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Abstract

We theoretically study the Seebeck effect in the vicinity of a heated metal nanostructure, such

as the cap of an active Janus colloid in an electrolyte, or gold- coated interfaces in optofluidic

devices. The thermocharge accumulated at the surface varies with the local temperature, thus

modulating the diffuse part of the electric double layer. On a conducting surface with non-uniform

temperature, the isopotential condition imposes a significant polarization charge within the metal.

Surprisingly, this does not affect the slip velocity, which takes the same value on insulating and

conducting surfaces. Our results for specific-ion effects agree qualitatively with recent observations

for Janus colloids in different electrolyte solutions. Comparing the thermal, hydrodynamic, and

ion diffusion time scales, we expect a rich transient behavior at the onset of thermally powered

swimming, extending to microseconds after switching on the heating.

PACS numbers:

1



I. INTRODUCTION

Laser-illuminated metal nanostructures provide versatile local heat engines [1], with

optofluidic applications such as trapping of nanoobjects [2, 3], manipulation of biological

cells [4], microflows in capillaries [5], and colloidal assembly [6]. Similarly, thermally powered

artificial microswimmers rely on the conversion of absorbed heat to motion; experimental re-

alisations include metal-capped Janus particles that are driven by surface forces [7–10], and

interface floaters that are advected by their self-generated Marangoni flow [11, 12]. Force-

free localization and steering have been achieved by temporal [13] or spatial [14] modulation

of the laser power.

These experiments also revealed strong dependencies on material properties: Thus a

reversal of the swimming direction was observed upon rendering the particle’s active cap

hydrophilic instead of hydrophobic [10], or upon adding a non-ionic surfactant to the solvent

[7]. Similarly, copolymer coating of a glass surface increased the thermo-osmotic velocity by

one order of magnitude [5].

Most of the cited experiments give evidence for creep flow induced by a temperature

gradient in the electric double layer at the active surface. Very recently, a specific-ion effect

was reported for silica colloids carrying a gold cap: their swimming velocity in a 10 mM NaCl

solution changed significantly when replacing the cation with Lithium, or the anion with

hydroxide [9]. These findings indicate that self-propulsion depends on the electrolyte Seebeck

field [15], confirming previous observations on passive particles in an external temperature

gradient, which migrated to the cold in an NaCl solution and to the hot in NaOH [16–18].

Recently an enhanced Seebeck-induced flow was predicted in confined geometries [19].

In this paper we study how the electrolyte Seebeck effect modifies the electric double layer

and drives a creep flow along a surface with non-uniform temperature. The main features

are illustrated in Fig. 1 at the example of a gold-capped Janus particle, but are generally

valid for metal nanostructures in contact with water [2–6]. Upon heating the gold cap with

a laser, the salt ions move along the temperature gradient, and an excess charge QT forms

at the hot surface, as shown in the middle panel; the corresponding negative ions are at

the wall of the container. The resulting electric field comprises, besides the radial monopole

term ∝ QT/r
2, a parallel component along the particle surface; the latter exerts a force on

the double layer and induces creep flow.
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We address two main questions: First, how are the double layer and the Seebeck field

modified by the electrostatic boundary conditions at insulating and conducting surfaces?

Second, the equipotential condition at a conductor requires a zero parallel electric field, as

illustrated for the upper hemisphere in Fig. 1c. Does this imply that the thermoelectric

creep velocity is suppressed at the gold cap of Janus particles?

The outline of our paper is as follows. In Sect. II we briefly review the bulk electrolyte

Seebeck effect, where boundary effects are irrelevant. In Sect. III we evaluate the ther-

mocharge and the Seebeck near-field at a surface, which are sketched in Fig. 1 b and c.

Starting from the integral expression of Gauss’ law, the thermoelectric properties and the

modification of the double-layer are derived both for insulating and conducting surfaces.

Sect. V is devoted to the thermodynamic forces resulting from the non-equilibrium state

of the double layer, and to the creep flow along the surface. Novel results arise from the

parallel component of the thermoelectric and polarization fields derived in Sect. IV. In the

final sections we discuss and summarize our results.

	

a)	 b)	 c)	 

FIG. 1: Janus particle with a gold-coated upper hemisphere. a) The electric double layer of a

micron-size particle; the diffuse layer of thickness λ ∼ a few nm, contains a charge Q ∼ 105e. b)

Upon heating the gold cap, the electrolyte Seebeck effect induces a thermocharge density ρT which

adds to the diffuse layer. We show the case ρT > 0; for an excess temperature of a few Kelvin,

the total thermocharge is QT ∼ 100e [25]. The corresponding negative ions are at the boundary

of the experimental cell. The arrows indicate the thermoelectric field. c) Schematic view of the

thermoelectric field after subtraction of the monopole term ∝ QT /r
2. The diffuse layer is not

shown. The parallel component E‖ vanishes at the conducting gold surface; at larger distance one

has the dipolar field ∝ r−3.
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II. ELECTROLYTE SOLUTION IN A TEMPERATURE GRADIENT

We briefly review the steady-state response of an electrolyte solution to a non-uniform

temperature [20], the resulting Soret and Seebeck effects, and in particular the thermoelectric

field.

