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ABSTRACT
In many Software product lines (SPLs), if domain variability can be
properly speci�ed in terms of features in a feature model (FM), their
implementation in core-code assets is hard to capture and maintain,
as there are di�erent techniques to implement the variability. Even
with an organization in variation points and variants, most of these
techniques do not shape the code in terms of features, and incon-
sistencies appear when the variability evolves at one level with no
co-evolution at the other. To help SPL architects, one possible solu-
tion is to be able to reconstruct the FM by capturing the variability
in core-code assets, but di�erent implementation techniques expose
diverse characteristics, hampering the process. We study in this
paper the diverse dimensions of the existing variability implemen-
tation techniques, and how they can be captured in an abstract way.
We then categorize them regarding these dimensions in a single
catalog, extending previous classi�cations of such techniques. We
also brie�y show how the characteristics of the techniques could
help to better capture the implemented variability, opening some
potential in reverse engineering processes.
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1 INTRODUCTION
In a Software product line (SPL) approach, the speci�ed domain
variability is commonly expressed by a variability model, e.g., a fea-
ture model (FM) using the concept of features [17]. These features
are realized in di�erent core assets and in this work we consider
their realization at the implementation level (i.e., in core-code as-
sets). As variability evolves over time, new features are introduced
or the existing variability is extended. When the implemented and
the speci�ed variabilities in an FM do not co-evolve, their map-
ping may gradually deteriorate and inconsistencies appear. Thus, a
reverse engineering approach is usually needed to reconstruct an
approximation of the FM, or part of it, from the core-code assets,
so to help in resolving inconsistencies.

Reconstructing the FM from the implemented variability in core-
code assets is not trivial, as the code may not be shaped in terms of
features when several traditional techniques are used (e.g., inheri-
tance, design patterns). Within the reverse engineering approaches,
some aim to �nd the feature locations in di�erent software variants,
within a similar domain, and to migrate them to an SPL. According
to a recent survey [3], source code is then the most used input
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artifact in such migration. On the other side, there are approaches
that show how to reconstruct an FM from the described variability
in a propositional formula [11]. In both cases, the resulting vari-
ability model is abstracted from the implementation techniques,
e.g., �nding the feature locations through analysing the abstract
syntax tree (AST) of code in several product variants [31, 34]. There
are also approaches that describe how to capture the implemented
variability and reconstruct the FM when a single technique is used
to implement the variability, e.g., using preprocessors in C as im-
plementation technique [19]. But, the role and characteristics of
variability implementation techniques in the reverse engineering
processes are not considered. To understand how an implemen-

Figure 1: An excerpt of FM for Graph SPL

tation technique may support a reverse engineering process, we
analyse in this paper what characterizes the capturing of variability
in core-code assets, namely, how to identify and abstract the vari-
ability information that is realized in core-code assets. We also use
an excerpt of the Graph SPL example [20] to illustrate the tackled
issues. An extract of the FM for this SPL is shown on Figure 1. A
possible implementation is shown in Listing 1 using two techniques,
the strategy pattern and parameters in Scala 1. We then de�ne the
issues to be handled as follow:

I1. Considering the variability implementation technique during
the capturing of variability is important for several reasons, e.g.,
except the feature names or feature locations, it is important to
capture their relation logic, dependencies, and binding time to
reconstruct the FM. For example, we should be able to reconstruct
even a rough FM as the one in Figure 1 from the implemented
variability in Listing 1.

I2. When variability is captured in core-code assets (e.g., in List-
ing 1), abstracting it in terms of features or variation points with
variants (de�ned in Section 2.1) is not similar.

I3. There is a large set of approaches that show how to evaluate
and choose a technique to address some domain variability in core-
code assets [2, 13, 22, 25, 29], but we are not aware of approaches
that address explicitly the importance of techniques in the reverse
engineering process.

1 o b j e c t Conf {

1Our focus is on implementation techniques and not implementation languages.



