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Abstract

When the density of a Poisson process is integrable various expressions published in the literature

are incorrect. This is especially the case of the probability distribution of the distance between an origin

and the following points of the process. The first purpose of this paper is to explain why the integrability

of the density changes the situation. The second is to discuss various consequences of this fact on

the probability distribution of random variables extracted from the process. Computer experiments are

presented and are in excellent agreement with theoretical results. Some extensions of the same problem

concerning renewal processes are discussed.
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d’Électricité, Plateau de Moulon, 3 rue Joliot–Curie 91192, Gif sur Yvette, France. The L2S is associated with the University

of Paris–Sud, France. E-mail: bernard.picinbono@lss.supelec.fr, .

February 2, 2018 DRAFT



2 IEEE TRANSACTIONS ON INFORMATION THEORY ,

I. INTRODUCTION

Poisson processes play an important role in many areas of Applied Probability, Physics, and Information

Sciences. They are defined and studied in various books corresponding to quite different approaches and

among them we can cite [1], [2], [3], [4], [5]. There are also many papers discussing the use of Poisson

processes in communication theory [6], [7], [8], [9], [10]. This is especially important in the context of

optical communications at very low level of intensity. Indeed in this case the only information available

is the time instants when photons are detected [11], [12].

The purpose of this correspondence is to show that the expressions of some probability distributions

associated with a Poisson process are quite different depending on whether the density of this process

is integrable or not. Various expressions given in the literature which are valid when the density is not

integrable, become incorrect when the density is integrable and this situation is very common. The simplest

example appears for Poisson processes in time when the density is limited to a given time interval, as in

any physical situation. In order to understand where the problem is coming from, we present in Section

II some known properties of Poisson processes with non-integrable density. In Section III the problem

introduced by the fact that the density is integrable is discussed and explained. Some consequences on

the probability distributions of distance between points are studied and various numerical calculations are

presented in order to illustrate the results. Finally some extensions to renewal processes are presented and

computer experiments on Poisson and renewal processes show an excellent agreement between theory

and experiment.

II. REVIEW OF KNOWN RESULTS FOR NON-INTEGRABLE DENSITY

Let us summarize the most important facts concerning Poisson processes used below.

A. Number of Points

A point process (PP) is a random distribution of points (in general time instants) xi. It is a Poisson

process if the random variables (RV) equal to the number of points in non-overlapping time intervals

are independent. Such a process is completely characterized by its density λ(x). In all that follows it is

assumed that λ(x) < +∞. It results from the independence assumption that the number N(x1, x2) of

points in the interval [x1, x2[ is a Poisson RV characterized by its mean value m(x1, x2) given by

m(x1, x2) =

∫ x2

x1

λ(x)dx, x1 < x2. (1)

It is useful for what follows to introduce the mean value m(x) = m(0, x) where 0 is an arbitrary origin.

This yields

m(x1, x2) = m(x2)−m(x1). (2)
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In most cases the density λ(x) is not integrable, which means that m(+∞) is infinite. This is especially

true for stationary Poisson processes for which λ(x) is constant and m(x) = λx. We shall see that this

property greatly simplifies the calculations.

B. Position of Points

Another approach consists in defining the PP by the position of its points [1], [6] - [10]. Let 0 be

an arbitrary origin and Xi be the RV equal to the distance between the origin and the ith point of the

Poisson process posterior to this origin. By construction we have 0 < Xi < Xj if i < j. Consider now

the random vector Xn with components Xi, 1 ≤ i ≤ n. The probability density function (PDF) of Xn

is given by

pn(xn) = exp[−m(xn)]
n∏
i=1

λ(xi) (3)

when x1 < x2 < ... < xn and zero otherwise. This expression appears in [1], [2], [3] and in similar

forms in [6]-[10]. Note that for n = 1 this expression becomes

p1(x) = λ(x) exp[−m(x)], (4)

which yields the classical exponential distribution when λ(x) = λ or m(x) = λx.

