
HAL Id: hal-01699878
https://hal.science/hal-01699878

Submitted on 2 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Early Consistency Checking between Specification and
Implementation Variabilities

Xhevahire Tërnava, Philippe Collet

To cite this version:
Xhevahire Tërnava, Philippe Collet. Early Consistency Checking between Specification and Implemen-
tation Variabilities. the 21st International Systems and Software Product Line Conference - Volume
A, Sep 2017, Sevilla, France. �10.1145/3106195.3106209�. �hal-01699878�

https://hal.science/hal-01699878
https://hal.archives-ouvertes.fr

Early Consistency Checking between Specification and
Implementation Variabilities

Xhevahire Tërnava and Philippe Collet
Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France

{ternava,collet}@i3s.unice.fr

ABSTRACT
In a software product line (SPL) engineering approach, the addressed
variability in core-code assets must be consistent with the specified
domain variability, usually captured in a variability model, e.g., a
feature model. Currently, the support for checking such consistency
is limited, mostly when a single variability implementation tech-
nique is used, e.g., preprocessors in C. In realistic SPLs, variability
is implemented using a combined set of traditional techniques, e.g.,
inheritance, overloading, design patterns. An inappropriate choice
and combination of such techniques become the source of vari-
ability inconsistencies. In this paper, we present a tooled approach
to check the consistency of variability between the specification
and implementation levels, when several variability implementation
techniques are used together. The proposed method models the im-
plemented variability in terms of variation points and variants, in a
forest-like structure, and uses slicing to partially check the result-
ing propositional formulas at both levels. As a result, it offers an
early and automatic detection of inconsistencies. We implemented
and successfully applied the approach in four case studies. Our im-
plementation, publicly available, detects inconsistencies in a very
short time, which makes possible to ensure consistency earlier in the
development process.

1 INTRODUCTION
In a Software Product Line (SPL) engineering approach, the speci-
fied domain variability is commonly captured in a variability model,
e.g., a feature model (FM) using the concept of feature as a reusable
unit [11, 15]. The FM is a tree structure consisting of mandatory,
optional, or, and/or alternative relation logic between features, while
their cross-tree constraints are expressed in propositional logic. Se-
mantically, an FM represents the valid software products (i.e., feature
configurations) within an SPL.

The variability specified in terms of features in an FM has to be
addressed by different stakeholders in different software models and
in core-code assets. As the addressed variability must conform to
the specified variability in the FM, it becomes the potential source
for inconsistencies [28] within an SPL. For example, when an alter-
native group of features is realized as an or relation logic between
the variable units in core assets. Respectively, when a mandatory
feature is realized as an optional unit in core assets. The occurrence
of such inconsistencies is of a major importance, e.g., for a given fea-
ture configuration it is not possible to derive the respective software
product from the developed core assets.

According to a recent survey about consistency checking in SPLE,
there are three major approaches to address consistency issues: (i)
within the variability models (i.e., FMs), (ii) between the FM and

other software models, or (iii) between the FM and its implementa-
tion (i.e., core-code assets). These also correspond to the locations
where inconsistencies can happen, as mentioned by Vierhauser et.
al [32].

Currently, the support for checking variability consistency be-
tween the FM and core-code assets is limited. The existing ap-
proaches are mostly conceived for resolving inconsistencies within
a specific software, e.g., the Linux kernel [22, 29], or when the
variability is implemented by a single variability implementation
technique, e.g., using preprocessors in C [19]. However in realistic
SPL settings, variability is implemented by using a combined set of
traditional techniques, e.g., inheritance, overloading, design patterns.
An inappropriate choice and combination of such techniques become
the source of variability inconsistencies that cannot be detected by
existing approaches

In this context, there are several challenges to be addressed re-
garding the consistency checking of variability between the FM and
core-code assets.

C1. Checking the consistency of variability between the specifi-
cation and implementation levels.

Originally, in the FORM method [16] [8, Ch.8], the need to model
separately the variability at the specification and realization levels
is already present. While the variability at a realization level is
more about the software variability, the specification one represents
the variability between the software products themselves within an
SPL [24]. In most variability management approaches, it is up to
the reader to understand whether an FM is used to describe the
variability at the specification or realization levels [23]. Moreover,
the mapping of features to variable units in implementation is 1 – to –
1, e.g., between features and preprocessor directives in C [19, 22, 29],
although a directive can be scattered in core-code assets. In such
cases, the FM is used to model only the implemented variability,
or from both levels into a single model. In reality, the mapping of
features from the specification level to their implementation is n –
to – m [25, Ch.4], which represents a serious challenge during the
consistency checking of variability.

C2. Checking the consistency of variability when a combined set
of traditional variability implementation techniques is used.

The implemented variability by several traditional techniques can
be modeled in terms of variation points (vp-s) and variants [9, 11,
14, 27] (they will be defined in Section 2). These vp-s are diverse
compared to the case when a single variability implementation tech-
nique is used to implement the whole variability, e.g., preprocessors
in C. In case a vp is implemented using an improper technique, sev-
eral inconsistencies may appear, for example, when an alternative
relation logic between features in an FM is implemented by a vp

with an or relation logic between its variants. In such case, the num-
ber of possible products in the FM is inconsistent with the possible
products that can be derived from the core-code assets. Therefore,
in complement to C1, a consistency checking approach should be
able to check whether the right technique to implement a vp and its
variants is used.

C3. Achieving an early detection of variability inconsistencies.
The consistency of variability can be checked only after the vari-

ability is realized, but not necessarily only after the whole specified
variability is addressed. Commonly, some variability is deferred to
be implemented later or during the application engineering phase.
In addition it becomes harder to fix the inconsistencies after all of
them are shown at the same time at the end [32]. In particular, it has
been shown that trying to change the implementation technique for a
vp, only after the whole SPL is implemented, can be very costly [4].
Therefore, an approach for detecting earlier the variability incon-
sistencies is needed, for example, to be able to select a single or a
group of vp-s and to check them against the specified features in
an FM early during the development process. Typically, we could
expect that the earlier a variability inconsistency is identified, the
cheaper becomes the fix.

To address these challenges, we propose a method for checking
the consistency between specification and implementation variabil-
ities, when the variability implemented by several techniques is
modeled in terms of variation points and variants. The method sup-
ports an early checking, which is made feasible by organizing the
implemented variability in a forest-like structure [30]. In this way,
we can select some of the implemented variability easily and check
its consistency against the specified variability in an FM, by slicing
their propositional formulas.

In the following, we give some background on variability mod-
eling at the specification and implementation levels, as well as on
traceability between the two levels (Section 2). We then describe our
consistency checking method (Section 3), for single and multiple
types of trace links. We also report on our prototype implementation,
and applications to four case studies (Section 4). We then discuss re-
lated work (Section 5), and conclude by evoking obtained properties,
limitations and future work (Section 6).