A. Thermodynamic forces

Consider monovalent ions with concentrations n±, enthalpy H±, and chemical potential

µ± = H±+kBT lnn±. Then the ions are subject to the thermodynamic forces, which derive

from the Planck potential µ±/T [20],

−T∇µ±
T

= −kBT
∇n±
n±

+H±
∇T
T
, (1)

where the first term in (1) accounts for gradient diffusion, and the second one for ther-

modiffusion along the temperature gradient. The prefactor of the latter arises from the

Gibbs-Helmholtz equation d(µ±/T )/dT = −H±/T 2. Note that this relation does not imply

constant enthalpies; the quantities H± may depend on temperature.

These thermodynamic forces give rise to ion currents J±. When including an electric field

E we find

J± = m±

(
−kBT∇n± + n±H±

∇T
T
± en±E

)
, (2)

where we have assumed that the mobilities m± are the same for thermodynamic and electric

forces, and are related to the diffusion coefficients by m± = D±/kBT . The steady state

is, in general, characterized by the condition of constant currents with zero divergency,

∇ · J± = 0. In the case of a closed system with solid boundaries, and in the absence of

external forces acting on the ions, however, there is no source field and the currents vanish.

In this preliminary section, we consider non-interacting boundaries, and thus put J± = 0.

B. Salt Soret effect

It turns out convenient to consider the salinity n = (n+ + n−)/2 and the charge density

ρ = e(n+ − n−) rather than the ion concentrations n±. Then the sum of J± = 0 provides

the “Soret equilibrium” for the salinity,

∇n+ nST∇T = 0, (3)

4



with the salt Soret coefficient

ST =
H+ +H−

2kBT 2
. (4)

Eq. (3) implies a salinity gradient throughout the sample. Since the enthalpies H± are of the

order of kBT , the relative salinity change is comparable to the relative excess temperature,

∆n/n ∼ ∆T/T . Soret data for various salts were first reported by Chipman in 1926 [21].

C. Electrolyte Seebeck effect and surface charges

Now we consider the difference of the equations J± = 0, which result in a relation for the

stationary charge density and electric field. Far from the boundaries, the charge density ρ

must vanish because of the huge cost in electrostatic energy required by charge separation.

Then we find that, in order to satisfy the zero-current condition, the temperature gradient

is accompanied by a constant bulk electric field,

ET = S∇T, (5)

with the coefficient

S = −H+ −H−
2eT

. (6)

ET is called the macroscopic thermoelectric field, in analogy to the Seebeck effect in metals

and semiconductors [16]. In the latter, the Seebeck coefficient is determined by the tem-

perature dependence of electronic properties, whereas for an electrolyte solution, S is given

by the difference of ion enthalpies. Depending on the H±, the Seebeck coefficient may take

either sign; typical values are of the order of 10−4 V/K [15]. In the literature one often finds

the “heat of transport” Q± = −H± with the opposite sign; the most complete data so far

are reported in Ref. [22]. The above derivation of the Seebeck field has first been given by

Guthrie [23], relying on the conditions of zero ion currents and zero charge.

Like any static electric field, ET must originate from positive and negative charges. Start-

ing from J± = 0 and allowing for finite ρ, we obtain a relation for the stationary charge

density and electric field,

∇ρ+
ε

λ2
(S∇T − E) = 0, (7)

with the Debye length λ2 = εkBT/2ne
2. Adding Gauss’ law

∇ · εE = ρ (8)
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one finds that the only solution in the bulk corresponds to (5) with ρ = 0. At the hot and

cold boundaries, however, there are finite thermocharge densities ρT of opposite sign. In

physical terms, the thermocharges originate from the unlike thermodiffusion of the cations

and anions in (2).

We briefly summarize the above derivation of the electrolyte Seebeck effect. It arises from

the tendency of salt ions to migrate along a temperature gradient. The underlying thermo-

dynamic forces H±∇T/T follow from the entropy balance of the non-equilibrium electrolyte

solution [20]. Regarding the salt concentration n = 1
2
(n+ + n−), the Soret equilibrium

(3) describes the stationary salinity gradient; in physical terms it satisfies the steady-state

condition that diffusion and thermodiffusion currents of salt cancel each other.

The Seebeck effect presents a more intricate situation, since it stems from the difference

of cation and anion currents. An enthalpy difference H+ 6= H−, tends to partly separate

positive and negative ions. As an important consequence, this results in surface charges and

a macroscopic thermoelectric field. Thus one has to satisfy Gauss’ law, in addition to the

steady-state condition.

