, presented after [44]). The voter fills in the multi-ballot,
separates the three ribbons, and casts them into the ballot box. The ballot
box has the property, as usual, that it effectively scrambles the ballot order,
destroying any indication of which triple of ballots originally went together,
and what order ballots were cast in. To vote for a candidate, one must mark
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exactly two (arbitrary) bubbles on the row of the candidate. To not vote for
a candidate, one must mark exactly one of the bubbles on the candidate’s
row (again, arbitrarily). In all the other cases the vote is invalid. The ballots
are tallied by counting the number of bubbles marked for each candidate,
and then subtracting the number of voters from the count.

While voting, the voter also receives a copy of one of her three ballots,
and she can take it home. After the election has terminated, all the ballots
are scanned and published on a web bulletin board. In consequence, the
voter can check if her receipt matches a ballot listed on the bulletin board.
If no ballot matches the receipt, the voter can file a complaint.

Since ThreeBallot is not a cryptographic protocol, it does not heavily rely
on computers and counting can be done directly. Moreover, voters have no
responsibility to ensure the integrity of cryptographic keys, and the security
process in their vote is essentially the same as with traditional ballots.

Properties. ThreeBallot was proposed to provide several properties that
reduce the possibility of electoral fraud. Anonymity (cf. e.g. [46]) requires
that no agent should ever know how another voter voted, except in cases
where it is inevitable, such as when all voters voted for the same candidate.
Anonymity is important as it limits the opportunities of coercion and vote-
buying. The latter kind of properties is usually captured by the notions of
coercion-resistance and receipt-freeness [68, 69, 70]. In particular, coercion-
resistance requires that the voter cannot reveal the value of her vote beyond
doubt, even if she fully cooperates with the coercer. As a consequence, the
coercer has no way of deciding whether to execute his threat (or, dually,
pay for the vote). A preliminary formalization of coercion-resistance and
receipt-freeness in ATL has been presented in [71].

Finally, end-to-end voter verifiability [34, 33] provides a way to verify the
outcome of the election by allowing voters to audit the information published
by the system. Typically, the focus is on individual verifiability: each voter
should be able check if her vote has been taken into account and has not
been altered.

5.1. iCGS Models

Here we present three iCGS models of the ThreeBallot voting protocol.
All models have been specified in ISPL (Interpreted System Programming
Language), the input language of the MCMAS model checker for multi-agent
systems [15]. We do not model several aspects of the voting system: the ID
of each ribbon, the copy of the ribbon which is given back to each voter
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after casting her ballot, the possibility for voters to verify the presence of
the ribbon they are given back after voting. Moreover, we model a single
attacker who is also a voter and, as such, follows the voting protocol and
does not interact in any particular way with the other agents.

In the iCGS below, each agent is represented by means of her local vari-
ables and their evolution. The vote collector and bulletin board (BB) are
modeled by the Environment agent (called Env). This agent posesses local
variables modeling the fact that the voting process is open and the values
of ribbons on the BB. These variables are observable by all voters, including
the attacker. Env also owns private variables for collecting ribbons and can
perform the three actions stop, collect, nop to close the voting process, to
collect the votes, and finally to loop after the publication of the BB.

The agents representing voters have each a private variable representing
their vote for each candidate, and they share three “ballot” variables with
the environment Env. These variables represent the ribbons created by the
“voting machine”. Casting the vote is modeled by creating the three ribbons,
consistently with the choice for each candidate. We assume that votes are
immediately cast in the initial state. Being visible by Env, the values of the
three ribbons are copied by Env onto the (variables represented on the) BB
in a random order. Each agent has two actions: vote, by which the voter
casts her vote, and nop, a non-voting or idle action. Action vote is enabled
only in the initial state, nope is always enabled. All agent variables are never
modified during the voting process.

In the first iCGS, denoted Gtot, for each agent choice, all configurations
of the three ribbons that are compatible with the agent’s choice may occur.
The communication between each agent and Env is entirely at Env’s charge,
who has direct access to agents’ ribbons and copies them onto the BB. Also,
copying is done randomly: Env chooses a not-yet-copied ribbon from some
voter who has cast her vote (boolean variables are provided to help Env
identify these situations) and copies it onto a free position on the BB.

