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Controller design for a class of delayed and
constrained systems. Application to supply
chains.

Charifa Moussaoui, Rosa Abbou and Jean Jacques Loiseau

Abstract This chapter aims to investigate the construction of efficient controllers
for some input time delay systems, subjected to strict constraints of positivity and
saturating limitations, in presence of some exogenous bounded disturbances. The
results are presented through the application of supply chains, for which controller
design is a challenging issue trading-off between stabilising properties in presence
of time lags, and constraints due to the physical limitations and specificities of the
plants of the supply chain. We show that the stabilization of such flow systems can
be tackled by the stabilization of input time delay systems, using a predictor based
feedback approach. This classical control method, which permits to overcome the
delays, is enriched by using saturation terms that allow the consideration of the
physical constraints of the system resources composing the serial supply chains.

1 Introduction

Input time delay systems are common models widely used for dead-time systems
representation. Such systems are characterized by the presence of some irreducible
time lags, due to, for example, process durations, mass or information transport
phenomena and sensor responses. These systems attracted a great deal of attention
from both practitioners and researchers, since they are involved in many industrial
processes and applications. The control problems related to are challenging issues
which fuel constantly the researchers community. Indeed, in addition to the pres-
ence of time-lags, these systems are frequently subject to some physical constraints
and additional specificities. Furthermore, they are often subject to some exogenous
perturbations effects, that makes the controller design task quite more difficult.
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Our concerns focus on the supply lines supply lines which are quite representa-
tive of such dead-time systems. They consist of a network of interconnected stages,
composed of manufacturers, suppliers parts, exchanging goods, financial and infor-
mation flows, through transportation, warehousing and retailing operations, all in
the sake of fulfilling end-customer requests. These operations are time consuming
and request important time-lags that can not be neglected or simply approximated. A
central issue is to coordinate them over different stages and locations, while provid-
ing a convenient service level to end-customers. This task is quietly enhanced when
the market demands are unstable or unknown in advance. In addition, the supply
line resources are limited by the storage and the production or supplying capacities,
which are current bottlenecks for the system. Indeed, the storage devices, say the
inventories, are finite resources that can be subject to congestion problems which
lead to important goods losses, while the production units are subject to saturation
phenomena due to actuator limitations. These practical problems are commonly
performed in other systems, where the dynamics is governed by constrained flow
exchanges, such as the communication networks and some others load-balancing
systems, where the information flows and the buffers in the network nodes, can be
perceived, respectively, as the good flows and the inventories of a supply line.

In this chapter, supply line control issue is formulated as a general constrained
control problem, for input time delay systems with positivity constraints and satu-
rated resources, subject to unknown but bounded disturbances. To handle this prob-
lem, we make use of predictive-based control techniques, which efficiency in com-
pensating the input time delay is well-established and widely described in the liter-
ature. Using pole assignment principle and model reduction [1, 12, 13], we propose
a saturated and constrained control law, which allows the controller to handle the
system constraints and to meet its specifications. The proposed methodology for
designing such controller consists in defining an invariant set for the system tra-
jectories, such that the bounded input bounded output (BIBO) stability property is
ensured, and for which the system constraints are meet.

After introducing the problematic, the chapter is organized as follows. In Section
2, the dynamical model of each stage of the considered supply line is proposed, and a
quick review of the literature concerning this topic is presented. Section 3 is devoted
to the controller structure, where some backgrounds about saturated commands and
the predictive control methods for input time delay systems are presented. In Sec-
tion 4, the controller design issues are addressed and these results are extended to
the case of a multi-level supply line in the Section 5, and illustrated through an nu-
merical example in Section 6. Finally, a discussion about the obtained results and
further investigations conclude this chapter.

2 Problem statement: Inventory and production control

A supply line is a series of stages or levels, that represents manufacturers, suppli-
ers, transporters and other parts that are involved in supplying process, in which the
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goods flow linearly to reach end-customers, as depicted in Figure 1.

Stage 1 J—St;l/ez 777”J—S\|’ %Customer

demand

Material flow

Fig. 1 Multi stages supply chain scheme.