The principle of the proof of (3) appearing almost in the same form in [1], [2], [3], [6] is given in

Appendix I where it is also shown that if M
4
= m(+∞) is not finite the integral of (3) is 1, as expected

for any PDF.

From (3) we deduce the marginal distribution pn(xi) of Xi defined by

pn(xi)
4
=

∫
pn(xn)dx1...dxi−1dxi+1...dxn. (5)

It is shown analytically in Appendix II that pn(xi) is independent of n and can be written as

pn(xi) = p(xi) = λ(xi) exp[−m(xi)]
mi−1(xi)

(i− 1)!
. (6)

This expression can be shown directly by using the property of independence of the number of points

in non-overlapping intervals. Indeed the term λ(xi)dxi is the probability of having at least one point in

the interval [xi, xi + dxi[ and the rest of the expression (6) is the probability of having i − 1 points in

the interval [0, xi[. It is easy to verify that if λ(x) is not integrable, the integral of (6) is equal to 1.

Let us now consider the marginal PDF pn(xi, xj) i < j < n. From an obvious calculation or by using

a direct reasoning similar to the one indicated above we deduce that pn(xi, xj) = p(xi, xj) with

p(xi, xj) = λ(xi)λ(xj) exp[−m(xj)]
mi−1(xi)

(i− 1)!
.
mj−i−1(xi, xj)

(j − i− 1)!
. (7)
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In particular for successive points we obtain

p(xi, xi+1) = λ(xi)λ(xi+1) exp[−m(xi+1)]
mi−1(xi)

(i− 1)!
. (8)

From the marginal PDFs already calculated we deduce the conditional PDFs

pn(xj |xi) = p(xi, xj)/p(xi) = λ(xj) exp[−m(xi, xj)]
mj−i−1(xi, xj)

(j − i− 1)!
. (9)

For successive indices this becomes

pn(xi+1|xi) = p(xi, xi+1)/p(xi) = λ(xi+1) exp[−m(xi, xi+1)]. (10)

We have of course ∫ ∞
xi

pn(xi+1|xi)dxi+1 = 1. (11)

Markov Property

The conditional probability of the RV Xi+1 conditional to a given value of Xi, or Xi = xi is defined

by p(xi+1)/p(xi). Using (3) yields that this ratio is equal to p(xi+1|xi) given by (10). This shows that

the successive RVs Xn are a Markov process with the transition probability (10).

C. Time Intervals

Another possible approach of a PP is to consider the distances between successive points, sometimes

called life times when x is the time. These distances Yi are related with the RVs Xi by Yi = Xi−Xi−1

and Y1 = X1. These RVs can be considered as the values of a discrete time positive signal. By an obvious

transformation we deduce the PDF of the Yis which is

p(yn) = λ(y1)λ(y1 + y2)...λ(y1 + y2...+ yn) exp[−m(y1 + y2 + ..+ yn)]. (12)

This is especially interesting in the stationary case where λ(x) = λ. In this situation the life times Yi

are a sequence of IID random variables with an exponential distribution defined by λ. This means that

a stationary Poisson process is a renewal process with an exponential distribution [4].

However in the nonstationary case the PDF (12) cannot be factored and this means that the successive

life times are not independent RVs. Then the property of independence of the number of points in distinct

intervals characteristic of Poisson processes is no longer valid for the intervals between points. This means

that a non-stationary Poisson process is not a non-stationary renewal process characterized by the fact

that the life times Yi are independent but not identically distributed.

It is easy to verify that the RVs Yi do not, in general, constitute a Markov process. This shows that it

is much more convenient to work with the distances Xi than with the life times Yi.
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III. THEORETICAL RESULTS WITH INTEGRABLE DENSITY

A. General Expressions

All the results of the previous section are consequences of (3). We shall see that this basic expression

is no longer valid when the density λ(x) is integrable. Thus we must find another expression replacing

(3) in this situation.

Let us illustrate the problem in the very simple case of n = 1. The PDF p1(x1) is given by (4) and

its integral is obviously 1− exp(−M) where

M
4
=

∫ +∞

0
λ(x)dx < +∞. (13)

Thus the integral is equal to 1 only when M is infinite. As a consequence for finite M the function

p1(x1) of (4) is not a PDF.