2 MOTIVATIONS
In the following the abstractions and variability models at speci-
fication and implementation levels that support our approach are
introduced and exemplified, as well as trace links between their ab-
stractions. The end of the section discusses the form of consistency
checking that must be provided in our context.

2.1 Variability Modeling at Specification Level
In an SPL, variability at specification level is commonly modeled
in a feature model (FM) using the concept of feature [11, 15]. For
example, Figure 1 shows an excerpt of the FM for the Graph SPL 1,
which is one of our analyzed case studies. This SPL is quite well
understood and used by the community [21]. The Graph SPL is
conceptually represented by the root feature, GraphProductLine,

1The whole FM is available at https://github.com/ternava/Expressions_SPL/wiki/
Feature-Models

and has two compound mandatory features, Type and Weight,
with their alternative variant features, «Directed, Undirected»
and «Weighted, Unweighted», respectively. It has also one com-
pound optional feature, Search, with two alternative variant fea-
tures, DFS and BFS. This excerpt of FM has no cross-tree con-
straints between features. Commonly, they are shown in proposi-
tional logic, e.g., when an algorithm feature requires Directed and
Weighted features, this is written at the end of the feature diagram
as Algorithmx → Directed ∧Weighted.

Figure 1: Excerpt of the FM of the Graph SPL

2.2 Variability Modeling at Implementation Level
In realistic SPL settings, variability is implemented by using a com-
bined set of traditional techniques, e.g., inheritance, overloading,
design patterns. These techniques offer a form of imperfectly modu-
lar variability [30] at the implementation level. This Imperfect form
of modularity comes from the fact that a feature at specification
level is a domain concept, while its refinement at core-code assets
is a set of variation points (vp-s) and variants [8, Ch. 3] that may
be modular, i.e., it may not have a direct and single mapping. A vp
is the place in a design or an implementation that identifies where
the variation occurs. It represents the used technique to realize the
variability, while the way that a vp is going to vary is expressed by
its variants [14, 30]. They can also be understood as the symmetry
(i.e., commonality invariance or vp-s), and the symmetry breaking
places (variants) in software [9, 10].

1 import d s l . _
2 import s c a l a . r e f l e c t . r u n t i m e . u n i v e r s e . _
3 o b j e c t tvm_search {
4 / * The a b s t r a c t i o n s o f v a r i a t i o n p o i n t s and v a r i a n t s * /
5 v a l Search = OPT_VP(a s s e t (. . . .)) / / . . .
6
7 / * The model ing o f t h e implemented v a r i a b i l i t y * /
8 import f r a g m e n t . _
9 f r a g m e n t (" S e a r ch . s c a l a ") {

10 Search i s ALT w i t h _ v a r i a n t s (dfs , b f s) use
11 STRATEGY_P w i t h _ b i n d i n g RUN_TIME a n d _ e v o l u t i o n CLOSE
12 }
13 }

Listing 1: Usage of the DSL to model the TVM for the Search vp

As the vp-s are not by-products of the implementation techniques [7],
they should be explicitly modeled. Instead of modeling the whole
implemented variability at once and in one place, we choose to
model it in a fragmented way [30]. A fragment can be any unit, i.e.,
a package, file, or class, that has inner variability and is worth to
be modeled locally and separately in a technical variability model
(TVM). A TVM is a concept that contains the abstractions of vp-
s and variants, their strong consistency with the core-code assets,
and model the variability of some specific core-code assets [30].

https://github.com/ternava/Expressions_SPL/wiki/Feature-Models
https://github.com/ternava/Expressions_SPL/wiki/Feature-Models

Technically, we use a textual Domain Specific Language (DSL) 2,
written in Scala, to model the implemented variability in TVMs. The
TVM for the Search vp, expressed using the textual DSL, is shown
in Listing 1. In an illustration, Figure 2 shows two TVMs with two

(vptype, {ALT})

vdirected vundirected

(vpweight, {ALT})

vweighted vunweighted

tvm_basic

(vpsearch, {ALT}, opt)

vdfs vbfs

tvm_search

Figure 2: Documentation of the implemented variability in
TVMs for the Graph SPL (cf. Figure 1)

and one vp-s, respectively, which model the implemented variability
of the Graph SPL (cf. Figure 1).

The implemented variability can be modeled using five available
types of vp-s: (i) ordinary, e.g., a simple vp-s as in tvm_basic
(cf. Figure 2), (ii) optional, when the vp itself, not its variants, is
optional, e.g., the Search vp (line 5, Listing 1), (iii) nested, when
some variable part in a core-code asset becomes the common part
for some other variability, (iv) technical, a vp that is introduced and
implemented only for supporting internally the implementation of a
specified vp, and (v) unimplemented, when a vp is introduced but
has no implemented variants yet. Depending on the used variability
implementation technique, each of these vp-s can be different with
regards to the (i) relation logic between its variants (alternative, or,
optional), (ii) their binding time (e.g., compile-time, runtime [8, Ch.
4]), or (iii) their evolution (i.e., to be extended with new variants in
the future or not).

All TVMs of an SPL constitute the Main TVM (MTVM) at the
implementation level. Therefore, the modeled variability in terms
of vp-s at the implementation level has a forest-like structure (cf.
Figure 2), unlike the tree structure of features in an FM.

2.3 Trace Links
The specified features in an FM and their implementation as vp-s
and variants in TVMs use different names, and we consider they
have n – to – m mapping within the SPL. Therefore, their mapping
correspond to trace links. For example, to indicate that the feature
Search (cf. Figure 1) is implemented by the vp vp_Search (cf.
Figure 2), their trace link is Search↔ vp_Search. Technically, in
this work, the trace links are established by using the DSL. They are
bidirectional links and are kept in a map structure. It must be noted
that our contribution is applicable in a general case where these trace
links exist or can be established by any other means.

2The source of our DSL,the implementation of Graph SPL, and examples of TVMs, are
available at https://github.com/ternava/Variability-CChecking.

Table 1: Translation rules from an FM to propositional logic

Where P is a compound feature and C1, C2, ..., Cn its subfeatures.

Relation Logic Propositional Logic

Mandatory P ↔ Ci

Optional Ci → P
Or-group P ↔

∨
1≤i≤n

Ci

Alternative-group
(

P ↔
∨

1≤i≤n
Ci

)
∧
∧

i<j

(
¬Ci ∨ ¬Cj

)

2.4 On Consistency Checking
For the consistency checking process to scale on large models, we
rely on existing automated analysis techniques for feature mod-
eling [6]. We specifically choose solving techniques that rely on
propositional logic [5, 6], in which an FM is translated into a propo-
sitional formula and SAT-solved. Table 1 shows the well-known
translation rules for each relation logic between features in an FM.
Cross-tree constraints are considered to be already propositional for-
mulas. Similar to the FM ones, the relation logic between variants
in a vp in a TVM is translated to a propositional formula.