For a negative Seebeck coefficient, the thermodiffusion currents result in positive and

negative charges at the hot and cold boundaries, respectively. In the case of a heated

particle in a bulk electrolyte solution, the hot boundary reduces to the particle surface,

which accordingly is covered by a diffuse layer of mobile cations, as illustrated in Fig. 1b.

Then the particle carries a net thermocharge which is related by Gauss’ law to a monopole

field that decays as r−2 with the distance r [25]; the field lines end at the corresponding

anions which are at the wall of the experimental cell. In the present paper we are concerned

with the dipolar contribution of the Seebeck field, which is sketched in Fig. 1c.

The linear equations (7) and (8) correspond to the Debye-Hückel approximation. Their

solution is generally valid at otherwise uncharged boundaries. Simple 1D and radially sym-

metric 3D geometries have been studied previously in [24, 25]. The general case of an

uncharged surface is treated in Sect. III B and in Appendix A. A more complex situation

occurs at charged surfaces, since the diffuse layer comprises the counterions and the ther-

mocharge; in the following section this is treated in non-linear Poisson-Boltzmann theory.
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III. THERMOCHARGE AND THERMOELECTRIC NEAR-FIELD

Here we evaluate how the thermoelectric properties at the particle surface depend on the

material properties, and in particular on its surface charge and electrical conductivity. We

first write the usual boundary layer approximation in a form that is well adapted to the

condition imposed by the Seebeck far-field.

Thus we calculate the thermocharge density ρT and the thermoelectric field in the vicinity

of the surface. In order to clearly separate the charge effects induced by the temperature

gradient from those of the electric double layer, we first study an insulating particle that

does not carry surface charges. The strong permittivity contrast between water and typical

materials such as polystyrene or silica, simplifies the electrostatic boundary conditions.

Then we consider charged surfaces and, moreover, distinguish insulating and conducting

materials. The main difficulty arises from the fact that the diffuse layer contains both the

counterions of Fig. 1a and the thermocharge of Fig. 1b, which have to be treated on an

equal footing in terms of Poisson-Boltzmann theory.

A. Boundary layer approximation

Surface charges of colloidal particles are screened by a diffuse layer of counterions. An

analytic mean-field solution exists in one dimension only. It provides a controlled approx-

imation at curved surfaces, as long as the local curvature radius is much larger than the

Debye screening length λ. Then there is a separation of length scales: The properties of the

electric double layer vary much more rapidly in perpendicular direction than parallel to the

surface.

The resulting approximation is best discussed in terms of Gauss’ law (8). The normal

field component varies on the scale of λ, whereas the permittivity and the parallel electric

field vary on the scale of the particle radius a. Thus to linear order in λ/a, Gauss’ law

simplifies to
dE⊥
dz

=
ρ

ε
, (9)

where z is the distance from the surface. Here and in the following, E⊥ points away from

the surface; thus for a spherical particle, E⊥ is the radial component, and z = r − a.

For further use, we integrate from the surface to a distance B that is much larger than
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the screening length but much smaller than the particle radius, λ� B � a, and find

E⊥(B)− E⊥(0) =
1

ε

∫ B

0

dzρ(z) ≡ σ

ε
. (10)

The second identity defines the charge density per unit area of the diffuse layer. This

parameter also determines the double-layer potential ϕσ, as is obvious from the Poisson-

Boltzmann mean-field expression (B1) for the diffuse layer.

In the case of an electric double layer at equilibrium, the electric field vanishes at large

distance, E⊥(B) = 0, resulting at the particle surface in E⊥(0) = −σ/ε. Then −σ corre-

sponds to the charge per unit area of the surface, which exactly cancels that of the diffuse

layer.

On the contrary, the main results of the present paper are derived from Eq. (10), with

the outer boundary condition determined by the thermoelectric far-field (5). This implies

that σ as defined in (10) contains counterions and thermocharge, and thus does no longer

define the surface charge density.

B. Uncharged insulating surface

Because of the strong permittivity contrast of water and silica or polystyrene, the Seebeck

field hardly penetrates the surface. Then the electrostatic boundary conditions require that

the normal electric field vanishes at the surface, whereas at the outer boundary one has the

bulk Seebeck field,

E⊥(0) = 0, E⊥(B) = S∇⊥TS. (11)

In the outer boundary condition we have used that the temperature gradient at B (with

B � a) hardly differs from its value at the surface. In other words, the temperature gradient

∇⊥T may be taken as constant well beyond the charged layer.

From Gauss’ law (10) one readily finds

εS∇⊥TS =

∫ B

0

dzρT (z) ≡ σT , (12)

where the second equality defines the thermocharge per unit area. Since the temperature

decreases with the distance from the surface, the outward component of the gradient is

negative, ∇⊥T < 0. Thus a negative Seebeck coefficient implies a positive surface charge at

the hot boundary, σT > 0, as illustrated in Fig. 1b.
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In general, the temperature varies also along the particle surface, and so does σT , as

illustrated in Fig. 1b. As a consequence, the Seebeck field is not radially symmetric. In

particular, the difference in thermocharge between the upper and lower hemispheres is at

the origin of the dipolar field component shown in Fig. 1c.