With the second model, denoted Glex, we model a voting machine which
sorts, according to the lexicographic order, the three ribbons produced for
the agent’s vote, and places the greatest one in the first “ballot” variable of
the voter, the second greatest in the second variable, and the least in the
third variable. Hence, for each choice of an agent, there are still several
configurations of ribbons that are produced, but we no longer consider all
permutations of a given configuration, but only a single representative.

Finally, we modify Glex into a third model, in which Env no longer copies
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ribbons on the BB, but rather counts the votes for each candidate by peeping
at the ”ballot” variables of each voter. This model is denoted Gcount.

More formally, in the case of Gtot for n voters and c candidates, each global
state has the form (vopen, pub, (ribb`)1⩽`⩽3n, (chi, vi)1⩽i⩽n, (sij)1⩽i⩽n,1⩽j⩽3) such
that

1. The Boolean variable vopen is true when the vote is open, while pub
signals that all ribbons of agents that have voted have been copied on
the BB.

2. The local states for voter i is (vopen, pub, ribb1, ribb2, ...ribb3n, vi, si1, si2, si3).
This means that each voter sees the BB during the process of copying
ribbons. This is not harmful for anonymity since indistinguishability is
state-based, which means agents do not remember their observations.

3. Integer 1 ⩽ chi ⩽ c specifies the choice of voter i.

4. Boolean vi (1 ⩽ i ⩽ n) registers whether agent i has voted.

5. Variables sij (1 ⩽ j ⩽ 3) represent the three ”strips” of the ballot for
voter i. They are shared between each agent and Env, who copies them
onto the BB. Value range is {0,2c − 1}∪ {�} with sij = � denoting that
strip sij has been copied on the BB.

6. Integer variables ribb` (1 ⩽ ` ⩽ 3n) represent the content of the BB.
Value range is {0,2c − 1}∪ {�}, with ribb` = � denoting that no content
of a strip has been copied into this ribbon on the BB.

Initial states are such that vopen = true, vi = false for all i ⩽ n, variables
ribb` are set to the undefined value � and, for variables sij we have the
following rules modeling the creation of a triple of ribbons compatible with
the choice of a candidate: for each voter i, let bjk = bijk be the bit representing
the bubble on the line corresponding to candidate k of the jth ballot of i’s
vote, as represented by the value of chi. A tuple (bjk)1⩽j⩽3,1⩽k⩽c is compatible
with choice chi if the following holds:

1. if chi = k then for some p ⩽ 3, bpk = 0 and for all p′ ≠ p, bp′k = 1

2. if chi ≠ k then for some p ⩽ 3, bpk = 1 and for all p′ ≠ p, bp′k = 0

Denote B(chi) the set of bit tuples (bjk)1⩽j⩽3,1⩽k⩽c compatible with chi.
Denote further by R(chi) the transformation of these bit tuples into integer
triples modeling the valid ballots compatible with choice chi:

R(chi) = {(stj)1⩽j⩽3 ∣ stj = ∑
1⩽k⩽c

bjk ⋅ 2k−1, (bjk)1⩽j⩽3,1⩽k⩽c ∈ B(chi)}
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As an example, valid triples of integers compatible with a vote for candidate
2, for c = 2, are all permutations of (3,2,0) together with all permutations
of (2,2,1). Then (sij)1⩽j⩽3 ∈ R(chi) for every 1 ⩽ i ⩽ n,1 ⩽ j ⩽ 3.

Finally, in Gtot the protocol for the ThreeBallot system is given as follows:

1. actions vote and nop are available to all voters when vopen = true;
otherwise, only nop is available.

2. stop and nop are available to Env when vopen = true.
3. collect and publish are available to Env when vopen = false.
Then, transitions are of the form:

(vopen, pub, (ribb`)1⩽`⩽3n, (chi, vi)1⩽i⩽n, (sij)1⩽i⩽n,1⩽j⩽3)
(ae,a1,a2,...,an)ÐÐÐÐÐÐÐÐ→

(vopen′, pub′, (ribb′`)1⩽`⩽3n, (ch′i, v′i)1⩽i⩽n, (s′ij)1⩽i⩽n,1⩽j⩽3)

where

1. vopen′ = false if ae = stop or vopen = false; vopen′ = true otherwise.