2 f ina l v a l WEIGHTED : Boolean = true
3 }
4 abs t rac t c l a s s Graph { / ∗ Common p a r t ∗ / }
5 c l a s s ConcreteGraph extends Graph {
6 d e f a d d d i r e c t e d e d g e ( s : Vertex , d : Vertex , w: I n t ) = {
7 v a l edge = new Edge ( s , d )
8 i f ( Conf . WEIGHTED) {
9 edge . weight = w

10 }
11 edges = edge : : edges
12 a d d t o a d j a c e n c y m a t r i x ( edge )
13 }
14 d e f a d d u n d i r e c t e d e d g e ( s : Vertex , d : Vertex , w: I n t ) = {
15 v a l edge1 = new Edge ( s , d )
16 v a l edge2 = new Edge ( d , s )
17 i f ( Conf . WEIGHTED) {
18 edge1 . weight = w
19 edge2 . weight = w
20 }
21 edges = edge1 : : edges
22 edges = edge2 : : edges
23 a d d t o a d j a c e n c y m a t r i x ( edge1 )
24 a d d t o a d j a c e n c y m a t r i x ( edge2 )
25 }
26 d e f addedge ( c a l l b a c k : ( Vertex , Vertex , I n t ) => Unit ,
27 x : Vertex , y : Vertex , w: I n t = 1 ) = c a l l b a c k ( x , y , w)

Listing 1: Graph SPL implementation using two di�erent
techniques

To address these issues, we have to analyse how the variability
can be implemented, i.e., the diversity of variability implemen-
tation techniques, and the characteristic properties of variability
abstractions, i.e., features and variation points with variants, that
are important to be captured in core-code assets (Section 3). We
then analysed the diversity of 21 techniques, which are evaluated
regarding the capturing properties of variability abstractions and
are shown in form of a catalog (Section 4). We �nally show how
the characteristics of the techniques could help to better capture
the implemented variability, opening some potential in reverse
engineering processes (Section 5).

2 VARIABILITY REALIZATION
2.1 Variable Parts in Core-Code Assets
In realistic SPL settings, the implementation of variability in core-
code assets comply, mostly, to a commonality and variability ap-
proach, regardless of the programming paradigm (e.g., object-oriented,
or functional) [9]. Speci�cally, a domain is decomposed into sub-
domains, then within each sub-domain the commonality is factor-
ized from the variability that is used to di�erentiate the software
products within the domain.

The core-code assets consist of three parts: the core, commonali-
ties, and variabilities. The core part is what remains of the system
in the absence of any particular feature [32], i.e., the assets that
are included in any software product of the SPL. A commonality is
the common part for the related variant parts within a sub-domain.
After the commonality is factorized from the variability and imple-
mented it becomes part of the core, i.e., it is buried in the core [9],
except when it represents some optional variability [30]. The variant
parts are used to distinguish the software products in the domain. A
sub-domain can have more than one common and variant part. The
core with the commonalities and variabilities of all sub-domains
constitute the wholeness of core-code assets in an SPL.

The commonalities and variabilities in core-code assets are com-
monly abstracted in terms of variation points (vp-s) and variants,
as solution oriented abstractions. Unlike features in problem space,

vp-s and variants are related to concrete elements in core-code
assets. Originally, a variation point identi�es one or more locations
at which the variation will occur [16]. Respectively, variation points
are known as a manifestation of variability in architecture and de-
sign [12], while the way that a variation point is going to vary is
expressed by its variants. The variable part is like an organizing
container [4]. It contains the location of variability in core-code
assets (i.e., the variation point), the variants, and the used technique
to implement them.

Besides, there are approaches that use the concept of feature
also at the implementation level, e.g., feature modules [2], or the
vp-s and variants at the speci�cation level, e.g., vp-s are known
as the varying place in the FM [10]. In this work, unless explicitly
speci�ed, we consider that vp-s and variants are solution oriented
abstractions, while features are problem oriented abstractions.