Supply chain control consists of defining appropriate ordering policies that regu-
late the production and the supply rates in the different stages of the supply line,
so that each stage is able to meet the inventories requirements, and to provide a
good service level for the incoming demands. In this field, different frameworks
where proposed during the past decades, based on optimization procedures using
programming techniques, empirical experiences and control theory methods. Our
concern focused on the use of the control theory methods, which provide an ana-
lytical and formal framework and allow a structural approach to handle the supply
chain issues. Indeed, since the pioneering works of Simon [18], who was the first to
use Laplace transform to analyze a supply line dynamics, numerous investigations
followed, such that [6, 24, 5, 22, 15, 26], in which the supply chain was modelled us-
ing block diagrams and controlled through feedback structures. These investigations
lead to the well-known Automatic Pipeline Inventory and Order Based Production
Control System (APIOBPCS) models and their variations [10]. They permit to un-
derstand the complex interactions that govern supply chains dynamics, identifying
the critical agents that impact the inventories stability, such that the delays. The au-
thors highlighted the importance of the Work In Process (WIP), which is the amount
of goods ordered in the pipeline but not yet received due to the delay. They also re-
veal its central role in damping the variance of the demand amplification among the
supply chain stages, which is known as the bullwhip or Forrester effect [6].

The advances in the time delay systems control [14, 21], allow further insights
into the delayed differential equations describing , in particular, the inventory dy-
namics [25, 19, 4], and notable works like [20] permit great extensions considering
multiple delays. Nevertheless, the aforementioned works did not take into account
the positivity and the capacity constraints of the supply chain resources. Actually,
both inventory levels and replenishment orders are constraint free, and are allowed
to get some negative values or excessive huge ones, which does not correspond to
real plant capacities and thus creates a major gap between theoretical attempts and
practical results. For such issues, simulation based analyses are the mostly used,
such asin [3,7, 8, 29, 2, 17], where the impact of constrained production capacity is
studied. In [27, 28] an analytical investigation is presented for the forbidden-return
case, which corresponds to the constraint of non-negativity on the replenishment
orders only. These studies pointed out that considering capacity constrained on the
supplying devices, removes the linearity assumption of the model and hence com-
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plex dynamics behaviours are revealed. To the best of our knowledge, no work in
this field considers capacity and positivity constraints, on both the supplying devices
and the inventories, taking into account the pure delays present in these systems dy-
namics. This is what this work contributes to. We consider a multi-stage supply line.
In a first attempt, our analysis will be held for a single stage, the general case will
be presented in Section 5.

Each stage of the supply line represents an elementary system composed of a
supplying unit and a storage one. The term “supplying” is used for the operations
of material acquisition, which can be production, transport or retailing process. The
supplying units are characterized by a delay 6 which corresponds to the time needed
to complete the supplying task, and to a supplying order rate denoted u(z), which
is limited by a maximum supplying capacity denoted U,,4,. The storage units are
namely the inventories. Each elementary stage of the supply chain has an inventory
with a maximum storage capacity denoted Y,,,,,. In this work, the customer demands
are unknown in advance but assumed to be upper bounded by an amount denoted
dmax- The generic model for the inventory level dynamics is then described by the
following first order delayed equation.

ey

g Ju(t—0)—d(t) fort>6
ym_{(p(t)d(t) for0<1<8),

where, y(t) is the inventory level and d(r) the incoming demand rate of each level.
The function ¢ (¢) describes the initial state of the system such that equation (1) de-
scribes the initial dynamics of the inventory for 0 <7 < 6.

As already mentioned, supplying units and inventories as well, are limited resources,
which can take non-negative values only. These constraints are formulated as fol-
lows. For inventory level

¥(t) € [0,Ynay] , forz >0, 2)
and for the supplying rate

u(t) € [0,Upgay] , fort > 0. 3)
Then, the working assumption on the consumer demand is formulated such as

d(t) € [0,dmay] , fort > 0. @

The controller design task consists of defining a controller which will stabilize the
delayed system (1) while ensuring the fulfilment of the constraints (2) and (3), for
every bounded disturbance verifying the assumption (4).
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3 System control structure

A local management strategy is used for the elementary level, which aims at meeting
its local specifications. In this work, we consider that all stages of the considered
supply line are applying the same ordering rules, which consists of fulfilling on line
the consumer demands, and replenishing the inventory to a referential level denoted
ve. The strategy to define on line the control law, that is the supplying rate at each
level of the supply chain, is presented in the following section.