In physical terms, the thermocharge screens the Seebeck field as one approaches the solid

boundary. For a micron size particle at an excess temperature of 10 K, and a typical Seebeck

parameter S = 10−4 V/K, the surface charge density σT takes a value of about 10e per square

micron and the electric field about 1 kV/m. Because of its small value, the thermocharge is

well described by Debye-Hückel theory with an exponential decay,

ρT (z) = e−z/λσT/λ. (13)

One readily finds that the normal component of the electric field is screened by the ther-

mocharge such that it vanishes at the surface

ET
⊥ = S∇⊥T (1− e−z/λ). (14)

The parallel component, on the other hand, remains unchanged and is finite at the surface,

ET
‖ = S∇‖TS. (15)

These equations express thermocharge and Seebeck field through local quantities. In

Appendix A we rederive these quantities in terms of a multipole expansion for a spherical

particle. The above ET
⊥ has been obtained previously [24, 25] for simple geometries where

ET
‖ = 0 .

C. Charged insulating surface

Now we consider an insulating surface with an electric double layer. We assume a negative

surface charge density −σ0, as is the case for most colloids. Then the electric field satisfies

the boundary conditions

E⊥(0) = −σ0/ε, E⊥(B) = S∇⊥TS. (16)

From Gauss’ law (10) one readily finds

S∇⊥TS +
σ0
ε

=
1

ε

∫ B

0

dz(ρT + ρ0) =
σI
ε
, (17)
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with the charge density of mobile ions per unit area,

σI = σT + σ0, (18)

consisting of the thermocharge and the particle’s counterions.

The corresponding Poisson-Boltzmann potential ϕσI , which is defined through ρT + ρ0 =

−ε∂2zϕσI , has to be calculated with an effective parameter σI , which is different from the

actual surface charge −σ0. Then we have the total potential

ϕI = ϕT + ϕσI . (19)

The normal component of the electric field reads

E⊥(z) = S∇⊥T −∇⊥ϕσI . (20)

The second term decays rapidly through the screening layer, where the first one is constant

on the scale of the Debye length. With the explicit result (B5) for the second term, the

near-field takes the simple form

E⊥(z) =
σT
ε
− σ0 + σT

ε
e−z/λ

1− g2
1− ĝ2 , (z � a), (21)

with ĝ = e−z/λg and the parameter g as defined in (B3). One readily verifies that E⊥ satisfies

the above boundary conditions.

The parallel component of the electric field,

E‖(z) = S∇‖TS −∇‖ϕσI , (22)

does not vanish at the surface z = 0. The explicit form of the second term ∇‖ϕσI could be

readily calculated from the Poisson-Boltzmann potential (B2); it turns out that it is small

as compared to the bare Seebeck field,

E‖(z) = S∇‖TS(1 +O(λ/a)), (23)

and thus may be discarded.

D. Charged conducting surface

Now we turn to conducting surfaces, such as the gold cap of the upper hemisphere in

Fig. 1c. The electrostatic boundary conditions impose a constant potential, or a vanishing
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FIG. 2: Electric double-layer in a thermal gradient (temperature increases from left to right). The

left panel shows an insulating material. The surface charge density σ0 is not affected by the Seebeck

effect, whereas the diffuse layer comprises the non-uniform thermocharge density ρT . Its absolute

value |ρT | is proportional to the excess surface temperature, and its sign depends on the Seebeck

coefficient; we show the case S < 0. At a conducting surface (right panel), the parallel component

of the electric field vanishes. The condition (24) requires a polarization charge σP which induces

a corresponding displacement of counterions ρP . Thus the diffuse layer consists of the counterions

of σ0 and σP , and of the thermocharge ρT . For typical parameters, these contributions satisfy

|ρT | � |ρP | � |ρ0|.

parallel electric field [28], whereas at the outer boundary z = B, it is given by the Seebeck

far-field:

E‖(0) = S∇‖TS −∇‖ϕσC (0) = 0, E(B) = S∇T. (24)

These conditions cannot be satisfied with the constant surface charge −σ0 discussed so far.

To achieve (24) the mobile electrons in the metal surface move until their polarization

charge density σP results in a constant surface potential. The polarization charge is deter-

mined by inserting ϕσ with

σC(x) = σT (x) + σ0 + σP (x) (25)

in Eq. (24) and solving for σP . Assuming that the total charge does not change, one has

for the surface integral 〈σP 〉 = S−1
∫
dSσP = 0. Its derivation is given in Appendix C.