2.2 Variability Implementation Techniques
The techniques used for realizing the variability in an SPL are called
variability realization techniques [8, 29], variability mechanisms
[4, 16, 22], or variability implementation techniques [12]. Variabil-
ity realization technique is a general term used for techniques acting
at the architecture, design, or code level, while the term variability
implementation technique will be only used for techniques at the
code level, being the focus of our work. All variability implemen-
tation techniques came from several programming paradigms and
are supported by di�erent constructs in di�erent programming
languages, which in turn o�er di�erent properties.

An SPL is structured around a set of features of several kinds,
which represent di�erent functional or non-functional software
products’ requirements. These features have to be properly imple-
mented and their re�ection to vp-s and variants is manifold in
architecture, design, and especially in implementation. In princi-
ple, one vp is associated with only one technique while the same
technique can be used to implement several vp-s within a domain.
Examples of variability implementation techniques are inheritance,
preprocessors, feature modules or some design patterns.

2.3 Existing Guidance
An important issue for variability implementation is the ability to
evaluate and choose a technique which will ful�ll best some given
variability requirements. Several evaluation schemas of various
techniques are currently available with such aim. They mainly came
from academia in form of frameworks, taxonomies, and catalogs.

Svahnberg et al. [29] group and organize the techniques by two
dimensions of similarity: according to the size of software entities
with variability or variable (components, frameworks, and lines
of code), and their latest binding time. Examples of concrete tech-
niques categorized by this taxonomy have been given, but for the
majority of the other techniques it is up to the user to evaluate and
categorize them.

Patzke and Muthig [25] gather several techniques and evaluate
them by three types of variability (optional, alternative, and multi-
coexisting). They also give a model that captures how and which
technique is appropriate to be introduced [23] depending on the
maturity level of the SPL [1, 6]. Concrete examples on each tech-
nique and other details have been complemented in an enriched set



of techniques and evaluation criteria [24]. Quite similarly, Muthig
and Patzke [22] evaluate a slightly di�erent set of techniques and
criteria. Gacek et al. [13] discuss also a rich set of techniques and cri-
teria. They are organized in a catalog and evaluated by the proposed
criteria. A second catalog gives details on the language support for
each technique. However, their evaluations are diverse, by di�erent
criteria, and for di�erent subsets of techniques.

Coplien addresses many issues for realizing the commonalities
and variabilities [9], although with no direct emphasis on SPL engi-
neering. He introduces several techniques from di�erent program-
ming paradigms for variability implementation, and enlightens how
these techniques factorize the commonality and accommodate the
variability on it.

Apel et al. [2] recently cover the majority of the identi�ed vari-
ability implementation techniques and study a set of criteria for
each of them. Although a deeper discussion about techniques is
given, they are not organized in a catalog nor compared, while only
a subset of previously used evaluation criteria is considered.

The work of Fritsch et al. [12] is of a di�erent nature. They
propose an evaluation framework for techniques. Several evaluation
criteria are determined, but it is up to the developers to evaluate
the techniques by these criteria and to create their own catalog.

As the SPL engineering �eld is making progress, various tech-
niques are regularly identi�ed. Considering all the work mentioned
above, we observe that they cover di�erent subsets of techniques
and use di�erent evaluation methodologies and criteria. They study
them from the perspective of how well they �t to implement some
variability, but not how well they support the capturing of variabil-
ity during a reverse engineering process.

3 DIMENSIONS OF DIVERSITY
A lot of knowledge is gathered about features of software products
in an SPL during domain analysis. Just a part of that knowledge
is modeled in the FM and the rest remains implicit or is kept in
informal ways. Speci�cally, an FM represents only the parent-child
hierarchy of features (specialization/generalization, consist-of ), e.g.,
Directed specialize/generalize EdgeType, (ii) the logical relation be-
tween features (mandatory, optional, or, alternative), e.g., Directed
with Undirected are alternative, and (iii) possibly some cross-tree
constraints (requires, mutual exclusion) that are expressed in propo-
sitional logic (cf. Figure 1).