2. For ai = vote, v′i = true, and for ai = nop, v′i = vi.
3. For ae = collect (and hence ai = nop for all i) we have the following:

(a) there exists some subset of pairs A ⊆ {1, . . . , n} × {1,2,3} and a
pair (i0, j0) /∈ A such that

i. s′ij = sij = � for all (i, j) ∈ A
ii. s′i0,j0 = �, si0,j0 ≠ �

iii. s′ij = sij ≠ � for all (i, j) /∈ A ∪ {(i0, j0)};

(b) there exists some B ⊆ {1, . . . ,3n} with card(B) = card(A) and
some integer k /∈ B, 1 ⩽ k ⩽ 3n such that

i. ribb′` = ribb` ≠ � for all ` ∈ B
ii. ribbk = �, ribb′k = si0,j0

iii. ribb` = ribb′` = � for all ` /∈ B ∪ {k}.

4. Action ae = publish can only be executed when, for each i, either si1 =
si2 = si3 = � or vi = false, and its effect is to modify only pub′ = true,
all other variables remaining unchanged.

In the iCGS Glex transitions are identical to the above, the only dif-
ference being in the initial states, more specifically in the configuration of
variables sij. Intuitively, for each choice chi of voter i, we only keep those
initial configurations in which (si1, si2, si3) is the maximal, in lexicographic
order, among the encodings Rchi of chi. Formally, given a triple of inte-
gers t = (t1, t2, t3), we denote with Perm(t) the set of all permutations of
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triple t. Then, the initial states in Glex are the initial states of Gtot for which
(si1, si2, si3) = maxPerm((si1, si2, si3)), the maximum being considered un-
der the lexicographic order.

Finally, the iCGS Gcount is similar to Glex but all variables ribb` are re-
placed with c variables (cok)1⩽k⩽c. The local states for agent i are then of the
form (vopen, pub = 0, vi, si1, si2, si3) and (vopen, pub = 1, co1, . . . , coc, vi, si1, si2, si3).
The specification of transitions is then the same as for Gtot, except for ae =
collect and items 3.(b.i)-3.(b.iii) above (defining the updates of variables
ribb`), which are replaced by the following:

3.(b’) For each 1 ⩽ k ⩽ c, co′k = cok + di0j0k, where di0j0k is the k-th least
significant bit of si0j0 .

5.2. Coercion freeness and anonymity properties for the ThreeBallot

In this section we present the formulas that are of interest for the verifi-
cation of ThreeBallot. We verify two types of formulas: a variant of coercion
resistance [71] and a variant of anonymity. The coerction resistance property
specifies the fact that the attacker att has no strategy by which he could
know how agent i has voted (i ≠ att):

ϕi = ⟪att⟫F ((pub ∧ vi)→ ⋁
1⩽j⩽nc

Katt(j = chi))

Recall that, in our model the attacker is also a voter, which corresponds to
situations in which a voter fully cooperates with the attacker. Additionnaly,
as already noted in Section 2, the knowledge operator is definable in ATL
with the subjective interpretation as Kattϕ = ⟪att⟫ϕUϕ.

The anonymity property does not require ATL but rather CTLK, the
combination of branching-time temporal logic with epistemic logic of e.g.
[72]. The AG operator from CTLK, whose meaning is that along all paths
the target subformula holds globally, can be defined as usual in ATL as
follows:

AGϕ ≡ ⟪∅⟫Gϕ
Then, the anonymity property of interest for ThreeBallot is that any of the

agents cannot know, at any time instant, the way another agent has voted:

ϕci = AG( ⋀
1⩽j⩽nc

¬Kattpchi=j)

Note that anonymity is not ensured when there are at most three voters,
including the attacker (who may vote).
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5.3. Bisimulations for Gtot, Glex and Gcount
The three iCGS defined in the previous section appear to be naturally re-

lated, in particular w.r.t. the properties pertaining to the attacker modifying
the outcome of the vote or breaking anonymity. The interest in simplifying
the model is that checking the coercion resistance property can be done faster
and with less memory on Gcount than on Glex, which, on its turn, requires less
time and memory than Gtot, as we will see in the last section on experimen-
tal results. In this section we show that the three models are bisimilar for
the attacker, for the set of atomic propositions that refer only to choices of
agents. Bisimulations formalize the “natural relation” between these iCGS
and allows us to check coercion resistance on the smallest iCGS and then
transfer the result to the two others, in particular to the original model Gtot.
Note that these bisimulations work because the properties do not refer to the
status of the BB. For instance, these bisimulations would not be useful for
simplifying systems for verifiability [37].