Its overall behavior is illustrated by the simpler expression (C7) obtained in Debye-Hückel

approximation,

σP =
εS(TS − 〈TS〉)

λ
, (DHA). (26)
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The polarization charge varies along the surface and even changes sign. For a negative

Seebeck coefficient, one has σP < 0 at the hot end of the metal surface, and σP > 0 at the

cold end, as shown in Fig. 2b.

Since the diffuse layer screens the local surface charge density, σP induces a corresponding

change of the mobile charge density, ρP , and we have ρC = ρT + ρ0 + ρP . We recall that the

double-layer potential ϕσ is calculated with the parameter σC which accounts for the charge

density of the diffuse layer, σC =
∫
dzρC(z), whereas the surface charge density is given by

−(σ0 + σP ). Accordingly, we have

E⊥(0) = −σ0 + σP
ε

(27)

at the particle surface.

The parallel field component of the electric field,

E‖(z) = S∇‖TS −∇‖ϕσC (z), (28)

is zero at the particle surface. With increasing distance, the double-layer potential ϕσ decays

and vanishes well beyond the screening length, and the electric field is given by (5). The

overall behavior is best displayed in Debye-Hückel approximation,

E‖(z) = S∇‖TS
(
1− e−z/λ

)
, (DHA). (29)

This expression satisfies both the surface and far-field boundary conditions (24). The

crossover occurs at the scale of the Debye length and results from the polarization charge

σP , whereas the far-field is related to the thermocharge σT .

IV. NON-EQUILIBRIUM DOUBLE-LAYER AND CREEP FLOW

In the absence of interactions between the electrolyte solution and the boundaries, the

stationary state is characterized by a salt gradient, a Seebeck field, and thermocharges at

the boundaries, but there is no flow or electric current; compare the steady state obtained

in Sect. II. Now we turn to interacting surfaces, more precisely to charged boundaries with

an electric double layer, and we derive the creep flow along the surface. We linearize in the

gradients of the non-equilibrium state; this implies that we do not consider the coupling of

the Seebeck field with the thermocharge.
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A. Thermodynamic forces and slip velocity

Closely following Ref. [15], we derive how the electric double layer of the surface interacts

with the temperature gradient and its companion fields. Novel results arise from the coupling

of the diffuse layer with the Seebeck field. We start from the well-known expression for the

effective slip velocity [26, 27],

vs =
1

η

∫ ∞
0

dzzf‖, (30)

where η is the solvent viscosity and f‖ the parallel component of the thermodynamic force

density arising from the non-equilibrium state.

The force acting on a unit volume of the electric double layer comprises the divergency

of the Maxwell tensor T and the gradient of the osmotic pressure P ,

f = ∇ · T −∇P. (31)

The former accounts for the electric energy of the double layer; the resulting force

∇ · T = ρE− 1

2
E2∇ε = ρ(S∇T −∇ϕσ)− 1

2
E2∇ε, (32)

consists of the Coulomb force on the diffuse layer and the change in electric energy due to a

permittivity gradient [29–31]. The second equality separates the double-layer and Seebeck

contributions to the Coulomb force.

The second term in (31) stems from the osmotic pressure P = δnkBT exerted by the

excess ion concentration δn in the double layer. Inserting (B8) and evaluating the gradient,

one needs to account for the variation with temperature, salinity, and the potential ϕσ,

resulting in

∇P = −ρ∇ϕσ + (ρϕσ + δnkBT )
∇T
T

+ δnkBT
∇n
n
. (33)

In these relations for ∇·T and ∇P , the potential ϕσ varies rapidly in normal direction, and

slowly along the surface. The quantities T , ε, and n vary slowly in all directions, on the

scale of the particle parameter, whereas the charge density ρ and the ion density δn vanish

beyond the diffuse layer.

Gathering the different terms one obtains the force density

f = ρS∇T − (ρϕσ + δnkBT )
∇T
T
− δnkBT

∇n
n
− 1

2
E2∇ε. (34)
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In addition to the temperature gradient, f depends on the gradients of salinity and permit-

tivity, induced by the Soret effect and the temperature dependence of ε. In linear-response

approximation, we replace the coefficients of the gradients in (34) by the corresponding

equilibrium quantities, and the electric field in the last term by −∇ϕσ0 . The gradient fields

in (34) are constant on the scale of the screening length, whereas the coefficients ρ, δn, and

E vanish well beyond the diffuse layer.

As a remarkable feature, the parallel gradient ∇‖ϕσ has disappeared from the double-

layer forces. While both the electrostatic force ∇ · T and the pressure gradient ∇P depend

on the precise form of the parameter σ, these terms cancel in (34), and so do the polarization

contributions. With the Poisson-Boltzmann expressions for ϕσ and its derivatives given in

Appendix B, the integrals in (30) are readily performed [32, 33],

vs = −εζ
η
S∇‖T +

ε(ζ2 − 3ζ2T )

2η

∇‖T
T
− εζ2T

2η

(∇‖ε
ε

+
∇‖n
n

)
, (35)

with the surface potential ζ = ϕσ0(0) and the quantity ζT = (2kBT/e)[ln cosh(eζ/4kBT )2]1/2.