However, vp-s and variants in core-code assets are characterized
by a richer set of characteristic properties, which are additional
to the documented knowledge of features in the FM. These vp-
s and variants with their properties are important to be captured
during a reverse engineering process, e.g., the logic relation between
variants, their binding time are important to reconstruct the FM and
to resolve variability. For example, in Listing 1 two vp-s and four
variants can be captured. The callback function in line 26-27 is the
vp vp_edgetype and the parameter WEIGHTED in line 2 is captured as
another vp vp_weight. Then, the methods in lines 6-13 and 14-25
are captured as variants v_directed and v_undirected, respectively,
for the �rst vp. Similarly, the true and false values in line 2 are
captured as variants v_weighted and v_unweighted, respectively, for
the second vp.

Table 1: Logic Relations of vp-s and of variants in a vp

Logic Relation Description

Mandatory The vp or variant is part of each software product
Optional The vp or variant can be part of the software prod-

uct or not
Multi Coexisting
(Or)

One or more than one of the variants in a vp can
be part of the software product

Alternative (Xor) Only one of the alternative variants in a vp can be
part of the software product

Table 2: Binding times of variation points

Binding Values Description

Static
binding
(S)

(S) compilation / link
(S) build / assembly
(S) programming
(S/D) con�guration
(S/D) (re) deploy

The variability is resolved early during
the development cycle, i.e., the decision
for a variant in a variation point is
made early/statically.

Dynamic
binding
(D)

(D) runtime
(start-up)
(D) pure runtime
(operational mode)

The variability is resolved later during
the development cycle, i.e., the decision
for a variant in a variation point is
made as late as possible/dynamically.

3.1 Characteristic Properties of Variable Parts
In the following, we gather the important characteristic properties
of vp-s and variants that should be considered during the capturing
of variability in core-code assets. These properties are diverse, as
they depend on the used implementation techniques.

Logic Relation. Similar to the possible relations between features
in an FM (cf. Figure 1), the logic relations of vp-s and of their
variants are shown in Table 1. A single technique can o�er at least
one of these logical relations, e.g., the inheritance can be used for
implementing the alternative variants, overriding for implementing
the multi-coexisting variants, or aggregation for optional variants.
Concretly, in Listing 1, we capture the alternative logical relation
between variants v_directed and v_undirected, which is realized
by the strategy pattern.

Binding Time. Within a domain, vp-s may require being resolved
at di�erent development phases. Thus, each vp is associated with
a binding time, i.e., the time when the variability is decided or the
vp is resolved with its variants, and it should be supported by the
chosen variability implementation technique. A vp can be resolved
early during the development cycle (e.g., when the decision for a
variant is made at compile time), or later during the development
cycle (e.g., dynamically, at runtime) [6]. The binding time here is
the time when the variability should be resolved and should not
be confused with the time when it will be introduced. As for the
common kinds of binding times, a taxonomy is given by Capilla
et. al and Bosch et. al [7, 8]. They are also shown in Table 2. For
example, in Listing 1, we can capture that the vp_edgetype is bound
to one of its variants, e.g., v_directed, during runtime.

Defaults. Some variability may not be subject to frequent varia-
tions among the majority of software products in an SPL. In such
cases, one of the variants on a vp can be set as its default variant
[9]. For example, we capture v_unweighted as the default variant of



Table 3: Granularity of variants

Granu-
larity

Values Description

Coarse-
grained

Component, framework
with plug-ins as variants,
�le, package, class, inter-
face, frame, feature mod-
ule, etc..

The speci�ed variability has an
e�ect in the coarsest elements of
the implementation structure.

Medium-
grained

Method, �eld inside a
class, aspect, delta mod-
ule, frame, etc..

The speci�ed variability has an
e�ect in the medium sized el-
ements of the implementation
structure.

Fine-
grained

Expression, statement,
block of code within a
method, frame, etc..

The speci�ed variability has an
e�ect in the �nest grained el-
ements of the implementation
structure.

vp_weight. It is realized by setting the argument w: Int = 1 (line
27).