This could be related with the concept of defective RVs introduced in [13], [14]. This concept, however,

does not play any role in the following calculations. Readers interested in this question can look at p.

127 of [13] or p. 270 of [14].

The same situation appears for pn(xn) of (3) and its integral, denoted Bn, is no longer equal to 1 but

to In(0), where In(x) is defined and calculated in Appendix III. This yields

Bn = 1− exp(−M)

[
1 +

M1

(1)!
+ ...+

Mn−1

(n− 1)!

]
. (14)

This relation shows clearly that if M is infinite Bn = 1, and we return to the results of the previous

section.

In order to obtain a normalized PDF it could be sufficient to replace (3) by

pn(xn) =
1

Bn
exp[−m(xn)]

n∏
i=1

λ(xi). (15)

But this procedure is quite artificial and does not at all explain why the reasoning of Appendix I which

shows (3) is not valid when the density is integrable.

For this purpose note first the meaning of the quantity Bn. Let N be the RV equal to the number of

points of the Poisson process posterior to the origin 0. It is a Poisson RV with mean value M because

of (13). As a consequence we deduce from (14) that

Bn = 1− P [N ≤ n− 1] = P [N ≥ n]. (16)

Then the parameter Bn appearing in (15) is the probability that there are at least n points of the Poisson

process posterior to the origin 0. When M is infinite this probability is of course equal to 1 because,

whatever n, there are, with probability 1, at least n points of the Poisson process posterior to 0.
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Let us now introduce the following time intervals.

Ī1 = [0, x1[ , Īk = [xk−1 + dxk−1, xk[ , 1 < k ≤ n, (17)

J̄k = [xk, xk + dxk[ , 1 ≤ k ≤ n. (18)

Let N(K) be the number of points of the Poisson process in any interval K. We can associate with the

previous intervals the following events

An =
n⋂
k=1

[N(Īk) = 0] , Bn =
n⋂
k=1

[N(J̄k) ≥ 1]. (19)

Let now En(xn, dxn) = En be the event An ∩ Bn. The principle of reasoning of Appendix I is to say

that pn(xn)dxn = P [En]. But the event En has no meaning if there is less than n points posterior to

the origin 0. Thus pn(xn)dxn is the conditional probability

pn(xn)dxn = P [En|(N ≥ n)], (20)

where N is the number of points posterior to the origin 0, i.e. belonging to the interval [0,+∞[. This

conditional probability can be written as

P [En|(N ≥ n)] = P [En ∩ (N ≥ n)]/Bn, (21)

because Bn is the probability that N ≥ n. We also have

P [En ∩ (N ≥ n)] = P [En]P [(N ≥ n)|En]. (22)

But P [(N ≥ n)|En] = 1 because if En is realized there are at least n points posterior to the origin.

Finally we deduce from the Poisson assumption that

P [En] = P [En(xn,xn + dxn)] = exp[−m(xn)]
n∏
i=1

λ(xi)dxn, (23)

and inserting this expression in (21) yields (15). Thus the factor Bn, defined by (14) and appearing in

(15) in order to ensure the normalization of the PDF, is not at all artificial but justified by the fact that

pn(xn) is a conditional PDF. In order to specify this fact it could be convenient to write this PDF as

pn,Xn
(xn|N ≥ n) which is the conditional PDF of the random vector Xn with the condition that N ≥ n.

This notation, however, has a complicated form and for simplification we admit that all the PDFs noted

pn are conditional PDFs.
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B. Marginal Probability Density Functions

These PDFs are obtained by inserting (15) into (5). It is clear that when λ(t) is integrable, the integration

with respect to xi+1, xi+2, ..., xn will change the result and then (6) is no longer valid.

