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Introduction

The evaluation of the reachable space of a dynamical system is important for the verification of properties [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF], planification of trajectories and design of control laws to achieve closed-loop specifications [START_REF] Falcone | Predictive Threat assessment via reachability analysis and set invariance theory[END_REF]. Exact formulae can not always be determined, so that various methods have been developed to compute approximations of the reachable set. The case of linear finite dimensional systems has been deeply investigated [START_REF] Pecsvaradi | Reachable sets for linear dynamical systems[END_REF][START_REF] Varaya | Reach set computation using optimal control[END_REF]. The basic approach consists in reformulating the problem in terms of optimal control, which can be extended to the case of nonlinear systems [START_REF] Hwang | Polytopic approximations of reachable sets applied to linear dynamic games and to a class of nonlinear systems[END_REF] and hybrid systems [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF][START_REF] Guéguen | Safety verification and reachability analysis for hybrid systems[END_REF]. The effect of uncertainties or disturbances can also be handled using similar ideas and interval analysis [START_REF] Meslem | Approximation garantie de l'espace d'état atteignable des systèmes dynamiques continus incertains[END_REF].

The case of distributed systems has also been adressed. Systems with state delays are considered in [START_REF] Fridman | On reachable sets for linear systems with delay and bounded peak inputs[END_REF], where a bounding ellipsoid of the reachable state is derived using Linear Matrix Inequalities. This idea gave rise to many generalizations, to distributed delays and variable delays, see e.g. [START_REF] Chen | Improved results on reachable set bounding for linear systems with discrete and distributed delays[END_REF] and the references therein. The question is generalized in [START_REF] Olaru | Low complexity invariant sets for timedelay systems: A set factorization approach[END_REF] to that of the determination of invariant sets, for a class of discrete systems with delays.

A different approach was recently introduced. The question is formulated in [START_REF] Moussaoui | On bounds of input-output systems. Reachability set determination and polyhedral constraints verification[END_REF] in an input-output setting. This is the basis of the present work. It concerns a large class of convolution systems, that includes localized or distributed time delay systems, ordinary or neutral time-delay systems, fractional systems and many other distributed systems. The basic idea is to observe that the input-output gain of a convolution system is bounded by the L 1 norm of its kernel. This can be reinterpreted in terms of reachability: the output of a system with input in the unit ball is included into the ball which radius is the L 1 norm of the kernel. When the underlying topology is the infinite norm, this observation comes down to a polytopic bound of the reachable set of a constrained system. The aim of this communication is to develop this idea, and to provide basic tools for the determination of polytopic approximations of the reachable set for a large class of convolution systems. For a multivariable convolution system, which input is constrained in a given polyhedron, we formulate conditions for the output of the system to evolve in another given polyhedron. The conditions are formulated in terms of integrals deduced from the kernel of the considered system and the given polyhedra. The conditions are necessary and sufficient, which shows that the bounds are in some sense exact.

The article is organized as follows. In section 2, we recall the basic concepts that are used, in particular the definition of the Wiener algebra, and of a polytope. We identify bounds for the output of a given constrained system over the Wiener algebra in section 3. These bounds are used to design overapproximations and underapproximations of the reachable set of the system at a given time horizon. In section 4, the result is discussed, and illustrated on examples. Section 5 is a short conclusion.

Background Concepts

Convolution Kernels

An input-output linear system given in the form of a convolution,

y = h u , (1) 
is BIBO-stable if its kernel h belongs to the class A of generalized functions of the form

h(t) = h a (t) + ∑ i∈N h i δ (t -t i ) , (2) 
where h a is in L 1 , h i ∈ R, t i ∈ R + , t i < t i+1 for i ≥ 0, and ∑ i∈N |h i | < ∞ . The set A endowed with the convolution product forms a Banach commutative algebra for the norm

||h|| A = +∞ 0 |h a (t)|dt + ∑ i∈N |h i | . (3) 
This norm was shown to be the induced norm when h is seen as an operator over L ∞ . We indeed have

sup u =0 ||h u|| ∞ ||u|| ∞ = ||h|| A , (4) 
for every h in A . Here, as usually, || • || ∞ denotes the sup-norm on L ∞ , say ||u|| ∞ = ess sup t≥0 |u(t)|, ||y|| ∞ = ess sup t≥0 |y(t)|. This shows that every bounded input leads to a bounded output, and that ||h|| A gives an exact bound on the output y(t).