Granularity. A vp or variant in the core-code assets can have
di�erent granularities depending on the size of variability and the
used technique (cf. Tbl. 3). They can represent a coarse-grained
element that is going to vary e.g., a �le, package, class, interface;
a medium-grained element e.g., a method, a �eld inside a class; or
a �ne-grained element e.g., an expression, statement, or block of
code. For example, we should be able to capture the v_directed on
method level or the vp_weight as a parameter.

Evolution. Depending on whether the speci�ed variability in the
FM is meant to be evolved with new features, vp-s can be open
or closed, i.e., to be extended with new variants in the future or
not, respectively. For example, we capture a vp as closed when
it is implemented as an enum type in Java, and open when it is
implemented simply as an abstract class.

Quality Criteria. Variability implementation techniques are sup-
ported by di�erent constructs among potentially various program-
ming languages, thus providing di�erent qualities for the resulting
implemented variability. A dominant quality criterion is the ability
to shape the code (i.e., its variability) in terms of features as cohe-
sive reusable units so to handle more easily the variability among
distinct abstraction levels. Several other quality criteria are intro-
duced in the literature [2, 12, 13, 24]. What we consider the most
important ones for evaluating techniques are shown in Table 4.
For example, using the strategy pattern requires more preplanning
e�ort than using parameters in Listing 1.

3.2 Classi�cations of Techniques
Due to the evolving diversity of variability implementation tech-
niques, researchers have grouped them di�erently and mentioned
dissimilar subsets of them. In general, implicitly or explicitly, all vari-
ability implementation techniques are found to be classi�ed based
on three orthogonal sub-dimensions: (i) traditional or emerging, (ii)
language-based or tool-based, and (iii) annotative or compositional.

The �rst sub-dimension depends on the time when a technique
has emerged and whether it is dedicated to the variability imple-
mentation in core-code assets.

Traditional techniques. They have emerged and evolved sepa-
rately and quite before the emergence of the SPL paradigm. They
encompass methods that are used for single system development
but provide the necessary mechanisms to be good candidates for
SPL engineering (e.g., inheritance, overloading, generic types). Con-
sequently, in all these techniques, the concept of feature does not
have a �rst-class representation in implementation.

Emerging techniques. On the contrary they have emerged with
the SPL engineering advances. Here, the concept of feature is a �rst-
class citizen at the code level. In our study, all these techniques,
e.g., frames [5], feature modules [2], delta modules [27], come from
academia.

Some of the techniques only depend on language mechanisms
while others rely on extra tool support. Based on [2], we introduce
the following sub-dimension of classi�cation:

Language-based techniques. The variability is realized and re-
solved by di�erent and dedicated language constructs or mecha-
nisms. Examples of these techniques are inheritance, feature mod-
ules, aspects, and delta modules.

Tool-based techniques. In this case specialized tools are used to
identify and resolve variability among the software assets. Although
they are conceptually independent of any given language and or-
thogonal to its constructs, currently they are only supported by
speci�c programming environments (e.g., frames [5]).

The third sub-dimension is about the now common distinction
on the way that variability is represented and resolved at code level.

Annotative techniques. The speci�ed features are realized in core-
code assets as a whole and the variants are annotated by a tech-
nique in order to include or exclude them during variability resolu-
tion. Di�erent variability implementation techniques have di�erent
means for realizing annotations, e.g., preprocessor directives in C,
or simple tagging approach [15], but this falls into the tool-based
approaches and not techniques. When an annotative technique is
used to remove the unneeded variants from core-code assets, it
supports negative variability.

Compositional techniques. Variants aim at having a cohesive or
modular representation at code level, e.g., in form of components,
plug-ins, classes, packages, modules, aspects, deltas, subjects, etc.
The intention is that a �nal product is derived by simply attaching
or composing any of these modular units or variants in the base
assets as part of core-code assets that are included in all software
products. Therefore, these techniques are known to support positive
variability, e.g., the technique behind feature modules. In the last
sub-dimension, negative or positive variability may sometimes be
orthogonal to this classi�cation (e.g., deltas [27]).