For i = n there is no such integration and the use of (3) or (15) will only introduce the factor 1/Bn

ensuring the normalization. Thus we have

pn(xn) =
1

Bn
λ(xn) exp[−m(xn)]

mn−1(xn)

(n− 1)!
. (24)

On the other hand if i < n there are n− i integrations with respect to the variables xk, i+ 1 ≤ k ≤ n =

i+ (n− i) and the result is

pn(xi) =
1

Bn
Ki−1(0, xi)λ(xi)In−i(xi), (25)

where Ki(a, b) and In(x) are defined in Appendices II and III respectively. By using (51) and (56) we

obtain for 1 < i < n

pn(xi) = λ(xi)
mi−1(xi)

(i− 1)!
exp[−m(xi)]× hn(xi), (26)

hn(xi) =
1

Bn

{
1− e−[M−m(xi)]cn−i[a(xi)]

}
, (27)

where a and cn(a) are defined by (54) and (55) respectively. For i = n = 1 the result is given by (24).

Note that pn(xi) = p(xi)hn(xi), where p(xi) is given by (6), and corresponds to the case where λ(x)

is not integrable. This means that hn(xi) is the correction factor due to the fact that λ(x) has a finite

integral. Note also that, contrary to (6), this PDF is no longer independent of n. Finally note that if

M →∞ we return to (6).

It is especially interesting to study the PDF pn(x1), written simply pn(x). It is given by

pn(x) = λ(x)e−m(x) 1

Bn

{
1− e−[M−m(x)]cn−1[a(x)]

}
. (28)

It is clear that for a stationary Poisson process of density λ, M is infinite, which yields pn(x) =

λ exp(−λx), PDF obviously independent of n.

Consider now the case of a time-limited Poisson process. This means that its density λ(t) is bounded

and zero outside an interval [0, T ]. This ensures that the density is integrable. The same kind of assumption

is introduced in [6] and [10]. In some sense this assumption corresponds to any experimental situation

with Poisson processes because any experiment has a beginning (0) and an end (T ). Note that if n >> 1

the PDF pn(x) satisfies pn(T ) = 0. Indeed it results from (54) that a(T ) = 0 which implies hn(T ) = 0.

Let us now present numerical results calculated with some specific examples. First we assume that the

density λ(x) is constant in the interval [0, T ] and 0 otherwise. This situation is sometimes specified by

February 2, 2018 DRAFT



8 IEEE TRANSACTIONS ON INFORMATION THEORY ,

the term of semistationarity because it corresponds to the case of a stationary Poisson process of density

λ observed in a finite interval [0, T ]. In this case the parameter M of the previous calculations is simply

λT . This quantity is always finite but there are three different situations. If λT >> 1 we are in the

case where the expressions valid for stationary processes can be applied because the factor exp(−M) is

almost equal to zero. In the opposite case if λT << 1 the interval [0, T ] contains only 0 or 1 point and

the problem disappears because the parameter Bn defined by (14) and used in (17) is arbitrarily small.

It remains the intermediary situation which will now be analyzed. For simplification of the calculation

we assume that λ = T = 1 = λT .

The results of the calculation of pn(x) appear in Figure 1. The PDF pn(x) is represented in semilog-

arithmic coordinates for various values of n. As p1(x) is deduced from p0(x)
4
= λ exp(−λx) by a

simple normalization factor, the corresponding curves (0 and 1) are parallel straight lines. Furthermore

p1(x) > p0(x) because the first is normalized in [0,∞[ and the second in [0, T ]. The other six curves

correspond to n = 2, 23, · · · , 7. It is easy to verify that they satisfy pn(T ) = 0 and also that they are

normalized functions of x.

It is worth pointing out that when n→∞ the density pn(x) tends to a Dirac distribution. Indeed it is

a PDF of a RV with mean value and variance tending to 0. This has an evident interpretation: if there is

an infinite number of points in [0, T ] the first after the origin is at the origin.