3.1 Order rates and control structure

The order rate u(¢) at a given level represents the command of the delayed system
given by equations (1). Regarding to the system constraints, and the nature of the
system, the control law we propose to apply is a saturated command based on a
feedback predictor structure such that

ule) = sar [K(w—2(0)] for > 0. 5)

where y. is the reference signal of the system, which corresponds to the reference
level for the inventory. K is the controller gain which is used to adjust the order rates
placed in each level, and z(¢) is the prediction of the future state of the system, that
corresponds to the inventory level at ¢ + 0, as it is shown in the sequel.

Saturated commands are commonly used for systems with saturating actuators, and
permit to take into account theirs specific limitations. It was shown to be more effi-
cient and realistic than a linear constraint control [23, 9]. On the other hand, the use
of a saturated controller introduces non-linearities in the closed-loop scheme of the
system, due to the sat function defined as

b if f(zr) > b,
[flabt][f(t)] =4 /1) ifa<f(r) <b,
" a if f(t) <a.

For such non-linear systems, stability conditions can be obtained by computing in-
variant sets in which the system trajectory remains, and in which the saturation
constraints are met, as it is shown in the sequel. The feedback predictor part of the
command, is used to handle the delays and the stability properties of the infinite-
dimensional system, by allowing the assignment of the closed-loop system poles,
in a finite number of locations in the complex plan [12, 11]. Also known as model
reduction or Artstein reduction [1], the basic idea of state prediction is to compen-
sate the time delay 6 by generating a control law that enables one to directly use the
corresponding delay-free system, thanks to the prediction defined by
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y(0)+ [ qu(t)dt fort >0,
z(t) = 0 ; (6)
y@)+ [ ¢(t)dt+ f[yu(t)dt forr <@,
which can be rewritten, using expression (1) as
146
Z(t) =y(t+0) +/ d(t)dr , fort > 0. (7
t

Indeed, by time derivation of this equation (7), one can see that the resulting system
2(t) = u(t) —d(t) ,fort >0, (8)

is delay-free. The system (8) is the reduced model of the system (1)-(5). Artstein
[1] demonstrated that the control low u(¢) is admissible for the closed loop system
(1)-(5) if and only if it is admissible for the system (8)-(5), and that the two systems
have the same dynamics properties. Our approach is then based on the use of the
reduced system (8) to design the controller such that the system constraints and
requirements (2) and (3) will be fully met, as shown in Section 3.2.

3.2 The closed-loop system dynamics

The dynamics of the closed-loop system (8)-(5) is given by the following expression.

(1) = [O%JZ | [K(ye —z(t)]—d(z), fort > 0. )
The stability analysis of this system is performed by computing an invariant inter-
val for the trajectories of system (9), in which the system constraints are met, and
the BIBO stability property of the system is warranted. In this sake, the system con-
straints (2) and (3) are reformulated in terms of the new state variable z(z) as follows.
Using the expression (7), one can see that

t+60
i+ 6) :z(t)—/t d(t)dt, 1> 0. (10)

The constraint (2) is verified if both z(¢) and the term ft”re d(t)dt are bounded,
so that y(t + 0) € [0, Y;uex]. Provided condition (4) is satisfied, it is seen that
ft’+9 d(t)dt € [0,0 dmax| , ¥t > 0. Thus, z(r) should be limited by a lower and an
upper bound, z,,;,, and z,,,, respectively, which verifies the relation (10), such that

0 < zmin — Odpay fory(t+0) =0, and  zygx < YViax for y(t+0) = Ypar -

Then, the original delayed system verifies y(7) € [0, ¥uq,] for all # > 0, if and only if
the condition
Z(t) € [edmamYmax} s (11)
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with 0dqy < Ynax , 18 verified for the reduced system. The control problem estab-
lished in Section 2, is reformulated in terms of founding the controller parameters,
which permits to the closed loop system (8)-(7), to verify the constraints (11) under
disturbance effects of d(¢). The results are given in Section 4.