The set A is sometimes called Wiener algebra (see, e.g. [START_REF] Quadrat | A lattice approach to analysis and synthesis problems[END_REF]). Many properties of the set A are exposed in [START_REF] Hille | Functional analysis and semi-groups[END_REF], and its use in control theory was gradually introduced by various authors, among them C. A. Desoer [START_REF] Desoer | Convolution feedback systems[END_REF][START_REF] Desoer | Feedback systems: input-output properties[END_REF][START_REF] Callier | An algebra of transfer functions for distributed linear timeinvariant systems[END_REF], F. Callier [START_REF] Desoer | Convolution feedback systems[END_REF][START_REF] Callier | An algebra of transfer functions for distributed linear timeinvariant systems[END_REF] and M. Vidyasagar [START_REF] Desoer | Feedback systems: input-output properties[END_REF]. The set of fractions of elements of A (σ ) = e -σt A is called the Callier-Desoer class and is a key concept to describe robust stabilization methods for a large class of distributed systems. The matter continues to generate interesting results, see for instance A. Quadrat [START_REF] Quadrat | A lattice approach to analysis and synthesis problems[END_REF], or P. Lakkonen [START_REF] Lakkonen | Robust regulation for infinite-dimensional systems and signals in the frequency domain[END_REF] for a recent survey.

The transfer of a system of the form (1) is the Laplace transform ĥ(s) of the kernel h(t). For instance, the class A includes: -the class of linear finite dimensional systems with rational transfer, e. g.

ĥ(s) = (sI -A) -1 , h(t) = e At ,
-the class of time-delay systems, e. g.

ĥ(s) = e -θ s 1 + sT , h(t) = 0 , for t < θ , e t-θ , for t ≥ θ , ,
that are important models in many applications, -the class of systems with distributed delays, e. g. ĥ(s) = 1e θ a e -θ s sa , h(t) = e at , for t ≤ θ , 0 , for t > θ , , that are important for the stabilization of time-delay systems, -BIBO stable diffusive systems, e. g.

ĥ(s) = 1 -e -α √ s √ s , h(t) = 1 -erfc α 2 √ t .
This short list is not exhaustive. The class also includes many other linear distributed systems, and covers many application fields [START_REF]Applications of time delay systems[END_REF][START_REF]Advances in Fractional Calculus[END_REF]. The system (2) is said to be regular if h(t) = h a (t), or equivalently if the singular part is absent, say h i = 0 for i ∈ N. Notice that the class of regular systems is also very large, for instance the four examples of transfer functions mentioned above belong to this family.

Finally notice that in the present paper, we basically consider systems with kernels of the form (2) that are well define, in the sense that the kernel h(t) is integrable over every finite interval [0,t]. This includes the Callier-Desoer class, which justifies the use of this expression in the title of the paper. In Section 3.3, we shall assume that the kernel of the system is defined over A .

Reachable Sets

We now consider a multivariable convolution system, defined by a kernel H, say

y = H u , (5) 
where u(t) ∈ U ⊂ R m , for t ≥ 0. Recall that the convolution product is defined as

y i (t) = t 0 ∑ j H i j (t -τ)u j (τ)dτ . (6) 
We consider a system with entries of the form (2), so that H i j (t) = h a i j (t) + ∑ k∈N h ki j (tt k ), for i = 1 to p and j = 1 to m.We hence have, for i = 1 to p:

y i (t) = ∑ j t 0 h a i j (t -τ)u j (τ)dτ + ∑ k|t k ≤t h ki j u j (t -t k ) .
We are interested into the characterization of the range of system [START_REF] Desoer | Convolution feedback systems[END_REF]. The basic concept is that of reachable set.

Definition 1. System (5) and a subset U of R m being given, we say that an input function u is admissible, if u(t) ∈ U , for t ≥ 0. The reachable set R(U ) is then defined as the set of vectors x ∈ R p for which there exists an admissible control u such that the output y(t) defined by (5) satisfies y(t) = x for some t ≥ 0. We also define the set R(U ,t) of vectors x that are reachable at t, so that x = y(t) for some admissible input u, and the set R t (U ) of the vectors x reachable within t, so that x = y(τ), for some instant τ satisfying 0 ≤ τ ≤ t.

These definitions are taken from [START_REF] Varaya | Reach set computation using optimal control[END_REF], a seminal paper on the computation of reachable sets for systems without memory. We remark that

R t (U ) = τ∈[0,t] R(U , τ) , and 
R(U ) = t>0 R(U ,t) = t>0 R t (U ) .
One can see that R(U ,t) is convex, if U is convex. In Section 3, we shall in particular study the case where U is given in the form of a polytope C (M). The sets R t (U ) and R(U ) are not convex, in general. Let us discuss these aspects. The sets R t (U ) and R(U ) are not connected, in general. This is due to the singular part of the kernels of the form [START_REF] Chen | Improved results on reachable set bounding for linear systems with discrete and distributed delays[END_REF], that may cause discontinuity of the solution y(t). Consider for instance the kernel h(t) = δ (tθ ), where θ is any positive number, and U = {1}. We have in this example R(U ) = {0, 1}, that is not connected. One can find conditions under which the sets are connected, or convex. Proposition 1. System (5) being given, together with a subset U of R m , and a real number t ≥ 0, the following claims are true.

(i

) The set R(U ,t) is convex if U is convex. (ii)
The sets R t (U ) and R(U ) are connected if U is convex and the kernel of the system is regular.