In the literature, different analysis operators for checking FM
consistency have been devised [6]. The most important ones concern
the detection of the three following anomalies (i.e., inconsistencies):

• Validity. The FM is valid if it represents at least a valid
configuration, i.e., at least a single software product.

• Dead features. A feature is dead if it is not part of any
software product, i.e., of any configuration.

• False optional features. When a variable feature is part of
every configuration, thus becoming a mandatory feature.

These anomalies are common within a single FM, or between FMs
at the same abstraction level. In our context, being able to check for
variability inconsistencies between two variability models that are
supposed to represent the same variability in two different abstrac-
tion levels should meet challenge C1. As the TVM model represents
the variability implementation with different variability implementa-
tion techniques captured through the proposed DSL, the consistency
checking between these two models should also meet C2. Finally,
to meet challenge C3, we should also be able to deal with partial
models, i.e., with partial but semantically correct corresponding
propositional formulas.

3 CONSISTENCY CHECKING
3.1 Principles
Following an inconsistency management approach [28], we define
a consistency rule, which represents what must be satisfied by the
variabilities at specification and implementation levels.

Consistency Rule. Within an SPL, where the specified domain vari-
ability and implemented variability convey the same functionality,
they also should represent the same set of software products.

An inconsistency, i.e., when the consistency rule is not satisfied,
concerns a specific feature configuration for which it is impossible to
derive a concrete software product from the existing core-code assets,
despite the fact that the whole specified variability is implemented.

https://github.com/ternava/Variability-CChecking

We thus propose a method, based on propositional logic, for checking
and detecting the source of such variability inconsistency.

Conversion to Propositional Logic. To begin with, we convert the
modeled variability at the specification and implementation level, i.e.,
the FM and MTVM, in propositional logic. In this way, the whole
issue of consistency checking is translated to merely analysing their
propositional formulas φF M and φMT V M , respectively. For exam-
ple, using the underlined letters for the feature names in Graph SPL
(cf. Figure 1) and translation rules in Table 1, its propositional for-
mula φF Mg

3 is (e.g., for GraphProductLine is used the letter g):

φF Mg
= g ∧ (t↔ g) ∧ (w ↔ g) ∧ (s→ g)∧

(t↔ (dt ∨ ud)) ∧ (¬dt ∨ ¬ud) ∧ (w ↔ (wt ∨ uw)) ∧
(¬wt ∨ ¬uw) ∧ (s↔ (dfs ∨ bfs)) ∧ (¬dfs ∨ ¬bfs)

(1)

Similarly, for the TVMs in Figure 2, the φT V Mbasic
and φT V Msearch

are given in Eq. 2 and Eq. 3, respectively. A mandatory vp in a TVM
is shown as a single positive literal in a propositional formula, e.g.,
the vpt or vpw in Eq. 2, whereas an optional vp needs another
parent feature to become optional. For this reason, we inserted a
mandatory root vp that is the common root for all vp-s, e.g., see
the vproot in Eq. 3 which is used to make optional the vpsearch in
Figure 2. When the vp is mandatory the vproot does not make any
difference in the formula, and thus we did not show it in Eq. 2.

φT V Mbasic
= vpt ∧ vpw∧

(vpt ↔ (vdt ∨ vud)) ∧ (¬vdt ∨ ¬vud) ∧
(vpwt ↔ (vwt ∨ vuw)) ∧ (¬vwt ∨ ¬vuw)

(2)

φT V Msearch
= vproot ∧ (vps → vproot) ∧(

vps ↔
(
vdfs ∨ vbfs

))
∧
(
¬vdfs ∨ ¬vbfs

) (3)

The consistency rule then corresponds to the fact that φF M and
φMT V M must be semantically equivalent, i.e.,

φF M ≡ φMT V M

or, φF M ≡
(
φT V M1 ∧ φT V M2 ∧ ... ∧ φT V Mn

) (4)

Two propositional formulas are semantically equivalent if and only
if they have the same set of models. Let be JφF M K the set of fea-
ture configurations for φF M and JφMT V M K the set of vp-s and
variants configurations for φMT V M . Every feature configuration
in JφF M K has a mapping to a vp-s and variants configuration in
JφMT V M K. As φF M and φMT V M use different variability ab-
stractions (i.e., different names for features and vp-s with variants,
respectively), which can have an n – to – m mapping, then we could
check their semantic equivalence only under the existence of their
trace links. Consequently, the accurate formal definition of the con-
sistency rule (cf. Eq. 4) becomes:

φF M ∧ φT L ≡ φMT V M ∧ φT L (5)

As the trace links are bidirectional, i.e., features and vp-s with
variants mapped to each other as f ↔ vp, then Eq. 5 is valid thanks
to the substitution theorem in propositional logic [17]:

φF M (f) ∧ (f ↔ vp) ≡ φMT V M (vp) ∧ (f ↔ vp) (6)

i.e., within the context of their trace links φT L, φF M and φMT V M
represent the same variability. Moreover, we assume that,

3The underlined parts of the formula will be explained in the following.

Assumption 1. The mapping between features in an FM to the vp-
s and variants in TVMs is performed by bidirectional trace links
φT L, which are established before the consistency checking and are
consistent themselves.

Generally, the mapping between features and vp-s with variants is
n – to – m. In our approach, we exclusively consider the single links
(i.e., 1 – to – 1) and multiple links (i.e., 1 – to – m), as they are the
two common forms of mapping in our targeted SPL implementations.
In our example, φF Mg

has 1 – to – 1 mapping to φT V Mbasic
and

φT V Msearch
. Therefore, their single links φT Lg

are:

φT Lg
= (g ↔ vproot)∧

(t↔ vpt) ∧ (w ↔ vpw) ∧ (s↔ vps)∧
(dt↔ vdt) ∧ (ud↔ vud) ∧ (wt↔ vwt) ∧

(uw ↔ vuw) ∧
(
dfs↔ vdfs

)
∧
(
bfs↔ vbfs

) (7)

According to the consistency rule in Eq. 5, φF Mg
in Eq. 1 represents

the same software products with {φT V Mbasic
, φT V Msearch

} ∈
φMT V Mg

in Eq. 2 and Eq. 3 when

φF Mg
∧ φT Lg

≡
(
φT V Mbasic

∧ φT V Msearch

)
∧ φT Lg

(8)

i.e., within the context of trace links φT Lg
, φF Mg

is equivalent to(
φT V Mbasic

∧ φT V Msearch

)
.