Formally, for each choice for an agent i to vote for candidate j, we intro-
duce an atomic proposition pchi=j, which holds true only in those states in
which chi = j. Then, if we denote the attacker att = n and AP = {pchi=j ∣ 1 ⩽
i ⩽ n,1 ⩽ j ⩽ c}, we prove that the following relation is an {att}-bisimulation
over AP between Gtot and Glex:

(vopen, pub, (ribb`)1⩽`⩽3n, (chi, vi)1⩽i⩽n, (sij, aij)1⩽i⩽n,1⩽j⩽3)⇚⇛1
{att}

(vopen′, pub′, (ribb′`)1⩽`⩽3n, (ch′i, v′i)1⩽i⩽n, (s′ij, a′ij)1⩽i⩽n,1⩽j⩽3)

iff the following holds:

1. vopen = vopen′, pub = pub′, vi = v′i, chi = ch′i for all 1 ⩽ i ⩽ n, satt,j = s′att,j
and aatt,j = a′att,j for all 1 ⩽ j ⩽ 3 and ribb` = ribb′` for all 1 ⩽ ` ⩽ 3n.

2. For every 1 ⩽ i ⩽ n, if we denote bjk the kth least significant bit of sij and
b′jk the kth bit of s′ij, then both (bjk)1⩽j⩽3,1⩽k⩽c, (b′jk)1⩽j⩽3,1⩽k⩽c ∈ B(chi).

3. Denote ρi the S3-permutation of (si1, si2, si3) into (s′i1, s′i2, s′i3), i.e. sij =
s′
iρi(j). Also when sij = s′ij = � we put ρi = id{1,2,3}. Then aij = a′iρi(j) for

all 1 ⩽ i ⩽ n − 1,1 ⩽ j ⩽ 3.

Intuitively, item (3) above says that (b′jk) is the largest, in lexicographic
order, among all tuples in Bchi that are permutations of (bjk).

For Glex and Gcount, we consider the following {att}-bisimulation over AP :

(vopen, pub, (ribb )̀1⩽`⩽3n,(chi, vi)1⩽i⩽n, (sij, aij)1⩽i⩽n,1⩽j⩽3)⇚⇛2
{att}

(vopen′, pub′, (cok)1⩽k⩽c, (ch′i, v′i)1⩽i⩽n, (s′ij, a′ij)1⩽i⩽n,1⩽j⩽3)
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where:

1. vopen = vopen′, pub = pub′, vi = v′i, chi = ch′i, sij = s′ij and aij = a′ij for
all 1 ⩽ i ⩽ n,1 ⩽ j ⩽ 3.

2. For every 1 ⩽ ` ⩽ 3n and 1 ⩽ k ⩽ c, if we denote b`k the kth least
significant bit on the ribbon ribb`, then:

cok =∑{b`k ∣ ribb` ≠ �,1 ⩽ ` ⩽ 3n}

To prove that these relations are indeed alternating bisimulations, note
that the condition 1.(a) is immediately satisfied as whenever q⇚⇛ι

{att} q
′, for

ι = 1,2, we must have that (chi = j) ∈ q iff (chi = j) ∈ q′.
To prove properties 1.(b) and its dual for ⇚⇛1