(iii) The sets R t (U ) are growing with t if 0 ∈ U .

(iv) The sets R t (U ) and R(U ) are convex if U is convex, and 0 ∈ U .

Proof. Notice first that if U is convex, and y and y are reached using the admissible input trajectories u(t) and u (t), respectively, then αu(t) + (1α)u (t) is admissible too, and permits to reach αy + (1α)y . This shows that R(U ,t) is convex if U is convex. Further, the trajectories y(t) of the system are continuous when the kernel is regular. Consider now two points y and y in R(U). There exist admissible inputs u and u , and two instants t,t ≥ 0 such that y = (H u)(t) and y = (H u )(t ). We can assume, without any limitation, that t < t. Defining y = (H u)(t ), one can see that there is a path from y to y in R(U ,t ), since this set is convex. There is also a path from y to y in R t (U ), since y(τ) is continuous, and takes its values into R t (U ), by definition of this set. Therefore, since R(U ,t ) is a subset of R t (U ), one deduces that there exists in the latter set a path from y to y, which shows the second assertion of the proposition. The third assertion is obtained remarking that if y ∈ R(U ,t) and 0 ∈ U , then there exists an admissible function u, and an instant t, such that y = (H u)(t). One can see that y = (H u )(t ), taking u (τ) = 0, for τ ∈ [0,tt[, and u (τ) = u(t + τt ), for τ ≥ tt. This shows that y ∈ R(U ,t ), for every t greater than t, and establishes the third assertion. The last assertion is a consequence of (i) and (iii).

As a consequence to this remark, the hypotheses that U is convex and 0 ∈ U are often formulated in the literature, even in the case of localized systems. Of course, these assumptions are limitative. The identification of more accurate conditions might be useful in certain applications with discontinuous behaviors.

Elements of Convex Analysis

We now recall the definition of a polytope and some basic concepts of convex analysis. These concepts are taken from [START_REF] Rockafellar | Convex Analysis[END_REF] (see in particular sections 6 and 13), and will be useful to analyse the reachability of constrained convolution systems.

A convex set C ⊂ R n is such that, for every x, y ∈ C , and every λ ∈ [0, 1], the vector z

= λ x + (1 -λ )y lies in C . The support function of C is f C : R n → R n , defined by f C (v) = sup x∈C v T x , for v ∈ R n . Notice that f C (v) takes only finite values if C is bounded. The ball of radius ε centered on x ∈ R n is denoted B(x, ε), as usually. A convex set C is open if there exists ε > 0 such that the ball B(x, ε) is included into C. It is closed if its complement is open. The least closed set containing C is called its closure, denoted C . The greatest open set included into C is called the interior of C .
The concept of relative interior, that we now recall, is specific to the convex sets. The affine hull of a convex set C is denoted aff C and is defined as the set

aff C = {z ∈ R n | ∃x, y ∈ C , α ∈ R, z = x + α(y -x)} .
An affine set can also be written as aff C = x + lin C , for any element x ∈ C , where linC is the vector space generated by the differences yx, with y ∈ C . The relative interior of C , denoted ri C , is the interior of C when it is considered as a subset of aff C , say riC

= {x ∈ R n | ∃ε > 0, B(x, ε) ∩ aff C ⊂ C } .
One says that C is relatively open if it equals its relative interior. If C is reduced to a unique point, then lin C = 0 and riC = C = C . In general, the three sets C , riC , and C are different, and we have the following.

Theorem 1. Two convex sets C 1 and C 2 being given, the following claims are equivalent.

(i) f C 1 (v) = f C 2 (v), for every vector v ∈ R n , (ii) C 1 = C 2 , (iii) ri C 1 = ri C 2 .
For a convex set C , and a vector v ∈ R n , we have the inclusion {v

T x | x ∈ C } ⊂ [-f C (-v), f C (-v)], because inf x∈C {v T x} = -sup x∈C {-v T x}.
The bounds are exact, and they belong or not to the set, depending on its topological property. The following theorem precises this aspect (this is Theorem 13.1 of [START_REF] Rockafellar | Convex Analysis[END_REF]).

Theorem 2. A nonempty convex set C being given, the following claims hold true.

(i) C is closed if and only if ∀v ∈ R n , {v T x | x ∈ C } = [-f C (-v), f C (-v)]. (ii) C is open if and only if ∀v ∈ R n , {v T x | x ∈ C } =] -f C (-v), f C (-v)[. (iii) C is relatively open if and only if {v T x | x ∈ C } =] -f C (-v), f C (-v)[, ∀v ∈ R n such that -f C (-v) < f C (v).
We finally recall basic facts and definitions concerning polytopes. Definition 2. A matrix M ∈ R m×n being given, the convex polytope of R m generated by the columns of M is the set denoted C (M), and defined by

C (M) = x ∈ R m | ∃v ∈ R n , v ≥ 0, n ∑ i=1 v i = 1, x = Mv .
The relatively open polytope generated by M is defined by

C ro (M) = x ∈ R m | ∃v ∈ R n , v i > 0, n ∑ i=1 v i = 1, x = Mv .
In other words, introducing the notation Γ = {v ∈ R n , v ≥ 0, ∑ n i=1 v i = 1}, we have C (M) = MΓ , and C ro (M) = MriΓ = ri MΓ . The following result is then clear (see Theorem 6.6 and 6.9 from [START_REF] Rockafellar | Convex Analysis[END_REF]).