In order to amplify the phenomenon let us now consider the case where the density of the Poisson

process is zero outside the interval [0, T [ and in this interval is the increasing exponential function

λ0[exp(cx/T ) − 1]. Analogous functions are used in frequency modulation or to design some radar

pulses. Using the previous expressions we calculate the PDF pn(x) for 1 ≤ n ≤ 7. The results appear in

Figure 2 with the parameters λ0 = 1, T = 1, and c = 1.25. The density λ(x) is also represented in this

figure. The general property pn(T ) = 0 appears clearly in the figure. This is the main difference with

p1(x) that does not satisfy this relation according to (24). The tendency to the Dirac distribution appears

for the same reason as above.

Let us now consider the case of the two dimensional PDF pn(xi, xj). If j = n we can use the same

argument as previously and the result is

pn(xi, xn) =
1

Bn
p(xi, xn), (29)

where p(xi, xj) is given by (7). On the other hand if j < n there are n− j integrations with respect to

the variables xk with k ≥ j + 1 is such a way that

pn(xi, xj) = p(xi, xj)hn(xj), (30)

where p(xi, xj) and hn(xj) are given by (7) and (27) respectively.
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For j = i+ 1 we obtain

pn(xi, xi+1) = p(xi, xi+1)hn(xi+1), (31)

where p(xi, xi+1) is given by (8).

As above this yields the conditional PDFs and in particular we have

pn(xi+1|xi) = λ(xi+1)e
−m(xi,xi+1) hn(xi+1)

hn(xi)
. (32)

If M →∞ the last term tends to 1 and we return to (10). Similar expression has recently been established

for a simple case [15]. Finally it is easy to verify that

pn(xi+1|x1, x2, ..., xi) = pn(xi+1|xi), (33)

which characterizes the Markov property.

C. Conditioning on fixed values of N

Instead of using the condition N ≥ n in order to arrive at the PDF given by (15), it is possible to

introduce the condition N = n. To avoid confusion with the previous case we note qn(xn) the conditional

PDF pn(xn|N = n). This requires of course that the density λ(t) is integrable. This situation corresponds

to the calculation presented in Section II of [6]. This assumption means that there is no point of the

Poisson process posterior to xn. A reasoning similar to the one presented in Appendix I yields the result

appearing in Eq. (4) of [6], or with slightly different notations

qn(xn) = exp(−M)
n∏
i=1

λ(xi) (34)

for x1 < x2 < .... < xn and 0 otherwise. Let us show that this is not a PDF. Indeed the integral I of

this function is

I = exp(−M)
Mn

n!
= P (N = n) (35)

which is not equal to 1. Using the same reasoning as for (20)-(23) we find that the true PDF is

qn(xn) =
n!

Mn

n∏
i=1

λ(xi). (36)

Let us present some consequences of this result. If n = 1 we obtain q1(x) = (1/M)λ(x). If furthermore

we introduce the assumption of semistationarity which means that λ(x) = λ for 0 ≤ x ≤ T and 0

otherwise we obtain M = λT and thus q1(x) = 1/T . This is the well known result which states that if

there is 1 point of a stationary Poisson process in an interval, this point is uniformly distributed in this

interval. Finally the marginal PDF qn(x1) defined as in (28) is

qn(x) = λ(x)
n

Mn
[M −m(x)]n−1 . (37)
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In the semistationary case considered just above this becomes

qn(x) =
n

Tn
[T − x]n−1 . (38)

It can be verified that it is the PDF of the distance between the origin and the first point posterior to it

when the RVs Xi are IID and uniformly distributed in [0, T ]. This property of points of Poisson processes

for a fixed value of N (N = n) is well known.

IV. EXTENSIONS TO RENEWAL PROCESSES

A renewal process (RP) is a PP in which the distances Yi between successive points are positive IID

random variables [4]. Such a process is then defined by the PDF f(x) of these distances. We shall now

consider RPs with a finite duration. We start from an origin considered as point of the process and we

consider a sequence of IID RVs Yi. The PP is limited to the interval ]0, T ] and all the points outside of

this interval are erased.

We limit our discussion to the calculation of the PDF pn(x) of the distance between the origin and

the first point of the process posterior to this origin with the condition that there are at least n points in

the interval ]0, T ].