3.2 Proposed Method
For checking the consistency of the entire variability between both
levels, i.e., using the Eq. 5, it is required that (i) the whole specified
variability in an FM is implemented and documented in an MTVM,
and (ii) all their trace links are established. This restricts checking
to a complete system, which itself is likely to be represented by
large variability models, harder to check, but also harder for tracing
and fixing inconsistencies after all of them are shown at once [32].
In addition, it is common that some variability implementation is
deferred, e.g., during the application engineering phase, and some
partial checking is then highly desirable. Besides, even for illustra-
tive SPLs with a small set of features, the propositional formula to
compute Eq. 5 becomes already quite large. Moreover, in realistic
SPLs, checking for inconsistencies only within a single FM has still
scalability issues [6].

To overcome these problems, we propose a consistency checking
method for detecting the variability inconsistencies earlier during the
development process. Its main steps are based on slicing, substitution,
and assertion properties, which are depicted in Figure 3. First, we
will explain the method when single links are used, to extend it to
multiple links just after.

Initial Checking. As a prerequisite, we check first if φF M and
φMT V M individually are consistent. To do so, we use state of the
art methods to check if each of them in isolation is valid, as well
as free of dead and false-optional (a.k.a common) features or vp-s
and variants, respectively (cf. Section 2.4 and Figure 3). We also
check whether the Assumption 1 about trace links hold, i.e., trace
links are established, bidirectional, and consistent. A trace link is
by default translated into a propositional formula as an equivalence.
Their consistency is ensured by the DSL and, when some variability
is selected to be checked, it is first checked whether it is traced. If

φF M and φMT V M are free of such individual inconsistencies, we
can proceed to the variability consistency checking between them.

Figure 3: Proposed consistency checking method

Slicing. The originality of our method lies in the fact that we can
select a single TVM, i.e., φT V Mx

as in Figure 3, or a subset of them
from the MTVM, so to check the consistency of their variability
against the specified variability in an FM. This selection corresponds
to the first slicing step, i.e., slice0 in Figure 3, which is manual in
our method. The consequence of selecting a single TVM instead of
the whole MTVM is that the initial checking has to be done only for
the selected φT V Mx

, and the Assumption 1 about trace links must
be met only for this TVM.

In the second step, i.e., slice1 in Figure 3, we use the φT V Mx

to simplify the formula for trace links φT L by selecting only those
trace links that are relevant for the φT V Mx

. As a result the new
formula for trace links φ′

T L is generated (cf. Figure 3). Further,
we slice the FM, i.e., slice2, using the φ′

T L relevant trace links.
The result is a new smaller formula φ′

F M , which contains only the
relevant features for the vp-s and variants in φT V Mx

, against which
they should be checked.

Slicing an FM is an operation that has recently drawn attention in
the SPL community. In the literature, there are already some well de-
fined and validated algorithms [3, 18]. While we have experimented
with them, we used a new slicing algorithm based on clause selection
in a conjunctive normal form formula because of the trace links, as
will be explained in the following. For example, let us suppose that
we want to check the consistency of φT V Msearch

(cf. Eq. 3) against
its specification in φF Mg

(cf. Eq. 1), i.e., the step slice0. By apply-
ing φT V Msearch

to slice φT Lg
(cf. Eq. 7) we get the new formula

φ′
T Lg

, i.e., during the step slice1, which keeps only those clauses
that contain the vp-s and variants that are in φT V Msearch

. So, the
generated φ′

T Lg
contains only the underlined clauses in Eq. 7. As

we can see, by clause selection we keep the links to feature names,
i.e., to the features g, s, dfs, and bfs. Thus,

φ′
T Lg

⊆ φT Lg
= (g ↔ vproot) ∧

(s↔ vps) ∧
(
dfs↔ vdfs

)
∧
(
bfs↔ vbfs

) (9)

Similarly, by applying the new formula φ′
T Lg

to φF Mg
(Eq. 1), we

select only the relevant clauses for the features in these trace links,
i.e., only the underlined clauses of φF Mg

. Thus, the slice φ′
F Mg

is:

φ′
F Mg

⊆ φF Mg
= g ∧ (t↔ g) ∧ (w ↔ g) ∧

(s→ g) ∧ (s↔ (dfs ∨ bfs)) ∧ (¬dfs ∨ ¬bfs)
(10)

It must be noted that the existing slicing algorithms cannot be applied
to slice the trace links. Basically, the existing algorithms consist in
eliminating the unselected variables in a propositional formula. But
as we need the bidirectional relationship of a selected variable (i.e.,
a vp or variant) to another unselected variable (i.e., a feature), we
have to apply clause selection instead of variable elimination. This
is the main reason why we came up with the new slicing algorithm.
Consequently, except for slicing trace links, slicing the FM itself
can be done by previously proposed algorithms, which have show
good scalability on larger scale FMs [3], compared to our slicing
algorithm.

Substitution. After the slicing steps, the formal consistency rule
(cf. Eq. 5) becomes:

φ′
F M ∧ φ

′
T L ≡ φT V Mx

∧ φ′
T L (11)

In essence, this consistency rule is applicable based on the substitu-
tion theorem [17] for propositional formulas. Therefore, checking
consistency between φ′

F M and φT V Mx
by using the Eq. 11 is

equivalent to checking the following formula (cf. Figure 3):

φ′
F M ∧ φ

′
T L ∧ φT V Mx

(12)

Thus, we apply the substitution directly:

φ′
F M (f) ∧ (f ↔ vp)′ ∧ φT V Mx (vp) (13)

Concretely for our Graph SPL example, this formula becomes:

φ′
F Mg

∧ φ′
T Lg
∧ φT V Msearch

(14)

Assertion. Just checking if the resulting formula after slicing in
Eq. 12 is satisfiable is insufficient to determine whether φ′

F M and
φT V Mx

are consistent or not. From before, they are consistent when
they have the same configurations. But, instead of comparing their
configurations after they are generated we achieve this comparison
while the formula in Eq. 12 is calculated. Specifically, the Eq. 13
indicates that Eq. 12 will generate only those models (i.e., configura-
tions) which are similar between φ′

F M and φT V Mx
. When φ′

F M is
consistent with φT V Mx

, then they will have the same models with(
φ′

F M ∧ φ
′
T L ∧ φT V Mx

)
. As a result, we can simplify checking

to only comparing their number of configurations.
More exactly, we assert whether

Jφ′
F M ∧ φ

′
T L ∧ φT V Mx

Ksize = Jφ′
F M Ksize = JφT V Mx

Ksize

(15)
When this assertion is false then φT V Mx

and φ′
F M are inconsistent.