Proposition 2. For every matrix M, we have the equality ri C (M) = C ro (M) . Definition 3. A matrix P ∈ R q×p and a vector π ∈ R q being given, the polyhedron denoted P(P, π) is the set defined as

P(P, π) = {z ∈ R p | Pz ≤ π} .
The relatively open polyhedron P ro (P, π) is defined by

P ro (P, π) = z ∈ P(P, π) | p ∑ j=1 P i j z j < π i , for i ∈ J(P, π) , with J(P, π) = {i | ∃z ∈ P(P, π), ∑ p j=1 P i j z j < π i }.
In other words, some of the constraints corresponding to the rows of the matrix P and the vector π actually define the affine hull of P(P, π). The other ones, corresponding to the set J(P, π), define a subset of aff P(P, π), with a nonempty interior that equals ri P(P, π). We hence have the following result. Proposition 3. A matrix P ∈ R p×m and a vector π ∈ R p being given, the following equality holds true ri P(P, π) = P ro (P, π) .

We are now ready to study the reachable set of convolution systems.

3 Polyhedral Bounds of the Reachable Set

Elementary Bounds

A basic question consists in determining the range of the output y(t) of system [START_REF] Desoer | Convolution feedback systems[END_REF]. We are precisely interested in verifying whether or not the output y(t) belongs to a given polyhedron, provided that the input u(t) evolves in another given polyhedron.

The following elementary remark will be useful in the sequel.

Lemma 1. Let be given a vector x ∈ R n and a vector v in the convex set Γ = {v ∈ R n , v ≥ 0, ∑ n i=1 v i = 1} defined as in Definition 2. Then, we have

max v∈Γ n ∑ j=1 x j v j = max j x j .
Proof. Since x j ≤ max j x j , it is clear that ∑ n j=1 x j v j ≤ (max j x j )(∑ n j=1 v j ). By definition of Γ , it appears that ∑ n j=1 x j v j ≤ max j x j , so that max v∈Γ ∑ n j=1 x j v j ≤ max j x j . This is an exact bound, which follows considering the vector v defined by v k = 1 and v j = 0, for j = k, with k = arg max j x j . This ends the proof.

We are now able to formulate the basic result on polyhedral bounds of system (5).

Theorem 3. System (5) being given, together with matrices M ∈ R m×n , P ∈ R q×p , a vector π ∈ R q , and t > 0, then y(t) belongs to P(p, π) for every input satisfying u(τ) ∈ C (M), for τ ≥ 0, if and only if the following condition holds true for i = 1 to q:

t 0 max j (PH(τ)M) i j dτ ≤ π i .
Proof. To begin with the proof, we proceed by equivalences:

y(t) ∈ P(P, π) ⇐⇒ Py(t) ≤ π
, by definition of P(P, π),

⇐⇒ t 0 PH(τ)u(t -τ)dτ ≤ π , by definition of the system, ⇐⇒ t 0 PH(τ)Mv(t -τ)dτ ≤ π , by definition of C (M), ⇐⇒ t 0 max j (PH(τ)M) i j dτ ≤ π i , by Lemma 1.
Assuming that H is a matrix with inputs that are integrable over [0,t], we observe that the integrals in these equivalences are well defined. They are indeed bounded by the product p

• m • max k {|P ik |} • B • max l |{M l j |}, if
B is a bound of the integrals of the entries of H, for instance B = max k,l ||H kl || A , if H is a matrix over A . In these statements, the vector v(tτ) lies in Γ , by hypothesis, which permits to apply Lemma 1. The fact that this lemma gives exact bounds is essential to obtain the last equivalence, from which the theorem is deduced.

A preliminary version of this result was obtained in [START_REF] Moussaoui | On bounds of input-output systems. Reachability set determination and polyhedral constraints verification[END_REF]. We first remark that upper bounds and lower bounds of the behavior of the given system can be derived from Theorem 3. For this purpose, one defines

λ i (t) = t 0 min j (H(τ)M) i j dτ , (7) 
and

µ i (t) = t 0 max j (H(τ)M) i j dτ . ( 8 
)
Corollary 1. The matrix M and the system (5) being given as in Theorem 3, and λ i (t), µ i (t) being defined as in ( 7), (8), we have

λ i (t) ≤ y i (t) ≤ µ i (t) ,
for i = 1 to p. In addition, the bounds are reached, so that the range of y i (t), when the input satisfies u(τ) ∈ C (M), for τ ≥ 0, is exactly the closed interval

[λ i (t), µ i (t)].
Proof. The upper bound of Corollary 1 is obtained taking P = I p in Theorem 3.