For this purpose let πn(x) and bn(x) be the probabilities of having n points or at least n points in

]0, x] respectively. They are related by

bn(x) = 1−
n−1∑
i=0

πi(x) (39)

and b0(x) = 1. Finally let Bn be the probability that there are at least n points in ]0, T ], or Bn = bn(T ).

It is shown in Appendix IV that for n > 1

pn(x) = pn(x|N ≤ n) = (1/Bn)f(x)bn−1(T − x), (40)

where f(x) is the PDF of the distance between successive points when there is no time limitation of

the process. The division by Bn ensures that pn(x) is a normalized function. For n = 1 we have simply

p1(x) = (1/B1)f(x).

As π0(0) = 1 and πk(0) = 0 for k > 0, we deduce that bn(0) = 0 and then pn(T ) = 0, which is the

same result as the one indicated above for Poisson processes.

In order to illustrate this result let us consider the case of a renewal process sometimes called an

Erlang process. It is obtained by deleting regularly one point over two of a stationary Poisson process.

Thus the PDF function of the distances between points is f(y) = λ2y exp(−λy).

The functions pn(x) are represented in Figure 3 for λ = 2 and T = 1. The value of λ is chosen in

order that the mean distance between successive points is equal to 1, as in Figure 1. Note finally that

pn(T ) = 0, as indicated above.
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V. COMPUTER EXPERIMENTS

We have seen in Section II. C that the intervals {Yi} between points of a PP constitute a positive

discrete time signal. Conversely to any such signal we can associate a PP. Experiments on PPs can then

be transformed into experiments on positive signals, and conversely.

If the signal {Yi} is positive and strictly white (sequence of IID positive RVs) the corresponding PP

is a stationary renewal process. Then in order to generate such a PP characterized by the PDF f(y) it

suffices to realize a sequence of IID RVs with this PDF. If it is an exponential distribution, we obtain a

Poisson process.

In order to realize such a PP in a computer experiment we can apply a general method used in [15]

to construct a large variety of PPs. The sequence Yi defining the renewal PP characterized by the PDF

f(y) satisfies the relation

Ui =

∫ Yi

0
f(y)dy = FY (Yi), (41)

where Ui ∈ [0, 1] are RVs of uniform PDF U(0, 1) and f(y) is a given PDF with the distribution function

FY (y). Then the RVs Yi are deduced from the Uis by the relation Yi = F−1Y (Ui). In order to obtain an

exponential distribution characterizing a Poisson process this becomes

Yi = − 1

λ
log (1− Ui) . (42)

This method cannot be used directly to generate an Erlang renewal PP because the distribution function

of the PDF f(y) = λ2y exp(−λy) cannot be simply inverted. But another procedure is possible. It suffices

to note that f(y) is the PDF of the sum of two IID exponential RVs. Then the method starts now from

two IID uniform RVs U1,i, U2,i ∈ U [0, 1]. By applying twice (42) we obtain S1,i = − 1
λ log(1−U1,i) and

S2,i = − 1
λ log(1−U2,i). These RVs are IID with an exponential distribution and their sum Yi = S1,i+S2,i

has the PDF f(y) = λ2y exp(−λy) defining a stationary Erlang PP. Note that because this sum the density

of the corresponding Erlang PP is λ/2, as indicated at the end of the previous section.

Up to now our two processes (Poisson and Erlang) are strictly stationary and in order to compare

experimental results with those established above we have to construct the algorithm realizing the

condition introducing the conditional PDFs pn(x) presented in (28) and (40) and appearing in Figs. 1 and

3. This condition is that there are at least n points in the finite interval [ti, t+T [ posterior to each point of

the stationary process. We must then eliminate all the samples Yi such that Yi+Yi+1 + ...+Yi+n−1 > T .