{att}, consider states q, r in

Gtot and r ∈ Glex such that q⇚⇛1
{att} q

′ and q ∼att r. Then it is the case that

q = (vopen,pub,(ribb )̀1⩽`⩽3n,(chi, vi)1⩽i⩽n,(sij,aij)1⩽i⩽n,1⩽j⩽3)
q′ = (vopen,pub,(ribb )̀1⩽`⩽3n,(chi, vi)1⩽i⩽n,(s′ij,a′ij)1⩽i⩽n,1⩽j⩽3)
r = (vopen,pub,(ribb )̀1⩽`⩽3n,(chi, vi)1⩽i⩽n,(sij,aij)1⩽i⩽n,1⩽j⩽3)

with q, q′ related as per the definition of ⇚⇛1
{att} above and chatt = chatt,

satt,j = s′att,j and aatt,j = a′att,j for all 1 ⩽ j ⩽ 3. Then set

r′ = (vopen, pub, (ribb`)1⩽`⩽3n, (ch
′

i, v
′

i)1⩽i⩽n−1, (chatt, vatt), (s
′

ij , a
′

ij)1⩽i⩽n−1,1⩽j⩽3, (satt,j , aatt,j)1⩽j⩽3)

and we obtain the desired result, that is, q′ ⇚⇛1
{att} r

′ and r ∼att r′. The

mirror argument works as well: given q ⇚⇛1
{att} q

′ and q′ ∼att r′, we can find

r such that q⇚⇛1
{att} r and r ∼att r′.

Conditions 1.(b) and its dual for ⇚⇛2
{att} can be proved similarly, by

observing that, given q, r ∈ Glex, q′ ∈ Gcount, such that q⇚⇛2
{att} q

′ and q ∼att r,
then it is the case that

q = (vopen,pub,(ribb )̀1⩽`⩽3n,(chi,vi)1⩽i⩽n,(sij,aij)1⩽i⩽n,1⩽j⩽3)
q′= (vopen,pub,(cok)1⩽k⩽c,(chi,vi)1⩽i⩽n,(s′ij,a′ij)1⩽i⩽n,1⩽j⩽3)
r = (vopen,pub,(ribb`)1⩽`⩽3n,(chi,vi)1⩽i⩽n,(sij,aij)1⩽i⩽n,1⩽j⩽3)

with the same relation between variables of q and r as above. Then set

r′ = (vopen, pub, (cok)1⩽k⩽c, (ch
′

i, v
′

i)1⩽i⩽n−1, (chatt, vatt), (s
′

ij , a
′

ij)1⩽i⩽n−1,1⩽j⩽3, (satt,j , aatt,j)1⩽j⩽3)
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and we obtain that q′ ⇚⇛2
{att} r

′ and r ∼att r′.
Further, for conditions 1.(c) and its dual, notice first that for any state

q ∈ Gtot or q ∈ Glex, Catt(q) is the equivalence class of q w.r.t. ∼att, that is,
if q = (vopen, pub, (ribb`)1⩽`⩽3n, (chi, vi)1⩽i⩽n, (sij, aij)1⩽i⩽n,1⩽j⩽3), then Catt(q)
includes all and only states where the local state for att is of the form
((ribb`)1⩽`⩽3n, chatt, vatt, (satt,j, aatt,j)1⩽j⩽3). Similarly, for q′ ∈ Gcount with q′ =
(vopen, pub, (co′k)1⩽k⩽c, (ch′i,v′i)1⩽i⩽n, (s′ij,a′ij)1⩽i⩽n,1⩽j⩽3), Catt(q′) includes all and
only states where the local state for att is of the form ((cok)1⩽k⩽c, chatt, vatt,
(satt,j, aatt,j)1⩽j⩽3).

Then, in all three iCGS, on each neighbourhood Catt(q), only one or two
partial strategies for att can be defined, depending on whether the vote is
open or not. Therefore, we define the mapping ST

C
Gtot
att (⋅),CGlexatt (⋅) to associate

to each partial strategy prescribing nop to att in some CGtotatt (q) the quasi-
identical strategy prescribing the same action in CGlexatt (q′). Similarly, to the
partial strategy prescribing vote to att in CGtotatt (q), ST

C
Gtot
att (⋅),CGlexatt (⋅) associates

the strategy prescribing vote in CGlexatt (q′). The dual mapping ST ′ is defined
similarly, and analogous definitions work for bisimulation ⇚⇛2

{att}. Notice
also that these definitions satisfy the constraints on strategy simulators.

To prove condition 1.(c), consider first the strategy voteatt prescribing

vote for att on CGtotatt (q) and consider some state r′ such that q′
voteattÐÐÐ→ r′.