Each term of the slip velocity consists of a gradient field characterizing the non-equilibrium

state of the electrolyte solution, and a coefficient that depends on the equilibrium properties

of the solid surface and of the electrolyte solution. With the bulk salinity gradient ∇n as

defined in (3) and the logarithmic permittivity derivative τ = −d ln ε/d lnT , one has

∇‖n
n

= −ST∇‖T ,
∇‖ε
ε

= −τ∇‖T
T

,

where τ ≈ 1.5 at room temperature [34]. A temperature gradient of Kelvin per micron

results in a velocity of micron per second.

At a surface in a constant external temperature gradient ∇T , the parallel component is

simply given by its projection on the surface; for a spherical particle one has∇‖T = sin θ∇T ,

with the polar angle θ and where we have discarded corrections due to the thermal conduc-

tivity contrast; see Eq. (42) below. The self-generated temperature field of a laser-heated

particle results in a more complex expression, depending on its absorption coefficient and

thermal conductivity [35]. The surface potential ζ usually depends weakly on temperature;

the variation of vs is rather irrelevant except for Janus particles with different ζ on the two

hemispheres; the surface potential could even take opposite signs on the metal cap and on

the insulating half.

The novel result concerns the thermoelectric contribution to (35), that is, the first term

proportional to the electrolyte Seebeck coefficient S. The remaining term ∝ ∇T and that
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FIG. 3: Comparison of the different contribution to the slip velocity (36) for NaCl and NaOH

solutions, as a function of the ζ-potential. We plot separately the Seebeck, Soret, and thermoos-

motic contributions, as defined in (36). For NaCl and NaOH solutions, the Seebeck coefficient

takes the values S = −0.2 mV/K and S = 0.05 mV/K, respectively; for the Soret coefficent one

has ST = 2.7 × 10−3 K−1 and 1.4 × 10−2 K−1. We use the temperature gradient ∇‖T = 1 K/µm,

the viscosity and permittivity of water, and ambiant temperature.

∝ ∇ε are known as thermo-osmosis [5, 26], whereas the last one, ∝ ∇n, is similar to salt

osmosis [36, 37]. As a main finding of this work, we note that vs does not depend on the

electrical conductivity of the particle surface. The slip velocity is the same for insulating

and conducting materials, although the electric field at the surface shows quite a different

behavior: Its parallel component is finite at an insulating surface but vanishes at a conductor,

as shown by Eqs. (23) and (29), respectively. A similar effect was shown to occur for the

electrophoretic mobility at a metal surface [42], resulting in an electroosmotic slip velocity

that is the same at insulating and conducting surfaces.

B. Relevance of ion-specific contributions

In order to compare their relative importance, we plot in Fig. 3 the different contributions

to the slip velocity, for parameters describing NaCl and NaOH solutions. With a temperature

gradient of 1K/µm, which is easily achieved by heating gold microstructures, one finds
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velocities of the order of microns per second. We split the slip velocity (35) in three terms,

vSee = −εζ
η
S∇‖T, vSor =

εζ2T
2η

ST∇‖T , vosm =
ε[ζ2 − (3− τ)ζ2T ]

2η

∇‖T
T

, (36)

where the first and second ones are proportional to the Seebeck and Soret coefficients, and

the third one describes the velocity induced by heat flow or “thermoosmosis”. This ther-

moosmotic velocity vosm is dominant in the absence of salt [5, 26]. In the presence of salt,

however, the Seebeck and Soret velocities exceed thermoosmosis; experiments on nanometric

micelles [17] and micrometric polystyrene particles [18] provide conclusive evidence for mag-

nitude of the ion-specific Seebeck and Soret contributions. The data of Ref. [18] indicate

that both S and ST strongly depend on temperature.

Note that the Seebeck term is linear in the surface potential ζ and thus takes oppo-

site signs at positively and negatively charged surfaces. All other contributions to vs are

quadratic in ζ. The self-propulsion velocity u of Janus particlesis given by the surface average

of the slip velocity, u = −〈(1− nn) · vs〉, with the surface normal n [27].

V. DISCUSSION

Here we discuss the main features of the thermocharge and the thermoelectric field, and

their dependence on material properties such as electric conductivity, surface roughness, and

heat conductivity.