This sum can easily be calculated recursively from the samples Yi. In the experiments presented below

we take n = 2. The condition used for p2(x) is then that there are at least 2 points in any interval
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[ti, t+T [ and we must eliminate the samples Yi such that Yi + Yi+1 > T . For this purpose we calculate

Vi = Yi + Yi+1 and the samples Xi corresponding to the conditional PDFs are given by

Xi =
1

2

[
1 + sign (T − Vi)

]
Yi, (43)

where sign(z) = z
|z| , z 6= 0. These samples are correlated because of the term Vi which introduces a

correlation between Xi and Xi+1. In order to suppress this correlation it suffices to take the samples

X̄i = (1/2)[1 + (−1)i]Xi. This is realized in the experiments described below. Note, however, that there

is no apparent difference in the results when using Xi or X̄i, which means that the correlation between

adjacent samples Xi does not play any role in the measurements of their histograms. These histograms

yield the conditional PDF p2(x) analyzed above and appearing in Figs. 1 and 3 for Poisson and Erlang

processes respectively.

The results presented in semilogarithmic coordinates appear in Fig. 4. The continuous curve in solid

line are the transposition in semilogarithmic coordinates of the curves p2(x) of Figs. 1 and 3. The points

of the figure represent the experimental results of the analysis by histograms, and then are an estimation

of the theoretical PDFs. The number of samples analyzed if of the order of 107. The precision of the

results decrease of course when this number is smaller.

The curve P1 corresponds to a stationary Poisson process. This means that there is no condition and

the PDF is exponential. This curve is the curve 0 of Fig. 1. The curve P2 and E correspond to a Poisson

process and an Erlang process respectively. For this last curve the calculation requires the expression of

the probabilities πi(x) used in (39). It has recently been obtained in [16] and in the case of a constant

density λ the result is

πi(x) =
[µ(x)]2i

(2i)!

[
1 +

µ(x)

2i+ 1

]
exp[−µ(x)]. (44)

with µ(x) = λx and i = 2.

This figure indicates an excellent agreement between theory and experimental results. The precision is

a bit smaller in the case of Erlang distribution and this is due to the introduction of the sum of two RVs

as explained above. Note finally that, as expected by the theory, the PDFs p2(x) are zero for x = T .

We have then an experimental confirmation of the main theoretical result of this paper stating that the

PDFs pn(x) are conditional probability density functions.

APPENDIX A

PROOF OF (3) AND CALCULATION OF ITS INTEGRAL

Suppose first that n = 1. As x1 is related to the first point of the process posterior to 0, the quantity

p(x1)dx1 is the probability of finding 0 points in the interval [0, x1[ and at least 1 point in the interval
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[x1, x1 +dx1[. As these intervals are distinct, the number of points in them are independent Poisson RVs,

which yields

p(x1)dx1 = λ(x1) exp[−m(x1)]dx1. (45)

This is (3) for n = 1 or (4). Suppose now that n = 2. As the RV X2 is related to the second point

posterior to the origin 0, we deduce by the same reasoning that the probability p(x1, x2)dx1dx2 is the

probability of finding 0 points in the intervals [0, x1[ and [x1+dx1, x2[ and at least 1 point in the intervals

[x1, x1 + dx1[ and [x2, x2 + dx2[. This yields

p(x1, x2)dx1dx2 = λ(x1)λ(x2) exp[−m(x2)]dx1dx2, (46)

which is (3) for n = 2. The extension to any value of n is obvious, which yields (3).

Let us now consider the calculation of the integral I =
∫
pn(xn)dxn where pn(xn) is given by (3). It

can be written as

I =

∫ ∞
0

dx1λ(x1)

∫ ∞
x1

dx2λ(x2)...

∫ ∞
xn−2

dxn−1λ(xn−1)J(xn−1) (47)

with

J(xn−1) =

∫ ∞
xn−1

dxnλ(xn) exp[−m(xn)]. (48)

Noting that the derivative of exp[−m(x)] is −λ(x) exp[−m(x)] yields J = exp[−m(xn−1)]−exp[−M ] =

exp[−m(xn−1)] because M is assumed to be infinite. By repeating the same calculation we arrive to

I =
∫+∞
0 dx1λ(x1) exp[−m(x1)] which is equal to 1.