Another very notable set of techniques is the one that follows
a generative approach [10]. These techniques have the ability to
generate software products from the generic assets. Respectively,
they may use a description in a higher abstraction language level,
such as a Domain Speci�c Language (DSL), for deriving software
products [33]. We see these techniques as orthogonal to our issue
of capturing variability.



Table 4: Quality criteria of variability implementation techniques

Quality Description

Preplanning e�ort The required preplanning e�ort to introduce and use a variability implementation technique.
Visibility of vp Variation points in code can be explicit, implicit, e.g., in clonning technique[24], or ambiguous, i.e., in traditional

techniques when the same mechanism is used for implementing the variability and the functionality of software.
Information hiding It enables the modular reasoning of variability in implementation through separating variable modules in internal

and external parts.
Uniformity Some techniques which are used for variability in the implementation level can also be applied to realize the variability

to the other not code artifacts among the other abstraction levels.
Separation of Concerns (SoC) While the main concerns in an SPL development are features, SoC is related here to the ability to shape the code in

terms of (separate) features
Traceability The ability to trace features in their development lifecycle, speci�cally with the implemented artifacts.
Scalability The ability of a technique to support the requirements during an extension/evolution of variability.

4 CATALOG BUILDING METHOD
In this section we describe both the building method and resulting
catalog of variability implementation techniques regarding the
characteristic properties that can be captured.

4.1 Covered Techniques
To have an up-to-date catalog of implementation techniques, we
collected the identi�ed variability implementation techniques so
far. They are diverse and spread among di�erent research works
and shared experiences, forming a signi�cant set. It must be noted
that we did not follow a systematic process in our literature re-
view, taking the existing classi�cations and related references as
starting points for �nding relevant research publications. Then,
we decided to consider only those techniques that are used in a
closed-world SPL engineering process [18], i.e., when a technique is
used for implementing a set of features with a closed view within a
domain. Di�erent programming languages support subsets of them,
and even for a single technique, di�erent mechanisms or language
constructs can be used. We excluded techniques like components
and frameworks as they already use the considered closed-world
techniques to achieve their variability.

4.2 Evaluation Process
We then rely on the previously introduced dimensions with their
subdimensions as their evaluation criteria. Next we performed
the evaluation of each technique by applying the following two
methods in parallel.

First process. We used four small case studies from di�erent do-
mains to experiment with several techniques and vp-s character-
istic properties. Those case studies are: Arcade Game Maker SPL
[28], Microwave Oven SPL [14], Expressions SPL [21], and Graph
SPL [2, 20] 2. Their domains are quite well understood and used by
the SPL community. For their implementation we used the Scala
language, which supports both the object-oriented and functional
paradigms and has rich constructs for modularization of features.
This enables us to cover more technical choices with only a single
implementation language.

2Their implementation are available on https://github.com/ternava/
variability-cchecking

Second process. We built an informed opinion for each technique
and some of their criteria from the existing research works, some
of them are presented in section 2.3. These works mainly evaluate
a technique using Java and C++ language constructs or extensions
of these languages, e.g., AspectJ. We thus examined manually the
realized evaluations and the obtained results by the others. Similar
to us, most of them use three evaluation levels for a criteria, e.g.,
good support, possible support, and no support. After the exami-
nation step, we compared the results from these works, especially
when they were considering the same criteria for a same technique.
Whenever two di�erent works do not agree on a value for a speci�c
criterion, we used one of our case studies to evaluate it, and we
studied the usage of that technique. As a result, each technique
was systematically evaluated by the mentioned criteria in the three
classi�cation dimensions.

4.3 Resulting Catalog
The evaluated techniques are shown organized in the proposed
catalog in Table 5 3. Techniques are gathered in two main groups,
those that provide ad-hoc reuse or methodological reuse. We did
not want to exclude the most applied techniques, e.g., copy-and-
paste or cloning, from our classi�cation. These techniques have
well-known drawbacks and may not scale due to their ad hoc form
of reuse. However, this is strongly related to the maturity levels
of an SPL [1, 6] and practical for building quick solutions [23],
which can be refactored later. The other techniques encourage the
methodological reuse as the main ingredient for a sustainable SPL.