3.3 Admissible initial conditions

Non-zero initial conditions does not affect the control structure and the system con-
straints. Indeed, as shown by equation (1) forz € [0, 6], the inventory level evolution
depends on the function ¢ (z) and the demand only. Because of the delay, the effects
of the command u() on the system dynamics are not visible before = 6. Then,
checking whether the system constraints are met or not on the time interval [0, 8|
yields a set of admissible initial conditions, for which the constraint conditions are
verified. This set is characterized as follows. Using equation (1), for 0 <7 < 0, the
inventory level is given by

Y(f)Zyo+/0[¢(f)dr—/ord(r)dr,

where y( is the initial inventory level at time #+ = 0, and the amount foe ¢(t)dt
represents the initial WIP in the pipeline that is denoted wipg. It is seen that the
term J;d(7)d7 belonging to the interval [0, O], y(t) verifies y(¢) € [0, Yuax] for
t € 0, 0] if and only if the initial conditions are such that

0 dipax < yo +wipo < Yy

4 Controller designing issues

The controller design consists in determining suitable gain K and inventory refer-
ence level y. for each elementary stage of the supply chain, such that the system
constraints and specifications are fully met.Two main issues are to be considered.
First, for given systems parameters, namely the maximum capacities Uygy and Yipqy,
is it possible to find a controller which will fully meet the constraints and the sys-
tem requirements. Then, if such a controller is indeed feasible, the second issue is
about the choice of the command parameters K and y. under the system constraints
and specifications. This is the parameterization phase. In this section, both issues
are treated through the dynamics properties analysis of the system, such that the
exact solution of the equation (9) is not required. Our proposal is to determine some
necessary and sufficient conditions on the controller parameters, to impose the in-
variance property of the interval (11), so that the BIBO stability of the system and
the constraints are all satisfied. These conditions are given through the following
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Theorem 1. A corollary is then formulated, which gives further results concerning
the closed-loop system dynamics under Theorem 1 assumptions.

Theorem 1. Being given a system of the form (1), there exists a command of the
form (5), for which the system is stable and the constraints (2) and (3) are fulfilled,
Sor any d(t) € [0,dmay] if and only if the following conditions hold true

Odmax < Yimax , (12)

and

In addition, if the conditions (12) et (13) are met, the constraints (2) and (3) are
satisfied under the control law (5) if an only if the controller parameters are such
that:

dmax

9 dmax + K

SyCSYmax- (14)

Proof. As shown in Section 3.2, the controller of the reduced system (9) should
be designed such that constraint (11) is fulfilled. The existence of the controller is
then linked with the non-empty property of interval [0 dyax, Yinax], Which is true only
when 0 dpqx < Yiuax. This later shows the necessity of condition (12), its sufficiency
being obvious.

Conditions (13) and (14) come from the fact that, verifying constraint (11) at any
time 7 > 0 implies that, the closed interval [zun,Zmax] is invariant for the system
trajectories. Formally, this property is warranted if and only if the following impli-
cations are true, forall+ > 0

2(t) = zmin = 2(t) >0, and z(t) = zmax = 2(¢) <0.

Using expression of z(¢) given by (9), and provided that (4) is true, these inequalities
are rewritten respectively

t K ¢ — <min zdmaxa 15
[Of[gm][ (Ve = Zmin)] (15)
and
t |K(Ye — Zmax)] < 0. 16
it KO = 2ma] 1o

Using the sat function definition given in Section 3.1, one can see that the inequality
(15) is solvable if and only if Uyux > dpay, that shows the sufficiency and necessity
of condition (13), and thus y, is such as Zin, + dmax/K < y., which, together with
condition (12) and the equality z,,;, = Oduax , €stablishes the sufficiency of the left
part of the condition (14) of Theorem 1. Its necessity comes form the fact that for
Ye < Zmin + dmax /K, inequality (15) has no solution.

The same analysis is applied for inequality (16). This latter is solvable if and only if

Ve < Zmax 17)
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which, together with equality z;,4x = Yiuax shows that y. < Y4« . This establishes the
sufficiency and the necessity of the right member of condition (14) of Theorem 1,
and completes the proof. a

Under the conditions of Theorem 1, the analysis of the closed-loop system dy-
namics shows that the system constraints and specifications are truly met. Any sat-
isfactory controller actually permits to fill more restrictive constraints on the system
variables. We describe these restrictions in the following corollary.

Corollary 1. Being given a system of the form (1), with a control law of the form
(5) and suitable initial conditions, such that the conditions (12), (13) and (14) are
verified, then the following holds true

d,
y<t)€ yc_$_edmaxayc ) (18)
and
u(t) € [0,dmax] » (19)

Sforallt >0and d(t) € [0, dpax)-

Proof. From expression (9), one can observes that, under Theorem 1 assumptions,
the following implications are true for all # > 0,

d
2(t) >y =2(1)<0 and z(t) <y.— ”;{“":m'(t)zo.