Let us illustrate how this works on our example. Figure 4 shows
the sets of configurations for Jφ′

F Mg
K, JφT V Msearch

K, and Jφ′
F Mg

∧

φ′
T Lg

∧ φT V Msearch
K. In this case, φT V Msearch

is consistent

Figure 4: Consistency checking by asserting the number of con-
figurations

against the φ′
F Mg

as the assertion is true. As one can see, the bidirec-
tional trace links ensure to generate from Eq. 12, respectively Eq. 14,
only those configurations that are similar between the φT V Mx

and
φ′

F M .
As another example, let us suppose that the vps in φT V Msearch

has an Or relation between its variants (cf. Table 1), i.e.,
φT V Msearch

= vproot ∧ (vps → vproot) ∧(
vps ↔

(
vdfs ∨ vbfs

)) (16)

Figure 5 shows the assertion step between Jφ′
F Mg

K, the new for-

mula JφT V Msearch
K, and Jφ′

F Mg
∧φ′

T Lg
∧φT V Msearch

K. In this

case φ′
F Mg

and φT V Msearch
are inconsistent as they have differ-

ent sets of configurations, with 3 and 4 number of configurations,
respectively.

Figure 5: Example of inconsistency detection

For checking the next TVMs, e.g., φT V Mbasic
(cf. Figure 2), we

repeat the same steps in our method except the initial checking for
φF M , which is unnecessary. Instead of checking a single TVM, we
can select for checking a set of TVMs until a total checking, i.e., in
case the whole specified variability is implemented. In this way, the
form of variability consistency we defined can be performed as soon
as it is addressed, thus meeting challenge C3 on early consistency
checking.

Handling 1 – M trace links. So far we considered that the map-
ping between features in the FM to the vp-s and variants in MTVM,
respectively between their slices, is 1 – to – 1. When their mapping
is 1 – to – m, the assertion step becomes insufficient. To illustrate the
issues related to this mapping, let us suppose that the vpsearch (cf.
Figure 2) in φT V Msearch

has an implemented technical vp tvpnone

that we have documented as in Figure 6. Its functionality consists
in coloring the graph with a green (vgreen) or blue (vblue) color in-
stead of performing a search. This technical vp is not specified at the
specification level, i.e., at the FM in Figure 1, but it is implemented
as an alternative variant with vdfs and vbfs.

(vpsearch, {ALT}, opt)

vdfs vbfs (tvpnone,{ALT})

vgreen vblue

tvm_search

Figure 6: The tvm_search with a technical vp (cf. Figure 1)

The propositional formula for this new TVM is (cf. Table 1):

φT V Msearch
= vproot ∧ (vps → vproot) ∧(

vps ↔
(
vdfs ∨ vbfs ∨ tvpn

))
∧
(
¬vdfs ∨ ¬vbfs

)
∧(

¬vdfs ∨ ¬tvpn
)
∧
(
¬vbfs ∨ ¬tvpn

)
∧

(tvpn ↔ (ve ∨ vb)) ∧ (¬ve ∨ ¬vb)

(17)

It is common to consider that the technical vp and its variants, i.e.,
tvpn with ve and vb, respectively, should be traced to the feature
Search in Figure 1. In this case, the slice of trace links φ′

T Lg

corresponds to:

φ′
T Lg

⊆ φT Lg
= (g ↔ vproot) ∧

(s↔ vps) ∧
(
dfs↔ vdfs

)
∧
(
bfs↔ vbfs

)
∧

(s↔ tvpn) ∧ (s↔ ve) ∧ (s↔ vb)

(18)

For this new TVM (cf. Eq. 17) and its 1 – to – m trace links (cf.
Eq. 18), the assertion step is given in Figure 7.

Figure 7: False inconsistency detection for 1 – to – m links

Although the implementation of vdfs and vbfs are consistent to
features DFS and BFS in Figure 1, the assertion step in our method
shows that they are inconsistent. The reason is that, when we trace
the technical vp to the same parent feature, we dismiss the relation
logic between its variants, e.g., the alternative relation between ve

and vb is not considered.
In Figure 7, by comparing the underlined parts between Jφ′

F Mg
K

and JφT V Msearch
K we can see that the intersection between each

feature configuration, and vp-s and variants configuration is the set
of configurations that shows their consistency. This example reveals
that, if for each configuration cf ∈ Jφ′

F M K and cvp ∈ JφT V Mx
K

their intersection cf ∩ cvp is not empty, then φ′
F M and φT V Mx

are consistent. But, instead of comparing the configurations we need
a solution at the formula level.

Among the possible solutions, the option to not trace the technical
vp-s, i.e., the unspecified variability, cannot be considered because
they can invalidate the other vp-s themselves, which have an 1 – to
– 1 mapping. A feasible solution, left for future work, seems, first
to trace these technical vp-s and then to remove them by slicing
the TVMx. From the documentation of variability it is easy to
recognize when a vp is technical. In this way we bring back the 1 –
to – 1 mapping and our method is fully applicable.

In our method we do not include checking for dead or false-
optional features, respectively vp-s and variants, between both levels.
To check for them would require a complete implementation of the
specified features, and a total consistency checking of variabilities.

4 EVALUATION
4.1 Implementation
We implemented the slice-substitute-assert method using the Scala
language. The prototype implementation is publicly available at
https://github.com/ternava/Variability-CChecking.

Initially, the FM of an SPL and its respective TVMs at the im-
plementation level are converted to propositional formulas, in con-
junctive normal form (CNF). Further, they are encoded in DIMACS
CNF format and analysed using SAT techniques with the SAT4j
solver [20].

It first consists in checking the validity, dead, and false optional
features or vp-s and variants within a single FM or TVMs, respec-
tively. Then, it performs finding and counting the number of valid
configurations for a variability model or a sliced model. The slicing
steps are implemented by using the clause selection algorithm on
CNF formulas, but other slicing algorithms can be used too. It would
be interesting to compare their usage and performance in real SPLs.

Our method only requires to obtain the propositional formula for
the FM, the implemented variability that is documented in TVMs,
and then establishing their trace links. We used FeatureIDE [31] for
converting the whole FM to propositional formula, although it is not
integrated in our implementation.

In our implementation, the specified variability in terms of fea-
tures in an FM is used as a reference model against which is checked
the consistency of the implemented variability in terms of vp-s and
variants in TVMs.

4.2 Applications
Case studies. We evaluate our method by using it for check the

consistency of variability in four case studies: Graph SPL [21],
Arcade Game Maker SPL [1], Microwave Oven SPL [12], and Jav-
aGeom [2]. The domains of the first three case studies are quite
well understood and used by the SPL community. We implemented
each of them with the Scala language, they are publicly available at
https://github.com/ternava/Variability-CChecking. The fourth case
study, JavaGeom, is an open source library implemented in Java. It
is a feature-rich system for creating geometric shapes, which has

Table 2: Number of implemented features (F-s), TVM-s, and vp-
s with variants for each case study

Case Study F-s Impl. F-s TVM-s vp-s with v-s

Graph 19 16 3 4 with 12
Arcade Game M. 27 26 8 with 17
Microwave Oven 26 23 8 9 with 20
JavaGeom 110 110 11 199 with 269

been used in our previous work on traceability between specification
and implementation levels [30]. The interoperability between Java
and Scala enables us to use the DSL in JavaGeom as a Java-based
system.