A. Seebeck field in the vicinity of a spherical particle

The Seebeck field does not result from an externally applied voltage but from ther-

mocharges at the hot and cold boundaries which, in turn, are due to the thermal forces

(1) on the ions, as shown schematically in Fig. 1b for a Janus particle. At first sight one

would expect that a thermoelectric field and an external field show the same behavior in the

vicinity of a colloidal sphere. After all, both are subject to the same electrostatic boundary

condition at the particle surface. It turns out, however, that their behavior is quite dif-

ferent. In Fig. 4 we compare their field lines around a spherical particle. For the sake of

clarity we discuss the case of an external constant temperature gradient; the same physical

effects occur for the self-generated gradient of a heated Janus particle or for a hot metal

nanostructure.
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FIG. 4: Electric field lines for insulating and conducting particles. a) Electric field due to an applied

external voltage. The field does not penetrate in a low-permittivity particle (εP � εw), resulting in

a characteristic deformation. b) Thermoelectric field in the vicinity of an insulating particle. The

field is not deformed by the permittivity contrast but follows the temperature gradient, E = S∇T .

(For the sake of simplicity we assume constant ∇T , that is, similar thermal conductivities of

particle and solvent.) Within one Debye layer from the particle surface, its normal component E⊥

is screened by ion accumulation, that is, the thermocharge ρT , as shown in the left panel of Fig. 2;

the parallel component E‖ does not vanish, and the particle surface is not at constant potential.

c) Thermoelectric field in the vicinity of a conducting particle. Polarization of the metal surface

adjusts the surface charge density such that the parallel component of the field vanishes, resulting

in an isopotential surface; σ is illustrated in the right panel of Fig. 2.

The left panel of Fig. 4 shows the well-known deformation of an external electric field E0

in the vicinity of a low-permittivity particle. The parallel field at the surface varies as

E‖ =
3

2
E0 sin θ (37)

with the polar angle θ [27]. With respect to the bulk field, it is enhanced by the permittivity

ratio of particle and solvent, 3εw/(2εw + εP ) ≈ 3
2
.

The Seebeck field, on the contrary, results from surface charges; in order to satisfy the

electric boundary condition for its normal component, it accumulates mobile ions with one

screening length at the particle surface. The middle panel of Fig. 4 shows the thermoelectric

field lines. They are not deformed and end at the thermocharge accumulated at the particle

surface. The parallel component reads as

E‖ = S∇‖T sin θ. (38)
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Contrary to an external field, the surface field is not enhanced by the permittivity contrast.

The right panel shows the deformation of the Seebeck field by a conducting particle,

where the parallel component of the surface field vanishes, E‖ = 0. From a comparison of

the three situations shown, it is clear that the behavior of the thermoelectric field at solid

boundaries significantly differs from that of a voltage induced field.

The resulting electric field lines of a heated Janus particle are shown in Fig. 1b: The

far-field corresponds to the Seebeck field (5), whereas the near-field depends on the surface

properties, as illustrated in Fig. 1c for the conducting and insulating hemispheres. The

near-field corresponds to a superposition of the situations shown in Figs. 4 b and c.

B. Thermocharge

The thermocharge arises from the thermal forces H±∇T/T which drive the ions towards

the hot or cold boundaries. When solving, in the simplest case, the zero-current condition (7)

and Gauss’ law (8), one finds that the steady state is characterized by a thermoelectric field

and surface charges. The thermocharge per unit area σT , is independent of the material

properties of the surface and of its surface charge σ0. The profile of the diffuse layer,

however, does depend on σ0: At an uncharged surface, σ0 = 0, it follows the exponential

law ρT = σT e
−z/λ, whereas at a strongly charged surface, ρT is part of the diffuse layer of

Poisson-Boltzmann theory given in Eq. (B1).

According to Eq. (12), the thermocharge is entirely determined by the normal component

of the temperature gradient at the solid surface and the Seebeck coefficient of the electrolyte,

σT = εS∇⊥TS. (39)

On a sphere, the gradient is given by the local excess temperature and the radius, ∇⊥TS =

−(TS − T0)/a. In the case of a non-uniformly heated Janus particle, the temperature TS

varies along the surface, and so does the charge per unit area σT , as illustrated in Fig. 1b.

A positive Seebeck coefficient, e.g., for aqueous solutions of NaCl, results in a negative σT ,

whereas a positive surface charge occurs for S < 0 as, e.g., in NaOH solution.

As an estimate of its order of magnitude, we calculate the thermocharge density per unit

area, σT , for a micron-size particle with an excess temperature of 30 K and the Seebeck
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coefficient of NaOH, S = −200µV/K,

σT ∼ 10−5 e/nm2. (40)

For comparison, the bare charge of a colloidal particle is of the order σ0 ∼ e/nm2.

C. Polarization charge on a conducting surface

The thermocharge discussed above, is the same on insulating and conducting surfaces.

On the latter, however, the isopotential condition of electrostatics imposes a polarization

charge of the metal coating. Like any surface charge of a solid boundary, the polarization

charge is screened by its counterions. In other words, the polarization of the electronic

system induces a corresponding polarization of the diffuse layer, as illustrated in right panel

of Fig. 2. Thus the polarization effects concern only the immediate vicinity of the particle.

Well beyond the Debye length, the effect of the polarization charges vanishes. Accordingly,

the field lines of insulating and conducting particles in Fig. ??b and c, differ within the

screening length, but are identical at larger distances.