The lower bound is obtained with P = -I p , since min j {x j } =max j {-x j }, and max v∈Γ {-x j v j } = min v∈Γ x j v j , with Γ defined as in Lemma 1.

To complete the proof, we remark that the upper bound µ i (t) is indeed reached using the control defined by u k (τ) = M k j(t-τ) , for k = 1 to m and τ ∈ [0,t], with

j(τ) = arg max j (H(τ)M) i j .
Similarly, the lower bound is reached using the control that maximizes -y i (t), that is defined in terms of an argument of max j -(H(τ)M) i j .

We can finally remark the following fact, that will be useful in Section 3.3.

Corollary 2. Under the conditions of Corollary 1, the range of y

i (t) when u(τ) ∈ C ro (M) equals the open interval ]λ i (t), µ i (t)[, if λ i (t) < µ i (t), and is reduced to {µ i (t)}, if λ i (t) = µ i (t).
Proof. If the equality λ i (t) = µ i (t) is satisfied, one can see that min j (H(τ)M) i j = max j (H(τ)M) i j almost everywhere in the interval [0,t], and therefore the kernels (H(τ)M) i j , for j = 1 to n, are equal almost everywhere in this interval. In this case, y(t) takes a unique value, say t 0 (H(τ)M) i1 dτ. If λ i (t) < µ i (t), then the different kernels (H(τ)M) i j , for j = 1 to n, are not equal on a subset of [0,t] having a nonzero measure. Taking an instant t from this set, we observe that min j (H(τ)M) i j < H(τ)u(tτ) < max j (H(τ)M) i j holds true, for every input u(tτ) ∈ C ro (M), from which one deduces that λ i (t) < y i (t) < µ i (t). The conclusion is obtained remarking that the bounds can be approached with an arbitrary precision. To this aim, define K = t 0 ∑ k max j (H(τ)M) i j -(H(τ)M) ik dτ. We can see that K is positive, and has a finite value if the kernel is integrable over [0,t]. Taking u(tτ) = Mν(tτ), with v j (tτ) = 1 -(n -1)ε/K, and v k = ε/K, for k = j(tτ), we obtain y i (t) = µ i (t)ε. The lower bound λ i (t) is approached in the same way, using an argument j(τ) of max j -(H(τ)M) i j and defining now K = t 0 ∑ k (H(τ)M) ikmin j (H(τ)M) i j . One checks that the input defined by u(t -τ) = Mν(t -τ), with v j (t -τ) = 1-(n-1)ε/K, and v k = ε/K, for k = j(t -τ) leads to an output verifying y i (t) = λ i (t) + ε, which ends the proof.

Polyhedral Approximations of the Reachable Set

The previous results can be interpreted in terms of reachability.

Remark that the difference between the left and right members of the condition of Theorem 3 is the distance between the reachable set and the plan {y ∈ R p | ∑ j P i j y j = π i }. The left member of the condition, say

ρ i (t) = t 0 max j (PH(τ)M) i j dτ , (9) 
is therefore so that the plan {y ∈ R p | ∑ j P i j y j = ρ i (t)} is tangent to the reachable space at t, say R(C (M),t), of the system constrained by U = C (M). If the matrix P is given, the polyhedron P(P, ρ(t)) is the least polyhedron whose faces are oriented according to P, and that contains the reachable set. One can also compute a point of the intersection between the face and the reachable set. We first define the integers

j k (τ) = arg max j (PH(τ)M) k j ,
for k = 1 to q, and the output vectors

ν i (k,t) = t 0 (H(τ)M) i j k (τ) dτ ,
for k = 1 to q, and i = 1 to p. Then, N is defined as the matrix which columns are the vectors ν(k,t), say N i j = ν i ( j,t) , for i = 1 to p, j = 1 to q. The following definitions are inspired by [START_REF] Varaya | Reach set computation using optimal control[END_REF].

Definition 4. A compact convex set R being given, we say that a polyhedron is an exact outer approximation of R if its faces are tangent to R, and that it is an exact inner approximation of R, if its vertices are on the boundary of R.

Theorem 4. The system (1) being given, together with an integer q and two matrices P ∈ R q×p and M ∈ R m×q , and taking N and ρ defined as above, the convex polytope C (N) is an exact inner approximation, and the polyhedron P(P, ρ(t)) is an exact outer approximation, of R(C (M),t).

Proof. For k = 1 to q, the control defined by u

(k) (t -τ) = Mv (k) (τ), with v (k) j (τ) = 1, if j = j k (τ), and v (k) j (τ) = 0, if j = j k (τ), satisfies (Py) k (t) = ρ k (t)
. This shows that the faces of P(P, ρ(t)) are tangent to R(C (M),t), and the vertices of C (N) are on the boundary of R(C (M),t), which ends the proof.