We used these different case studies to evaluate our method re-
garding the types of features, respectively vp-s, that can be checked,
i.e., mandatory and optional vp-s, as well as alternative and or re-
lation logic between variants. Specifically, we evaluated whether
the method is capable to detect the inconsistencies successfully
in all these cases. For example, in the Microwave Oven SPL and
JavaGeom we experimented with the technical and nested vp-s of
any type, while in Graph SPL with vp-s that are implemented as a
refactoring form of the specified variability.

The implemented variability was documented in each case study,
using our DSL. In Table 2 is shown their respective number of
TVMs with the vp-s and variants. In all case studies, a TVM has
at least one vp with its variants. In the first three SPLs, we did not
implement all features. First it is common that some variability is
implemented later. Second, the SPLs can be evolved during the time
with new features. Despite that some features are unaddressed, we
could check the consistency for only that part of the implemented
variability, showing the partial checking capability of our method.

Evaluation process. We performed the evaluation process in two
stages. First, we checked the consistency of variability by selecting
TVMs one by one, and then we were selecting a subset of them. In
each stage, we analysed first the TVMs with 1 – to – 1 trace links
and then those with 1 – to – m links.

The first inconsistencies that can be reported are about trace links.
When we select a TVM, or a subset of them, if the trace links are
not well-established, i.e., the Assumption 1 is not met (cf. Section
3), an inconsistency meaning that the consistency of the selected
variability cannot be checked without its trace links is reported. If
trace links are well-established, the FM and TVM are checked about
their self-consistencies of variability, then the consistency checking
between them is performed using our prototype implementation.

Single trace links. We selected several TVMs in each case study,
with the aim to assess our implementation with different types of
vp-s. When the variability was implemented in the right way and
the mapping was 1 – to – 1 to the feature in FM, then we could
check successfully their consistency. For example, when an optional
feature is implemented as an optional vp, their checking reports a
success. Consistency was also reported when a vp was a refactoring
form of a group of features in FM, e.g., when a group of or related
features are implemented as optional variants in a vp.

https://github.com/ternava/Variability-CChecking
https://github.com/ternava/Variability-CChecking

Similarly, we selected the TVMs that have different types of vp-
s, but now when the variability is not implemented properly. For
example, when an alternative group of features was implemented
as an or group of variants in a vp, or a mandatory feature was
implemented as an optional vp. In such case, their inconsistency was
reported as a difference between their numbers of configurations.

Then, within a single case study, we selected different subsets
of TVMs to check together the consistency of their variability to
the features in FM. When each individual TVM in the subset was
consistent, we could check that together they are consistent too.
Further, we combined a consistent TVM, or a group of them, with at
least one inconsistent TVM and we checked their variability together.
As was expected, we got an inconsistency, but now it is part of the
all selected TVMs, or their respective sliced FM.

In Figure 8 is shown the detection of an inconsistency for two
TVMs in Microwave Oven SPL. All kinds of inconsistencies are
reported as a difference between the number of vp-s and variants
configurations in TVMs and the number of feature configurations in
the sliced FM. Their configurations are also made available for any
further comparison.

Figure 8: The detected inconsistency for two TVMs

Multiple trace links. Our current implementation supports tracing
a feature to more than one vp or variant. It means that some vp-s are
technical or nested, which are not modeled in the specification level
but we consider them during the consistency checking of variability.
We applied our consistency checking method when a technical vp
and its variants are traced directly to the same specified feature in the
FM (cf. Figure 6). Under these 1 – to – m trace links, we did similar
evaluations with different types of vp-s. However an inconsistency
was always reported even when the other vp-s where consistent. As
a step toward a solution, we propose to slice the selected TVM by
removing the technical vp-s and keeping only vp-s and variants that
have single links to features in FM (cf. Section 3). Currently, this
extension is under implementation.

Execution time. By selecting a single or a subset of TVMs at a
time, the consistency checking is made possible early in the develop-
ment process, i.e., as soon as the specified variability is implemented
and documented. But, we also expected that the consistency check-
ing time for the resulting sliced formulas should be smaller. As for
comparison, we recorded the execution time for some TVMs in
Microwave Oven SPL, as it has most of the vp’s types. The resulting
data are given in Table 3. The measurements are performed on a PC
with 2.50 GHz and 4 GB RAM, on Windows 10.

We selected for checking three TVMs from the Microwave Oven
SPL, tvmlang , tvmtemp, tvmweight, with 7, 7, and 3 vp-s and
variants, respectively. We then checked them together. Execution
times in each case are reported in Table 3. For example, for tvmlang

we measured the execution time for the sliced FM ′ (.002), the TVM
itself (.007), and the time for checking their consistency (.005). The
execution time for checking the validity of the whole FM with 26
features and 720 configurations took around 0.13 seconds (it is
not shown in the Table). As we expected, the execution times for
checking the consistency of partial variability compared to validity
of only the FM is smaller. This may indicate that the number of
features and vp-s with variants tend to be smaller, but we did not
measure how much and for what number of vp-s and variants in
TVMs that are checked.

The slicing time of trace links and FM contribute also to the
consistency checking time of a TVM. We did not measure it as it is
a property of the slicing algorithm, and requires extra validation (see
Section 6).

5 RELATED WORK
Consistency checking of variability models and implementations is
a topic of prime importance since the emergence of SPLE [26]. In
the following we discuss works related to our approach according to
different aspects.

Metzger et. al [24] are among the first that propose to check con-
sistency between the variability at specification and implementation
levels. In their approach, the specified variability is modeled in an
orthogonal variability model (OVM) [25] in terms of vp-s and vari-
ants while the implemented variability is represented in an FM in
terms of features. Although not explicitly, the mapping between vp-s
and features is 1 – to – 1. Basically, they check when cross-tree
relations of features in FM or vp-s in OVM may cause inconsisten-
cies between each other. Unlike this approach, we advocate that the
implemented variability is better captured by a forest-like structure,
instead of a hierarchical structure that can be modeled by an FM.
Further, in our approach the vp-s are not merely abstractions, as they
are tags to the existing variability in core-code assets, which can be
implemented by different variability implementation techniques.