APPENDIX B

CALCULATION OF (5)

In (5) the integration with respect to xi+1, xi+2, ..., xn yields exp[−m(xi)] as seen in Appendix I. As

a result pn(xi) = λ(xi) exp[−m(xi)]×Ki−1(xi) where Ki−1(xi) is the integral

Ki−1(xi) =

∫ xi

0
dx1λ(x1)

∫ xi

x1

dx2λ(x2)...

∫ xi

xi−2

dxi−1λ(xi−1). (49)

It is a particular case of the integral

Ki(a, b)
4
=

∫ b

a
dx1λ(x1)

∫ b

x1

dx2λ(x2)...

∫ b

xi−1

dxiλ(xi). (50)

Let us show by recursion that

Ki(a, b) =
1

i!
[m(b)−m(a)]i. (51)
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This relation is obviously valid for i = 1. Suppose that it holds for i− 1. Let us show that it is valid for

i. Using (50) and (51) yields

Ki(a, b) =

∫ b

a
dx1λ(x1)

1

(i− 1)!
[m(b)−m(x1)]

i−1. (52)

Noting that the derivative of m(x) is λ(x) yields (51) for i. As pn(xi) = λ(xi) exp[−m(xi)]Ki−1(0, xi)

and m(0) = 0, we obtain (6).

APPENDIX C

CALCULATION OF In(x)

This is the integral

In(x) =

∫ +∞

x
dx1λ(x1)

∫ +∞

x1

dx2λ(x2)...

∫ +∞

xn−1

dxnλ(xn) exp[−m(xn)]. (53)

Let introduce the following expressions

a(x) = M −m(x), (54)

cn(a) = 1 +
a1

(1)!
+

a2

(2)!
+ ...+

an−1

(n− 1)!
. (55)

We shall show that

In(x) = exp[−m(x)]− exp(−M)cn[a(x)]. (56)

This relation is obviously valid for n = 1. Suppose now that it is valid for n − 1 and calculate In(x).

We can write

In(x) =

∫ +∞

x
λ(x1)In−1(x1)dx1. (57)

From (56) we have to calculate two integrals. It is clear that∫ +∞

x
λ(x1) exp[−m(x1)]dx1 = exp[−m(x)]− exp[−M ] (58)

because λ(x1) exp[−m(x1)] is the derivative of − exp[−m(x1)]. Furthermore∫ +∞

x
λ(x1)a

k(x1)dx1 =
1

k + 1
ak+1(x) (59)

because the derivative of a(x) is −λ(x) and a(+∞) = 0. Using (55) yields (56), which completes the

proof. For x = 0, m(x) = 0, which yields (14).

DRAFT February 2, 2018



PICINBONO: POISSON PROCESSES WITH INTEGRABLE DENSITY 15

APPENDIX D

CALCULATION OF pn(x) FOR A RENEWAL PROCESS

Let An be the event that there are at least n points in the interval [0, T ]. Let E be the event that there

is no point in ]0, x] and at least one point in [x, x+ dx[. We have pn(x)dx = P (E|An) and

P (E|An) =
P (E ∩An)

P (An)
=
P (E)P (An|E)

P (An)
. (60)

Noting that P (E) = f(x)dx and that

P (An|E) = 1−
n−2∑
i=0

πi(T − x) (61)

yields (40).
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Figures captions

Figure 1. Probability density functions pn(x), 0 ≤ n ≤ 7 for a time-limited Poisson process of constant

density λ, λ = T = 1.

Figure 2. Probability density functions pn(x), 1 ≤ n ≤ 7 for a time-limited Poisson process of density

λ(x) = λ0[exp(cx/T )− 1] (curve quoted λ), λ0 = T = 1, c = 1.25.

Figure 3. Probability density functions pn(x), 1 ≤ n ≤ 7 for an Erlang time-limited renewal process.

PDF of the life time: λ2y exp(−λy), λ = 2, T = 1.

Figure 4. Experimental measurements of p2(x) for conditions of Figures 1 and 3. Solid line: theory,

dots: experiment.
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