In other words, we have the chain of inclusions C (N) ⊂ R(C (M),t) ⊂ P(P, ρ(t)), and the distance between the three sets is null:

inf{d(x, y) | x ∈ C (N), y ∈ R(C (M),t)} = 0 , and inf{d(y, z) | y ∈ R(C (M),t), z ∈ P(P, ρ(t))} = 0.
The precision of the approximation can be defined as the Hausdorff distance between the upper and lower approximations, defined, since C (N)) ⊂ P(P, ρ(t)), as:

max{d(z, C (N)) | z ∈ P(P, ρ(t))} .
This distance is decreasing when rows are added to the matrix P. This permits to reach an arbitrary precision choosing a matrix P that corresponds to plans in many different directions. In practice, the number of rows is rapidly growing with the dimension of the system. For this reason, one may prefer rough approximations in high dimension. Anyway, this formulation is well fitted for numerical computations. The integrals can be easily approximated using Matlab or Scilab, for instance, provided that the kernel H(t) is explicitly known, or can be numerically computed. We shall give a simple example in Section 4.

We complete this study with remarks concerning the topological structure and the approximation of R t (U ) and R(U ).

Additional Comments on the Structure of the Reachable Set

We first complete the previous results in terms of the reachable set at a given instant. Proposition 4. The matrix M ∈ R m×n , an instant t ≥ 0 and the system (5) being given, then the following claims are true.

(i) The set R(C (M),t) is closed. (ii) The set R(C ro (M),t) is relatively open. (iii) We have the equalities R(C ro (M),t) = ri R(C (M),t).
Proof. The proof uses Theorem 2 (that is Theorem 13.1 of [START_REF] Rockafellar | Convex Analysis[END_REF]), and a variant of Theorem 3 and Corollary 2. According to claim (i) of Proposition 1, the set R(C (M),t) is convex. We then remark that the support function of

R(C (M),t) is defined, in any direction v ∈ R p , by f R(C (M),t) (v) = t 0 max j {(v T H(τ)M) j }dτ. Applying Corollary 2, one obtains that v T R(C (M),t) is either reduced to a sin- gle element, if f R(C (M),t) (v) = -f R(C (M),t) (-v), or equal to the open interval ] -f R(C (M),t) (-v), f R(C (M),t) (v)[, if -f R(C (M),t) (-v) < f R(C (M),t) (v).
The second claim is therefore deduced from claim (iii) of Theorem 2. In a similar way, one can see that for every v ∈ R p , the set v T R(C (M),t) is a closed interval. The claim (i) is then deduced from claim (i) of Theorem 2. From Corollary 1 and Corollary 2, we conclude that actually R(C (M),t) is the closure of R(C ro (M),t). We further obtain from Theorem 2 that the open interior of both sets are equal, and the conclusion follows since R(C ro (M),t) is equal to its relative interior, from claim (i).

In other words, the set R(C (M),t) is closed if the kernel H(t) is integrable over [0,t], because the limits are reached in the inequalities presented in Section 3.1, and its relative interior coincides with the set of points that are reachable using inputs in the relative interior of the polyhedron U = C (M). When t tends to the infinity, the upper bound found for y(t) when the system is subject to a bounded input u(t) converges to a bounded limit (assuming that system (5) is over A ), but this limit may be reachable, or not, depending on H(t), and the choosen direction v. As a consequence, R(C (M)) is not closed, in general. In the same way, when the kernels include delayed diracs, the function µ i (t) may be discontinuous, so that the set of points that are reachable within a finite time, R t (C (M)), is not always closed.

Consider for instance the system y = h * u, with h(τ) = f a (τ)δ (1τ), with f a (τ) = 1, for τ ∈ [0, 1], and f a (τ) = 0, for τ > 0. We have

y(t) = t 0 f a (τ)u(t -τ)dτ , for t < 1, t 0 f a (τ)u(t -τ)dτ -u(t -1) , for t ≥ 1. (10) 
One can verify that taking u(τ) = 1 on this exemple, we obtain y(t) = t, for t ∈ [0, 1[, and y(t) = 0, for t ≥ 1. The point y = 1 is not reachable within t = 1, if U = {1}.

We have in this case M = (1), C (M) = {1}, and

R t (C (M)) = [0,t], for t ∈ [0, 1[, and R t (C (M)) = [0, 1[, for t ≥ 1.
A singular kernel may also cause that R t (C (M)) and R(C (M)) are not connected set. The consequences of these remarks are different in terms of outer or inner approximations.