Le at. al [19] propose to check consistency of variability between
features in an FM and preprocessor directives in C, their mapping
being 1 – to – 1 and variability being implemented by only a sin-
gle technique. Differently from us, they check the consistency of
variability at once, considering that all features are implemented.
Another major difference is that they propose to extract the vari-
ability information from the core-code assets, i.e., the preprocessor
directives, and to rebuild the feature model which variability should
be checked against the existing FM. On our side we use a DSL to

Table 3: Times for consistency checking of TVM-s compared to self-consistency checking of the FM, in the Microwave Oven SPL

tvmlang tvmtemp tvmweight tvm{lang,temp} tvm{lang,temp,weight}

P. Formula FM’ TVM CC FM’ TVM CC FM’ TVM CC FM’ TVM CC FM’ TVM CC
configurations 6 6 6 5 5 5 2 2 2 30 30 30 60 60 60
Checking time
(avg. in sec.) .002 .007 .005 .0009 .008 .002 .001 .006 .002 .003 .015 .005 .008 .027 .013

document the implemented variability while it is implemented in a
forward engineering process [30].

In some points, the approach by Tartler et. al [29] is similar to
the one of Le at. al [19]. The main difference is that they check vari-
ability consistency in a specific software system – the Linux kernel.
Similarly, they check the total consistency of variability and identify
the dead or false optional features modeled in KConfig language and
their respective implementation as preprocessor directives. From our
part, we target any SPL that use traditional techniques for addressing
the variability in core-code assets.

Vierhauser et. al [32] propose a tooled approach for checking
the consistency between a variability model at specification level
and other realization models, including the core-code assets. Unlike
us, they define several consistency checking rules that are more
about checking whether the variable units are addressed, and not
if their relation logic is consistent with different models across the
abstraction levels. As a result, they do not check whether the right
mechanism or technique is used to realize the variability. As for their
checking at code level, code artifacts are transformed into model
elements and then checked. Another difference is that they propose
an incremental checking, i.e., whenever a developer makes a change
it will be checked for consistency. Similarly, we propose to check
the variability as earlier as it is implemented, but not after every
single change. We do not check if a feature is simply addressed, but
if the relation logic between a set of features are consistent with their
implementation.

6 DISCUSSION AND FUTURE WORK
Summary. In this paper, we proposed a method for checking auto-

matically the consistency between specification and implementation
variabilities early during the development process of an SPL. We
handle the case when variability, i.e., vp-s and variants, is imple-
mented by different variability implementation techniques, and has
n – to – m mapping to the specified domain features in an FM. The
application of our prototype implementation on four case studies,
with different types of vp-s, show that our method can be applied
successfully to check the consistency of variabilities between spec-
ification and implementation level as early as possible during the
development process.

On Challenges. In our context, variability consistency can be
checked successfully whenever features and vp-s with variants have
a single mapping, whereas it becomes harder when their mapping
is 1 – to – m, i.e., with multiple trace links. The difficulty to check
consistency under multiple links lies in the fact that it is ambiguous
how to trace the technical vp-s and variants that do not have a single
mapping to some features in the FM. We evaluated our method by

tracing them at the same feature as their parent vp (cf. Section 3).
Despite that some vp-s and variants with single links were consistent,
an inconsistency was reported. However, since multiple mapping
links between these levels of variabilities can be reduced to single
mapping links, it is possible to use the same presented method for
detecting the variability inconsistencies.

In this way, by checking the consistency between the specification
and implementation variabilities, and considering their multiple trace
links, we meet the challenges C1. and C2. (cf. Section 1). Also,
instead of doing a complete checking, we select a TVM or a subset
of them to detect their inconsistencies as early as possible during
the development process, i.e., immediately after some variability is
addressed, thus, meeting the challenge C3.

On the scope of the contribution. Except for the relation logic
between features or vp-s with variants, the consistency of variability
can be also checked with regards to their binding time or evolution.
Usually, these properties are modeled only at the realization level
and checking for their consistency requires them to be specified
at the specification level, too, e.g., only in TVMs are document
explicitly these two properties of vp-s (cf. Listing 1). This is also
the main limitation of our approach. First, the variability models in
both abstraction levels are required. Then, checking the binding time
requires it to be available in each variability model. Besides, for an
automatic checking, the binding time should be represented in the
propositional formula in some way.

Instead of using our DSL, the implemented variability can be
documented using other ways, such as a form of annotations [13].
When annotations are used, they should not only annotate the place
where a variable unit is implemented in core-code assets, but also
what is the relation logic between those units. This is related to
our consistency rule. Specifically, we did not check only whether
some variability is merely addressed. We checked whether the same
software products that are specified can be derived from the core-
code assets, within an SPL. Further, we supposed that the trace links
are well-established. Otherwise, when trace links are the source of an
inconsistency, we considered that it is not a variability inconsistency
anymore. It is then an inconsistency regarding the addressing and
mapping of variabilities, e.g., when we try to check the consistency
of an unimplemented variability or the mapping is mistaken.

In our work, variability is implemented by using a combined set of
traditional variability implementation techniques (e.g., inheritance,
design patterns). In these techniques the vp-s are not explicit such as
by using preprocessors in C. If we take preprocessors, they also can
offer all kinds of relation logic between variants in a vp. Although,
they offer a single binding time for vp-s compared to the case when
several traditional techniques are used. As preprocessors are a form
of annotations with variability information between variants, it could

be interesting to apply our consistency checking method when only
this implementation technique is used.

When an inconsistency is detected, it is supposed to be handled,
i.e., finding its location and resolving it. Finding its location is quite
trivial as we select a single TVM or a set of them for checking their
consistency against their sliced FM. When the location is known, the
variability inconsistencies as in Figure 5 can be resolved by changing
the implementation technique for the vp-s, changing the way how
the variants are implemented, or refactoring the specified features
in the FM. In order to give help for resolving such inconsistencies
at the implementation level, we have analysed around 20 variability
implementation techniques by 16 characteristic properties, which
are organized in form of a catalog. This catalog is available at https://
github.com/ternava/Expressions_SPL/wiki while we currently study
its validity.

Future Work. In the future, we plan to first raise some limitations
of our consistency checking method. The vp-s and variants may
have dependencies among different TVMs and the current prototype
of the DSL for modeling implemented variability does not support
yet these dependencies. It must be noted, the cross-dependencies of
vp-s and variants in core-code assets are different from the cross
tree-constraints of features in a feature model. Extending the DSL ac-
cordingly should improve our method and enables us to experiment
with other case studies.

As we need both variability models, we have not yet studied
precisely the scalability of our method. However the experimental
results on our case studies and the short execution time of TVMs in
Table 3 are promising indicators. In addition, we plan to use existing
slicing algorithms to slice the FM and compare their performances.
Choosing the best slicing algorithm will improve the scalability of
our implementation.