Since when voting is enabled, Env does not collect votes, r′ has the same BB
as q′ and all booleans variables aij are false. Therefore, we can choose a state
r that has the same values as r′ for the local variables of all voters and the

same BB as q. Then, we obtain q′
ST (voteatt)ÐÐÐÐÐÐ→ r′ and r ⇚⇛1

{att} r
′. A similar

line of reasoning works for ⇚⇛2
{att} as well. The same argument applies if the

strategy for the attacker is nopatt and q and q′ are states in which voting is
open.

Consider now a state q in which voting is closed and the strategy noneatt
prescribing action nop for att on CGtotatt (q) and consider again some state r′

such that q′
nopattÐÐÐ→ r′. Then the only agent which executes a non-idle action

on the above transition is Env, who copies one of the ribbons onto the BB.
This transition can then be simulated in Gtot by copying the same ribbon
(but which might be stored at a different position in q than in q′) onto the
BB. A mirror argument can be used to prove 1.(c) for ST ′.

Thirdly, for proving condition 1.(c) for q ⇚⇛2
{att} q

′, note that the same
considerations above apply for the case of a transition from a state q′ in
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which the voting is open. For the case of states q, q′ where the voting is
closed and hence only strategy nopatt is available to the attacker, we note

that the only action that is compatible with q
nopattÐÐÐ→ r in both models is Env

collecting votes. This corresponds in Gcount to an action in which Env counts
votes, and hence we can find a state r that is an nopatt-compatible successor
of q, has the same local states for voters as r′, and in which each counter cok
keeps the sum of the bullets on kth line on the copied ribbons from r. This
will ensure that r⇚⇛2

{att} r
′.

Finally, as regards condition (2), if q1 ⇚⇛1
{att} q

′ and q2 ⇚⇛1
{att} q

′, then

the attacker must have made the same choice in q1 and q2 (possibly none),
and her ”ballot stripes” satt,j and ”bookkeeping bits” aatt,j must be the same
in q1 and q2. But this entails the indistinguishability of q1 and q2 for the
attacker, i.e., then Catt(q1) = Catt(q2). The proof of (2) for ⇚⇛2

{att} is similar.
To conclude, all iCGS Gtot, Glex, and Gcount are bisimilar for the attacker.

We will make use of this fact in the next section on experimental results.

Remark 17. Note that the two relations ⇚⇛1
{att} and ⇚⇛2

{att} are also bisim-

ulations on models Gtot,Glex and Gcount in the sense of (the symmetric variant
of) Def. 5.1 in [73]. Therefore, applying [73, Lemma 5.2] both ways, any
CTLK formula that is satisfied in any of the models, is satisfied in all of
them. This justifies our use of CTLK operators in specification ϕci above.

On the other hand, note that CTLK bisimulations in the sense of [73] do
not preserve ATL formulas under imperfect information. Figure 9 provides a
counterexample, with two 1-agent models that are timed epistemic bisimilar,
but do not satisfy the same formulas in ATL.

6. Experimental Results

In this section, we exhibit the improvements in running time when check-
ing the same properties over the three bisimilar models. The three models
are checked with growing number of voters and candidates. For our exper-
iments, we have used the latest version of MCMAS (1.3.0) [15]. Tests were
made on a virtual machine running Ubuntu 16.04.1 LTS on a Dell PowerEdge
R720 server with two Intel Xeon E5-2650 8 core processors at 2GHz, and 128
GB of RAM. In order to investigate certain non-intuitive results reported in
Tables 1, 2, and 3, we re-ran the experiments on a different machine with
a similar setup of 16-core Xeon E5620 2.4GHz processor with 64GB RAM.
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a
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Figure 9: Two models that are (timed epistemic) bisimilar in the sense of [73], but do
not satisfy the same formula in ATL.

The purported anomalies have shown to be stable over both the tests. In all
the following tables, NA means a 2 hours timeout has been reached without
obtaining any result. The C programs that were used to generate the ISPL
files for the three ThreeBallot models, together with the generated ISPL files,
are publicly available as [74].

MCMAS provides two options, -atlk 2 or -uniform, for checking ATL
formulas with uniform strategies, with some differences in the semantics of
ATL formulas (-uniform is similar with “irrevocable strategies” of [31]). We
observed that neither of these options were stable, and lead to a number of
experiments ending with inconsistent results or MCMAS terminating abnor-
mally (segfault on null-pointer assignment in one of the fixpoint computations
related with ATL satisfiability). We refer the interested reader to [75, 76].