Remark 1. We can adapt Theorem 3 and Corollary 1 to have the constraint y(τ) ∈ P(P, π) satisfied within a finite time interval, say [0,t], or respectively for t ≥ 0. For this purpose, one now defines

ρ i (t) = sup 0≤θ ≤t θ 0 max j (PH(τ)M) i j dτ , (11) or, respectively, 
ρ i = sup t≥0 t 0 max j (PH(τ)M) i j dτ . (12) 
We then obtain the following bounds within t:

y i (θ ) ≤ ρ i (t) ,
for θ ∈ [0,t], or, respectively

y i (t) ≤ ρ i for t ≥ 0.
Going on in this direction, we remark that the polyhedra P(P, ρ(t)), or P(P, ρ), respectively, are outer approximations of R t (C (M)) and R(C (M)), respectively. As introduced in Proposition 1, additional hypotheses can be introduced to be able to calculate inner approximations of the reachable sets.

Remark 2. The integral that appears in ( 12) is an increasing function of the time t, when its integrand is non-negative. This is always the case when 0 lies in C (M), or when the kernel H(t) and the matrix M are non-negative. In this case, the bound (12) is equal to

ρ i = ∞ 0 max j (PH(τ)M) i j dτ ,
that is well-defined if H(t) is defined over A .

Under the same hypothesis, that 0 ∈ C (M), we observe that ρ i (t) is actually given by ( 9), and R t (C (M)) = R(C (M),t). In this case, the procedure presented in Section 3.2 can be used to calculate a matrix N that corresponds to a lower approximation of the reachable set R t (C (M)). We can also adapt this procedure to the case of an indefinite integral. For k = 1 to q, we define N as in Section 3.2, with t = ∞. According to Definition 4, we have obtained an exact approximation of the closure of the reachable set. We may remark that C (N) is not included into R(C (M)), in general, but we have the inclusion C ro (N) ⊂ R(C ro (M)) ⊂ P ro (P, ρ). In this sense, the matrices P, N, and the vector ρ also define exact approximations of the relatively open reachable set.

Remark 3. In many applications, one wants to compute approximations of the tube (R(C (M),t),t) ⊂ R p × R + . As suggested in claim (ii) of Proposition 1, this tube is well defined if the kernel of system ( 4) is regular. The tube is then approximated using polyhedral approximations of R(C (M),t i ) at successive instants t i .

Remarks and Examples

Positive Kernels

The classical characterization of the positivity of a system in terms of the positivity of its kernet can also be seen as a consequence of Theorem 3.

Definition 5. The system (1) is said to be non-negative if every non-negative input u(t) leads to a non-negative output y(t). The multivariable system (5) is non-negative if its entries are all non-negative.

Corollary 3. The system (1) is non-negative if and only if its kernel (2) is nonnegative alsmost everywhere. The system (5) is non-negative if and only if all the entries of its kernel H(t) are non-negative almost everywhere.

Proof. By definition, the system (1) is non-negative if R(C (M)) ⊂ P(P, π), with M = (0, 1), P = (-1), and π = (0). Applying Theorem 3, we conclude that t 0 max{0, -h(τ)}dτ ≤ 0, for t ≥ 0, from which we deduce that h(τ) takes nonnegative values almost everywhere.

If the system (2) is positive, and u(t) lies in [α, β ], we have the following inequalities, for t ≥ 0

α t 0 h(τ)dτ ≤ y(t) ≤ β t 0 h(τ)dτ .
In addition, these bounds are exact, in the sense that they are reached. If in addition the kernel h(t) is an element of A , then we have y(t) ∈ [α h A , β h A ]. The limits of this interval may be reached or not, but they are exact in the sense of the discussion of section 3.3, for instance we have

R(C ro (M)) =]α h A , β h A [.
This first result can be generalized to kernels that are not necessarily positive. Every measure h in A can be uniquely decomposed into a difference h = h +h -, where h + and h -are two positive measures in A with disjoint supports. Then if α ≤ u(t) ≤ β , the range of y(t) is given by

α t 0 h + (τ)dτ -β t 0 h -(τ)dτ ≤ y(t) ≤ β t 0 h + (τ)dτ -α t 0 h -(τ)dτ ,
for any positive t, that can be rewritten as

t 0 min {αh(τ), β h(τ)} dτ ≤ y(t) ≤ t 0 max {αh(τ), β h(τ)} dτ ,
that in turns appears to be a consequence of Theorem 3. The latter formulation is well fitted for numerical computations, since it avoids the computation of h + and h -. Indeed the infinite integral can be easily approximated using Matlab or Scilab, provided that h(t) is explicitly known, or can be numerically computed. We also remark that this formula gives the way to calculate a control law u max that maximizes the output. This control law is given by

u max (t -τ) = α , if max {αh(τ), β h(τ)} = αh(τ) , β , else , (13) 
for any positive t. In the same way, the control given by 

u min (t -τ) = α , if min {αh(τ), β h(τ)} = αh(τ) , β , 

Constrained Control and D-invariance

We give here a simple example of the explicit computation of the bounds of inputoutput systems. It illustrates that these techniques may be useful to design control laws for constrained systems.