These implications show that the effective interval of variation of z(¢) is such that

dax
Z(t) € |:yC_K7yC:| ) (20)

which represents the smallest invariant interval for the system (9). Indeed, under
Theorem 1 assumptions, it is seen that the interval given in (20) is included in the
interval given by (11). Thus, using expressions (10) and (5), one can compute the
effective interval of y(¢) and u() variations which are given by expressions (18) and
(19) respectively. a

5 Generalization for N-stages supply chain

In this section, we propose a generalization of the results presented above for the
multi-stages supply line, composed of N elementary stages, as presented in Section
2. Each level is now labelled with a subscript i, with i = 1,..,N. In such serially
linked structure, each stage i has one supplier i — 1, and is supposed to support
the incoming demand d;(r) of the following stage i + 1 such that d;(¢) = u;y(¢)
for i =1,..,N — 1. The last stage N of the supply chain is usually the final retailer
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which faces the end consumer demand denoted d.(¢). The inventory dynamics of
each stage is given by the following equation.

oy Jui(t—6;) —di(t) fort>6;,
o= {¢i(t)_di(t) for0<t<6;, (21)

where, y;(¢) is the inventory, u;(¢) is the acquisition rate with delay 6;, and d;(¢) the
incoming demand, with i = ¢ for the customer demand rates.

The present part aims to define the controller parameters of each stage, such as
the end consumer demand d,(¢) will be satisfied, and taking into account the local
constraints of each single level, as seen in Section 4, and the additional constraints
due to the serial structure as well. The constraints (2) and (3) are generalized as
follows. Fori =1,..,N, the inventory levels are such that

yi(t) € [0,Yay,] , forz >0, (22)
and the acquisition rates verify
ui(t) € [0,Upay,] , fort > 0. (23)

The additional constraints arising from the network structure are about the incoming
demand of each level, where d;(¢) = u;11(¢) fori=1,..,N — 1, such that

di(t) € [0,Unax;., | - (24)

For the retailer stage i = N, the incoming demand is the end customer demand d,.(¢).
It verifies the same assumption (4) namely

d.(t) €0, dpax] - (25)

The same control law as the one presented in Section 3.2 , is used in each stage. It
is of the form
u;(t) = 0 zv]at ][Ki(yci —zi(r))] fort > 6; (26)
with y,, is the reference level for the inventory y;, K; is the controller gain which is
used to adjust the order rates placed in level i, and z;(¢) is the prediction of the future
state of the system, defined as follows
yi(l)-ﬁ-j;CG_ ui(T)dT fort > 6;,
zi(t) = 0 ’ 27)
yi(t)+ [ ¢i(t)dTt+ [yui(t)dT fort < 6;,
The controller design issue in each stage is addressed as shown in Sections 3 and 4.

Using the same arguments basing on the analysis of the reduced model obtained for
each stage, Theorems 1 is now extended to the N-stages supply line.

Theorem 2. Being given a supply chain of the form (21), there exists a command of
the form (26), for which the system is stable, and fulfilled the constraints (22), (23)
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and (24), for any d.(t) € [0,dypax] if and only if the following conditions hold true.
ei dmax < Ymax; ) (28)

and
dmax < Umaxi ) (29)

forallt >0andi=1,..,N. In addition, if conditions (28) and (29) are verified, the
constraints (23), (24) and (25) are met for any d.(t) € [0,dmqy), if and only if the
controller parameters are such that:

d,
eidmax + % < Yei S Ymax,- (30)

1

Forallt >0andi=1,..,N.

Proof. For the N-stages supply line serially linked, the whole supply line dynamics
is driven by the end-costumer demand d,(¢). Applying Theorem 1 for the last stage
N of the line, Theorem 2 shows that the orders uy(¢) vary in the interval [0, dqy]-
Then the linking relation between the supply line stages, where dy_1(t) = uy(t)
shows that actually dy_(¢) € [0,dmqy]. Thus, by recursion, it is seen that d;(z) €
[0,dpay] for all i = 1,..,N. Using this result, the demonstration of Theorem 2 is
directly derived from the proof of Theorem 1. a

6 Simulation example and discussions

The application example presented in this section, aims at highlighting the efficiency
of the distributed control scheme proposed to eliminate the bullwhip effect in a sup-
ply chain, and to illustrate the importance of taking into account the positivity and
capacity constraints. For this sake, we consider a three-stages supply chain, com-
monly used in the literature [3, 8], consisting of a production plant, a wholesale
stage, and a distribution centre. Unlike the aforementioned works, where capacity
constraints are assumed for the order rates only, we consider both inventories lim-
itations, and positivity constraints. The subscripts p,w, and r are used to label the
production, the warehouse and the retailer stages respectively. The maximum ca-
pacities Uyyqy; and Y,,4y; and some admissible initial conditions are given in Table 1.