The catalog contains two Legends. The �rst legend is used to
explain the evaluation results and the second one, i.e., Legend B, is
used to explain our evaluation method using previous works. Some
evaluation values to a criteria are associated with a reference work,
using numbers, to show when a result is in�uenced by an existing
work and by which one. For example, the technique of Frames for
the criterion of Binding Time (see the colored intersection in Table
5) is evaluated as o�ering static binding of variants. This result is
supported by three references, i.e., Gacek (2001) [13] and Patzke
(2003, 2011) [24, 26], refereed by numbers 2, 5, and 7 respectively.
In Table 5 only some of the main works that we used are shown,
as they cover a considerable set of techniques. These references

3See also in our repository https://github.com/ternava/expressions_spl/wiki.

https://github.com/ternava/variability-cchecking
https://github.com/ternava/variability-cchecking
https://github.com/ternava/expressions_spl/wiki


can be used to show how the evaluated techniques and the used
criteria are distributed among the previous research works.

5 CAPTURING VARIABILITY
In the following we illustrate and compare the capture of variability
for the Graph SPL (cf. Figure 1) in two implementation cases, when
variability is implemented by using the traditional techniques of
strategy pattern with parameters (cf. Listing 1) and the emerging
technique of feature modules (cf. Listing 2). To save space, in List-
ing 2 we have shown only the main organization of feature modules.
Their complete implementation is available elsewhere [2].

1 l a y e r Bas i cGraph ;
2 c l a s s Graph {
3 V e c to r nodes = new V e c to r ( ) ;
4 V e c to r edges = new V e c to r ( ) ;
5 Edge add ( Node n , Node m) {
6 Edge e = new Edge ( n , m) ;
7 nodes . add ( n ) ;
8 nodes . add (m) ;
9 nodes . add ( e ) ;

10 return e ;
11 } / ∗ . . . ∗ /
12 c l a s s Edge { / ∗ . . . ∗ / }
13 c l a s s Node { / ∗ . . . ∗ / }
14 }
15
16 l a y e r D i r e c t e d ;
17 c l a s s Graph { / ∗ . . . ∗ / } / ∗ . . . ∗ /
18
19 l a y e r U n d i r e c t e d ;
20 c l a s s Graph { / ∗ . . . ∗ / } / ∗ . . . ∗ /
21
22 l a y e r Weighted ;
23 c l a s s Graph { / ∗ . . . ∗ / }
24 c l a s s Edge { / ∗ . . . ∗ / }
25 c l a s s Weight { / ∗ . . . ∗ / }

Listing 2: The Graph SPL using feature modules

Capturing Vp-s and Variants. In Section 3, we have shown how
we capture the variability in terms of vp-s and variants from List-
ing 1. The whole captured variability is given again in Table 6. The
catalog of techniques can then help one to capture the right charac-
teristic properties for each used technique. For example, the strategy
pattern (cf. Table 5 ) can o�er an alternative relation between vari-
ants, runtime binding, default variants, and the possibility to add
new variants during the evolution. All these properties are consis-
tent with the captured variability of vp_edgetype, and its variants,
which are implemented by the strategy pattern (cf. Table 6).

Capturing Features. In Listing 2 the code is shaped in terms of
features by using the technique of feature modules (called layer).
In this implementation, each problem space feature (cf. Figure 1) is
implemented by a feature module (cf. Listing 2), while their map-
ping is ensured by their common names. The module BasicGraph

is the base module where can be added other feature modules as
variants during the product derivation. The variability that can be
captured in Listing 2 is the base module, which is mandatory, and
3 variants (Directed, Undirected, and Weighted) that are optional
with the same binding time (deployment), granularity (feature mod-
ule), and no evolution or default concepts. Moreover, the feature
Unweighted is made default by being part of the base module. In
addition there is no concept of vp-s.