We consider the following model, which was introduced by Simon some years ago [START_REF] Simon | On the application of servomechanism theory in the study of production control[END_REF]. The inventory level y(t) of a simple logistic system follows the law ẏ(t) = u(tθ )d(t) , wher u(t) is the production rate order and d(t)is the instantaneous demand. We assume that for t < θ , we have ẏ(t) = φ (t)d(t), where φ (t) corresponds to some initial condition. We choose the control law in the form

u(t) = K(y c -z(t)) , with z(t) = y(t) + t t-θ u(τ)dτ for t ≥ θ , y(t) + θ t φ (τ)dτ + t 0 u(τ)dτ for t < θ . One can show that the solution is written ŷ(s) = 1 + K 1-e -sθ s s + K y 0 + φ (s) -d(s) + Ke -sθ s + K . y c s + φ .
We therefore introduce the notations

ĥ1 (s) = 1 + K 1-e -sθ s s + K ĥ2 (s) = Ke -sθ s + K
that are the Laplace transform of the kernels These results were obtained using other methods in [START_REF] Moussaoui | Controller design for a class of delayed and constrained systems: Application to supply chains[END_REF]. The same model can also be used to study the congestion control in communication networks, and similar results have been expounded in [START_REF] Ignaciuk | Congestion control in data transmission networks. Sliding modes and other designs[END_REF].

h 1 (t) = 1 , for t ∈ [0, θ [ , e -K(t-θ ) , for t ≥ θ , h 2 (t) = 0 , for t ∈ [0, θ [ , e -K(t-θ ) , for t ≥ θ ,

Example of Approximation of the Reachable Set

Let us consider the following time delay system ẋ(t) = -2 0 0 -1 x(t) + 1 0 -1 1 x(t -1) + 0 1 0.5 0 x(tπ) + -0.5

1 u(t) ,
where the initial state of the system is taken as x(t) = 0 for t ∈ [-π, 0], and u(t) verifies u(t) ∈ U = {0 ≤ u(t) ≤ 1} , for t ≥ 0. Formally, this system can be rewritten in the form x(t) = (H u)(t) ,

where H ∈ A 2×1 . The first step of the design is to numerically compute the kernels H 11 (t) and H 21 (t) using the solver dde23 of MATLAB. The result is plotted in Fig. 1. The second step of the design consists in the computation of the outer and inner approximations of the reachable set of the system. For this purpose, we consider the matrix P that is obtained by the concatenation of row vectors of the form (cos 2kπ K , sin 2kπ K ), for k = 1 to K, and apply the procedure indicated in section 3.2 to compute the vector ν and the matrix N, so that the outer and inner approximations of the reachable set are respectively P(P, ν) and C (N). The polyhedra obtained for K = 5 are shown in Fig. 4.3. We also represent on the figure the reachable set, that was finely approximated using K = 360. 

Conclusions

We have characterized bounds for a class of input-output systems defined by a convolution. They are derived from the concept of BIBO stability, and are given in terms of integrals that are easy to compute numerically. A method for the approximation of reachable sets of convolution systems was obtained from these bounds. We shortly commented the topological structure of the reachable set and the case of positive systems. The method was illustrated on a simple regulation problem of inventory level in a logistic system, and on an academic example of system with two non-commensurable delays.

and we notice that h 1 A

 1 = θ + 1/K, and T 2 A = 1. Assuming that the range of the external demand d(t) is [0, d max ], we deduce the bounds-d max h 1 A + y c h 2 A ≤ y(t) ≤ y c h 2 Athat leads to explicit bounds on y(t)y cd max θ + 1 K ≤ y(t) ≤ y c ,for t ≥ θ , and on the admissible initial conditionsy 0 + wip 0θ ≤ y(t) ≤ y 0 + wip 0 .over the initial period t ∈ [0, θ [, with wip 0 = θ 0 φ (τ)dτ. From these bounds, one can easily deduce conditions to meet the constraints on the production and inventory capacity, that are given as u(t) ∈ [0, u max ] and y(t) ∈ [0, y max ], for every demand in the range d(t) ∈ [0, d max ]. The admissible values of the control parameters are:y c ∈]θ d max , y max ] , K ≥ d max y c θ ,and the admissible values of the sizing parameters are :u max ≥ d max , θ d max < y max .

Fig. 1

 1 Fig. 1 Graphs of the kernels H 11 (t) and H 21 (t).

2 Fig. 2

 22 Fig. 2 Approximation of the reachable set.

  ∈]-y min , +y max [, with y min = h + u min + h -u max , andy max = h + u max + h -u min .

else , permits to reach the lower value of the output. When t goes to infinity, we obtain the results that follow. They are well-known and often used (or rediscovered) in the literature.

(i) If u(t) ∈]u max , +u max [, then y(t) ∈]y max , +y max [, with y max = h u max . (ii) If h(t) is positive, and u(t) ∈ [0, +u max [, then y(t) ∈ [0, y max [. (iii) If h(t) = h + (t)h -(t) with h + and h -positive, and u(t) ∈]u min , +u max [, then y(t)
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