Table 1 Simulation parameters for the constrained three-stages supply chain.

Stage K; 6; Unasx; Yinax; Yei Yo; T Wipy;
i=p 0.6 6 350 1900 1900 1900
i=w 0.6 3 300 1200 1200 1200

i=r 0.6 2 250 900 900 900
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The initial conditions are chosen such that all transitory dynamics are avoided, ac-
cording to the rule defined in Section 3.3. Controller parameters K; and y,; are cal-
culated according to Theorem 2, and are also sorted in Table 1. In order to illustrate
the inventory dynamics, the customer demand used for this simulation is a square
function starting at t = 15weeks and ending at t = 45weeks, with an amplitude
dmax = 240, unlike the aforementioned works where only step function demands
where considered. The results of the simulation are depicted on Figure 2, where the
order rates of each stage and the inventory levels are represented.

Figure 2(a) shows that the order rates placed in each of the three stages, follows
closely the demand, causing no amplification through the upstream levels as it is
expected by the relation (24). Then, Figure 2(b) shows that the inventory levels re-
main non-negative, and are re-completed to their reference levels when the demand
is null, as it was specified by the ordering policy presented in Section 1. The out-
comes of this simulation study, join the former authors conclusions [8, 29, 2, 3]
which stand that capacity constraint of the ordering rates, does not necessarily im-
pact the customer service level, which corresponds to the demand satisfaction. The
saturating constraint impacts the dynamics too, such that the order rates being lim-
ited, the supplying process completion takes more time, but since the condition (29)
is verified, the demand is always fulfilled. It is also recognized that such constraints
provide an effective improvement in reducing the demand amplification, within the
multi-echelon system. Indeed, we showed that a good handling of the delays, via

ra
)
=

200 v ue(t)
- uw(t)

- Up(t)
R P R T =

=
=

Order rate (units/week)

=1

a0 0
Time (weel%

2000

51500 v yr(t)
T yw(t)
< 1000 = yp(t)
g : \ : : _ :
S s : : % : g S PR I _
£ ~dgmman s | :
0 R OITN Y rvw s T ’ ! i -

0 10 20 a0 40 50 B0 70 a0 0
Time (week

(b) Dynamics of the inventory levels

Fig. 2 Simulation results for the constrained three-stages supply line.
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an appropriate control law, permits to definitely overcome the Forrester effect. This
result is also pointed out by the former work of [18] and [16], where it is established
that the smoothest system responses are obtained when the same care is given to the
inventory discrepancy and the WIP. The formal explanation of this empiric result
comes from the input time delay system control, as seen in Section 3, where the ef-
ficient delay compensation via the predictor feedback imposes the same coefficient
K for both the inventory discrepancy and the distributed delay of the predictor which
is the WIP term. Assuming an unknown bounded demand as a working assumption,
allows us to maintain this results for every bounded demand signal, no mater if it is
a step function shaped or not.

7 Conclusion and perspectives

In this chapter, the controller design problem for serially-linked supply chains, with
constrained orders and inventories, and unknown customer demands variations, has
been investigated. The problem is stated in terms of controlled input time delay
system, with positivity and saturations constraints, subject to bounded disturbances.
A saturated feedback predictor controller was introduced to handle both the delayed
dynamics and the constraints, where the controller encompasses a distributed delay
expressed by the integral term in the prediction. This distributed term corresponds to
the WIP amount which the use in inventory regulation is quite classical for damping
the bullwhip effect [10, 16, 18]. It is important to notice that the WIP is actually
measurable. Thus, the controller proposed in this work is of low complexity, since
it corresponds to a static feedback on measurable variables. The main advantage
of this work is that practical constraints of positivity and capacity of both orders
and inventories are taken into account, that enhanced the accuracy of the results.
In addition, the controller proposed eliminates totally the Forrester effect, in case
where the delays are properly known. Robustness analysis of the results in case
of delay misestimations, and the consideration of variable delays are advised of
forthcoming works.
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