To re�ect on the di�erences between capturing vp-s with vari-
ants and features in core-code assets, we show that in Listing 1
we can capture, still, features instead of vp-s with variants. For

Figure 2: The reconstructed FM from features in Listing 2

example, feature Directed can be captured in lines 6 – 7, 11 – 13.
Feature Weighted can be captured in lines 2, 6, 8 – 10, 14, 17 – 20.
If we compare these lines of code with the lines of the captured
vp-s and variants in Table 6, it is obvious that capturing vp-s with
variants and features is di�erent. Thus, by capturing features in
core-code assets we capture only those lines of code that implement
a problem oriented feature, while by capturing vp-s and variants
we capture the implementation technique that gives a rich set of
properties to them (cf. Table 6).

Reconstructing the Feature Model. As for reverse engineering, the
implementation techniques can be assessed regarding their support
to reconstruct an FM from the captured variability in core-code
assets. This also points out the di�erences between the captured
variability in terms of features and vp-s with variants.

For example, from the captured variability in Table 6 we can
reconstruct an FM similar to the original FM of Figure 1 using the
domain speci�c language (DSL) we previously proposed [30]. It
notably provides mechanisms to capture and document the imple-
mented variability in terms of vp-s and variants, thus helping to
reconstruct a variability model. The only di�erence between these
feature models is that feature Unweighted is realized as a default
variant v_unweighted. The successful reverse engineering of the FM
from this captured variability is made possible mainly because it is
known the logical relations between vp-s and variants (cf. Table 1).
The other captured properties can be used for other reasons, e.g.,
the binding time during the product derivation.

Similarly, in Figure 2 is shown the reconstructed FM from the
captured features and their properties in Listing 2. This recon-
structed FM is hardly similar to the original FM in Figure 1 because
the feature modules expose a single relation logic between them.
These examples indicate that, depending on the implementation
technique, we will be able to capture variability and reconstruct a
good approximation of the FM, with the original one, or not.

6 DISCUSSION AND FUTUREWORK
In this paper, we analysed the variability implementation tech-
niques and their diverse properties that can be captured during
reverse engineering (I3). In particular, we showed that capturing
the variability in core-code assets may depend on the implementa-
tion technique (I1). We studied the diversity of some well known
techniques and provided a catalog that classi�es them. As a result,
each technique supports the capturing of variability in terms of
features or vp-s with variants. In contrast to features, vp-s with
variants can have di�erent properties which depend on the used
technique. By capturing their properties we could reconstruct a bet-
ter approximation of the FM, from the core-code assets, compared
with the original one. We also showed that both features and vp-s
with variants can be used to capture variability in core-code assets
but, although their meaning overlaps, they are not the same (I2).
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Table 6: Capturing the implemented variability of Graph SPL in Listing 1

VP-s Lines Granularity Variants Lines Granularity Binding time Logic relation Default Evolution

vp_edgetype 26 – 27 argument v_directed 6 – 13 method runtime alternative No Open
v_undirected 14 – 25 method No

vp_weight 2 parameter v_weighted 2 value programming alternative No Close
v_unweighted 2 value time Yes

We used this analysis on the diversity of variability implemen-
tation techniques to build a framework for capturing and trac-
ing the implemented variability [30]. The framework is imple-
mented as an internal domain speci�c language (DSL) in Scala
and uses re�ection to capture variability in terms of vp-s and vari-
ants. It is mainly applicable for capturing the variability when
it is implemented using traditional techniques, e.g., inheritance,
design patterns. The DSL, our four case studies, and some exam-
ples of using the DSL to capture their variability are available at
https://github.com/ternava/variability-cchecking.

We are planning to demonstrate in more details the usage of the
catalog. In particular, we are going to investigate how to capture
the vp-s and variants and reconstructing the feature model in real
case studies where several variability implementation techniques
are used in combination, e.g., inheritance, generic types, design
patterns. We plan also to study the usage of the catalog to choose
a technique for refactoring some variability in form of a vp and
variants from a set of product variants during their migration as
an SPL. We expect that the evaluation and choice of a variability
implementation technique will also be made based on how well it
is going to support a reverse engineering process, i.e., on how easy
it will be to reconstruct variability models from core-code assets.
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