Some ongoing work is currently tackling the implementation and
analysis of the consistency checking method under 1 – to – m trace
links when the technical vp-s are first removed by slicing the TVM.
We expect these advances will complement the current method, so
that we can more largely evaluate its practicality and usefulness in
order to obtain insights to guide SPL practitioners.

REFERENCES
[1] Arcade Game Maker Pedagogical Product Line. http://www.sei.cmu.edu/

productlines/ppl/.
[2] JavaGeom case study. http://geom-java.sourceforge.net/index.html.
[3] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B France. 2011.

Slicing feature models. In Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering. IEEE Computer Society, 424–
427.

[4] Felix Bachmann and Paul C Clements. 2005. Variability in software product lines.
Technical Report. DTIC Document.

[5] Don Batory. 2005. Feature models, grammars, and propositional formulas. In
International Conference on Software Product Lines. Springer, 7–20.

[6] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
analysis of feature models 20 years later: A literature review. Information Systems
35, 6 (2010), 615–636.

[7] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, J Henk Obbink, and
Klaus Pohl. 2001. Variability issues in software product lines. In International
Workshop on Software Product-Family Engineering. Springer, 13–21.

[8] Rafael Capilla, Jan Bosch, and Kyo-Chul Kang. 2013. Systems and Software
Variability Management. Springer.

[9] James O Coplien. 1999. Multi-paradigm design for C++. Vol. 53. Addison-
Wesley Reading, MA.

[10] James O Coplien and Liping Zhao. 2000. Symmetry breaking in software pat-
terns. In International Symposium on Generative and Component-Based Software

Engineering. Springer, 37–54.
[11] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej

Wąsowski. 2012. Cool features and tough decisions: a comparison of variability
modeling approaches. In Proceedings of the sixth international workshop on
variability modeling of software-intensive systems. ACM, 173–182.

[12] Hassan Gomaa. 2005. Designing software product lines with UML. IEEE.
[13] Patrick Heymans, Quentin Boucher, Andreas Classen, Arnaud Bourdoux, and

Laurent Demonceau. 2012. A code tagging approach to software product line
development. International Journal on Software Tools for Technology Transfer
14, 5 (2012), 553–566.

[14] Ivar Jacobson, Martin Griss, and Patrik Jonsson. 1997. Software reuse: architec-
ture, process and organization for business success. ACM Press/Addison-Wesley
Publishing Co.

[15] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer
Peterson. 1990. Feature-oriented domain analysis (FODA) feasibility study.
Technical Report. DTIC Document.

[16] Kyo C Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang
Huh. 1998. FORM: A feature-; oriented reuse method with domain-; specific
reference architectures. Annals of Software Engineering 5, 1 (1998), 143.

[17] Stephen Cole Kleene. 2002. Mathematical logic. Courier Corporation.
[18] Sebastian Krieter, Reimar Schröter, Thomas Thüm, Wolfram Fenske, and Gunter

Saake. 2016. Comparing algorithms for efficient feature-model slicing. In Pro-
ceedings of the 20th International Systems and Software Product Line Conference.
ACM, 60–64.

[19] Duc Minh Le, Hyesun Lee, Kyo Chul Kang, and Lee Keun. 2013. Validating
consistency between a feature model and its implementation. In International
Conference on Software Reuse. Springer, 1–16.

[20] Daniel Le Berre and Anne Parrain. 2010. The sat4j library, release 2.2, system
description. Journal on Satisfiability, Boolean Modeling and Computation 7
(2010), 59–64.

[21] Roberto E Lopez-Herrejon and Don Batory. 2001. A standard problem for
evaluating product-line methodologies. In International Symposium on Generative
and Component-Based Software Engineering. Springer, 10–24.

[22] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej
Wąsowski. 2010. Evolution of the linux kernel variability model. In International
Conference on Software Product Lines. Springer, 136–150.

[23] Andreas Metzger and Patrick Heymans. 2007. Comparing feature diagram exam-
ples found in the research literature. Technical report, Univ. of Duisburg-Essen
(2007).

[24] Andreas Metzger, Klaus Pohl, Patrick Heymans, Pierre-Yves Schobbens, and
Germain Saval. 2007. Disambiguating the documentation of variability in software
product lines: A separation of concerns, formalization and automated analysis. In
Requirements Engineering Conference, 2007. RE’07. 15th IEEE International.
IEEE, 243–253.

[25] Klaus Pohl, Günter Böckle, and Frank J van der Linden. 2005. Software product
line engineering: foundations, principles and techniques. Springer Science &
Business Media.

[26] Alcemir Rodrigues Santos, Raphael Pereira de Oliveira, and Eduardo Santana de
Almeida. 2015. Strategies for consistency checking on software product lines: a
mapping study. In Proceedings of the 19th International Conference on Evaluation
and Assessment in Software Engineering. ACM, 5.

[27] Klaus Schmid and Isabel John. 2004. A customizable approach to full lifecycle
variability management. Science of Computer Programming 53, 3 (2004), 259–
284.

[28] George Spanoudakis and Andrea Zisman. 2001. Inconsistency management in
software engineering: Survey and open research issues. Handbook of software
engineering and knowledge engineering 1 (2001), 329–380.

[29] Reinhard Tartler, Julio Sincero, Christian Dietrich, Wolfgang Schröder-Preikschat,
and Daniel Lohmann. 2012. Revealing and repairing configuration inconsistencies
in large-scale system software. International Journal on Software Tools for
Technology Transfer 14, 5 (2012), 531–551.

[30] Xhevahire Tërnava and Philippe Collet. 2017. Tracing imperfectly modular
variability in software product line implementation. In International Conference
on Software Reuse. Springer, In press.

[31] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE: An extensible framework for feature-
oriented software development. Science of Computer Programming 79 (2014),
70–85.

[32] Michael Vierhauser, Paul Grünbacher, Alexander Egyed, Rick Rabiser, and Wolf-
gang Heider. 2010. Flexible and scalable consistency checking on product line
variability models. In Proceedings of the IEEE/ACM international conference on
Automated software engineering. ACM, 63–72.

https://github.com/ternava/Expressions_SPL/wiki
https://github.com/ternava/Expressions_SPL/wiki
http://www.sei.cmu.edu/productlines/ppl/
http://www.sei.cmu.edu/productlines/ppl/
http://geom-java.sourceforge.net/index.html

	Abstract
	1 Introduction
	2 Motivations
	2.1 Variability Modeling at Specification Level
	2.2 Variability Modeling at Implementation Level
	2.3 Trace Links
	2.4 On Consistency Checking

	3 Consistency Checking
	3.1 Principles
	3.2 Proposed Method

	4 Evaluation
	4.1 Implementation
	4.2 Applications

	5 Related Work
	6 Discussion and Future Work
	References