Table 1 reports the running times for a selection of Gtot and Glex models.
Note that several surprising data points are present. Namely, in the case of
(2v,3c) the running time is smaller for Gtot than for Glex despite considerably
larger state space (but smaller BDD). Moreover in case of (2v,4c) the com-
putations for Glex timed out at the stage of computing the set of reachable
states while the verification of Gtot completed successfully in an hour. Model
checking the cases of (3v,2c) and (4v,2c) resulted in segmentation fault for
both Gtot and Glex on both the machines. Model checking the cases of (3v,3c)
and (4v,3c) did not succeed in reasonable time for both models.

To address the segfault issues, we also checked the coercion resistance
property with -atlk 0 option, which utilizes ATL with perfect information.
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(# voters, # candidates)
(2v,2c) (2v,3c) (2v,4c)

Gtot

1.5 s 12.8 s 3714.0 s
∣S∣ ≈ 5.9e + 06 ∣S∣ ≈ 3.3e + 08 ∣S∣ ≈ 8.8e + 09
∣BDD∣ ≈ 1.4e + 07 ∣BDD∣ ≈ 5.5e + 07 ∣BDD∣ ≈ 4.0e + 08

Glex

1.3 s 29.0 s
NA∣S∣ ≈ 2.9e + 05 ∣S∣ ≈ 1.1e + 07

∣BDD∣ ≈ 1.5e + 07 ∣BDD∣ ≈ 6.1e + 07

Table 1: MCMAS statistics for coercion freeness, Gtot and Glex with the -atlk 2

flag

This is nevertheless consistent with our theoretical setting since all tests for
more than 3 candidates show that the formulas are false, and whenever a
positive ATL formula is false under the perfect information semantics, it is
also false under the imperfect information semantics, and hence preserved by
alternating bisimulations. Tables 2 and 3 show the details of the verification
of the only configurations for which MCMAS produces results in reasonable
time (timeout = 2 hours) for, respectively, Gtot and Glex. Again, while the
state-space of Glex is consistently (and predictably) smaller than the state-
space of Gtot, the size of corresponding BDDs can increase. This is notable
in particular in the case of (2v,3c) where model checking is twice faster for
Gtot than for Glex. The case of (2v,4c) that terminated successfully for Gtot
and timed-out for Glex (the entry omitted from the table) is similar.

Our interpretation for the anomalies between state space, BDD size and
running time is that the ”ribbon” variables being more constrained in Glex
than in Gtot, the default variable ordering produces larger BDDs for the more
constrained model. On the other hand, the anomaly being present for both
the -atlk 0 and the -atlk 2 flags, it does not seem to come from the
difference in dealing with uniform strategies than with strategies with perfect
information. Note that the same anomalies are present for the CTLK model-
checking instances below.

The models Gcount can be verified much faster with the -atlk 2, the num-
ber of reachable states and the BDD size decreasing substantially. Statistics
are given in Table 4.
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# candidates
2c 3c 4c

#
v
o
te

rs 2v
1.3 s 13.3 s 3558.5 s

∣S∣ ≈ 5.9e + 06 ∣S∣ ≈ 3.3e + 08 ∣S∣ ≈ 8.8e + 09
∣BDD∣ ≈ 1.2e + 07 ∣BDD∣ ≈ 4.5e + 07 ∣BDD∣ ≈ 2.8e + 08

3v
25.1 s

NA NA∣S∣ ≈ 2.9e + 10
∣BDD∣ ≈ 5.9e + 07

4v
1291.8 s

NA NA∣S∣ ≈ 1.7e + 14
∣BDD∣ ≈ 3.0e + 08

Table 2: MCMAS statistics for coercion freeness, Gtot and -atlk 0 flag

# candidates
2c 3c

#
v
ot

er
s 2v

1.1 s 26.4 s
∣S∣ ≈ 2.9e + 05 ∣S∣ ≈ 1.1e + 07
∣BDD∣ ≈ 1.5e + 07 ∣BDD∣ ≈ 5.4e + 07

3v
10.4 s

∣S∣ ≈ 3.1e + 08 NA
∣BDD∣ ≈ 5.7e + 07

4v
297.9 s

NA∣S∣ ≈ 3.9e + 11
∣BDD∣ ≈ 8.9e + 07

Table 3: MCMAS statistics for coercion freeness, Glex and -atlk 0 flag
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We also ran the same tests for the anonymity property, ϕci = AG(⋀1⩽j⩽nc ¬Kattpchi=j)
The results are given in Tables 5, 6 and 7. Note the same anomalies of smaller
state space but larger BDD size and running time between some Glex models
and the respective Gtot models.

# candidates
2c 3c 4c

#
v
o
te

rs 2v
1.1 s 9.7 s 3200.2 s

∣S∣ ≈ 5.9e + 06 ∣S∣ ≈ 3.3e + 08 ∣S∣ ≈ 8.8 + 09
∣BDD∣ ≈ 1.2e + 07 ∣BDD∣ ≈ 4.5e + 07 ∣BDD∣ ≈ 2.8e + 08

3v
14.0 s 6455.9 s

NA∣S∣ ≈ 2.9e + 10 ∣S∣ ≈ 2.4e + 13
∣BDD∣ ≈ 5.4e + 07 ∣BDD∣ ≈ 2.4e + 08

4v
440.0 s

NA∣S∣ ≈ 1.7e + 14
∣BDD∣ ≈ 1.1e + 08

Table 5: MCMAS statistics for anonymity checking on Gtot

# candidates
2c 3c 4c

#
v
ot

er
s

2v
0.9 s 18.9 s NA

∣S∣ ≈ 2.9e + 05 ∣S∣ ≈ 1.1e + 07
∣BDD∣ ≈ 1.3e + 07 ∣BDD∣ ≈ 4.9e + 07

3v
8.3 s 7100.6 s

NA∣S∣ ≈ 3.1e + 08 ∣S∣ ≈ 1.5e + 11
∣BDD∣ ≈ 3.9e + 07 ∣BDD∣ ≈ 3.0e + 08

4v
323.3 s

NA∣S∣ ≈ 4.0e + 11
∣BDD∣ ≈ 6.5e + 07

Table 6: MCMAS statistics for anonymity checking on Glex
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7. Conclusions

In this paper we advance the state-of-the-art in model theory and verifi-
cation for the strategy logic ATL∗ under imperfect information and imperfect
recall. Specifically, we introduce a novel notion of (bi)simulation on imper-
fect information concurrent game structures that preserves the interpretation
of formulas in ATL∗ both under the objective and subjective variants of the
semantics (Theorem 8). Then, we apply this theoretical result to the verifi-
cation of the ThreeBallot voting system, a relevant voting protocol without
cryptography. We show how the ThreeBallot protocol can be captured within
the framework of iCGS, and then provide successive abstractions that are
provably bisimilar to the original iCGS for the ThreeBallot system. In par-
ticular, we have been able to model check the “smaller” bisimilar reductions
of the ThreeBallot model, and then transfer the result to the original model
in virtue of Theorem 8. As reported in the experimental results, the gains in
terms of both time and memory resources are significant.

Future Work. We envisage several extensions of the present contribu-
tion. First, it is of interest to develop bisimulations for strategic properties
of agents with perfect recall and bounded recall, as in many application do-
mains agents do have some memory of past states and actions. Also for
the verification of voting protocols, it is key to extend ATL∗ with epistemic
modalities to express naturally properties of anonymity and confidentiality.
We remarked that individual knowledge is expressible in the subjective se-
mantics. However, no such result holds for the objective interpretation, nor
common knowledge happens to be definable. Finally, we aim at automating
and implementing the procedures described in this paper in a model checking
tool for the formal verification of (electronic) voting protocols.
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[80] M. R. Neuhäußer, J. Katoen, Bisimulation and logical preservation
for continuous-time Markov Decision Processes, in: CONCUR 2007 -
Concurrency Theory, 18th International Conference, CONCUR 2007,
Lisbon, Portugal, September 3-8, 2007, Proceedings, Vol. 4703 of
Lecture Notes in Computer Science, Springer, 2007, pp. 412–427.
doi:10.1007/978-3-540-74407-8 28.

52