For an excess temperature of 30 K, the Seebeck coefficient S = −200µV/K, and λ = 2

nm, the weak-coupling expression (26) gives the order-of-magnitude estimate

σP ∼ 10−2e/nm2. (41)

When comparing with the thermocharge, one finds that σP exceeds σT by a factor a/λ which,

for micron-size particles, is of the order of a/λ ∼ 1000. On the other hand, the polarization

charge may attain several percent of the colloidal surface charge σ0.

As a related quantity we estimate the thermopotential ϕT = −S(TS − T0). The above

parameters give ϕT ∼ 6 mV, which is almost comparable to the surface potential of moder-

ately charged colloids, ζ ∼ 30 mV. One should note, however, that the variation of ϕT is a

more relevant quantity than its absolute value. Still, for a typical temperature profile, one

finds the thermopotential at the two poles of a Janus particle differs by about half of its

mean value.
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FIG. 5: Schematic view of the thermoelectric field and polarization charges of gold grains at a

low-permittivity insulating surface, in contact with an electrolyte solution with positive Seebeck

coefficient, S > 0. The left panel shows the case of single grain. The field is normal at the

grain surface because of the electrtostatic boundary conditions, and parallel at the insulating solid,

because of the strong permittivity contrast of its material and water. Well beyond the screening

length one recovers the constant Seebeck far-field. The right panel shows a densely covered surface,

where each grain forms an equipotential surface and carries opposite polarization charges σP at its

cold and hot sides.

D. Granular gold surface

So far we considered a continuous gold surface, as shown in Fig. 1c. Yet this does not

always correspond to the actual experimental situation. For example, the cap of the Janus

particles used in Ref. [9] consists of a dense coverage of nano-sized gold grains, visible in

scanning electron microscopy images [38]. Since the grains are not connected, the active cap

of these particles does not form an isopotential surface, contrary to what we assumed so far.

Here we give a qualitative discussion of the resulting Seebeck field and slip velocity.

From our results for conducting surfaces, it is clear that the parallel component of the

thermoelectric field is screened within one screening length. Fig. 5 gives a schematic view

of an insulating surface, partly covered by gold grains and at a non-uniform temperature.

According to the discussion in Sect. V F below, we neglect the thermal conductivity contrast.

On the other hand, gold nanostructures keep their electric conductivity, though it is lower

than that of bulk material; thus the grains are conducting and that each of them forms an

equipotential surface.

The left panel of Fig. 5 shows the thermoelectric properties of a single grain. The par-
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allel component of the Seebeck far-field induces polarization charges, such that isopotential

condition is satisfied at the surface. For a gold hemisphere mounted on a low-permittiivity

material, the resulting electric field and polarization charges are obtained from Appendix

A.3 by retaining the term c1 only. Note that beyond a distance of one screening length, one

recovers the macroscopic thermoelectric field. The right panel of Fig. 5 shows a densely cov-

ered surface, where the distance between grains does not exceed the screening length. Then

the overall thermopotential is split in small jumps between nearby grains; their cold and

hot boundaries carry polarization charges which result in a strong electric field in the spac-

ing. The field component parallel to the surface vanishes at the grain surface but increases

beyond and tends towards the far-field value beyond double layer.

The slip velocity is essentially determined by the layer of thickness λ above the gold

grains, whereas the narrow space between the grains is of little relevance. A different picture

would arise if the gold grains covered only a small fraction of the surface, and if their

height was small as compared to their spacing. For a situation as shown by Fig. 5 or

by the electron micrograph in Ref. [38], however, we conclude that the picture developed

for micron-size conducting surfaces remains at least qualitatively correct for a granular gold

coating. Because of the surface roughness one may expect a somewhat modified slip velocity,

probably smaller than at a homogeneous cap.

E. Comparison with experiment

So far there are few direct measurements of the slip velocity with respect to a wall

[5, 26]; most experiments report the motion of dispersed particles in an external temperature

gradient [2–4, 16–18] or of self-propelling microswimmers [7–10], where the velocity is given

by the surface average of the slip velocity.

The slip velocity (35) consists of various contributions, proportional to the temperature

gradient and its companion fields. All of them are of comparable magnitude. The slip

velocity varies as a function of the electrolyte strength and, through the Soret and Seebeck

coefficients, depends on specific-ion properties. At room temperature, the Soret coefficient

ST is usually positive [22]. Then except for the Seebeck contribution, all terms of the slip

velocity are positive, and the boundary layer flows towards the hot. There is, however,

strong evidence that the Seebeck term is dominant for common salt and buffer solutions,
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such as NaCl, NaOH, citric acid, and CAPS. Since their Seebeck coefficents take opposite

signs, one observes, as a most striking feature, a positive slip velocity for NaCl [18] and a

negative one for NaOH [17, 18]; thus changing the anion reverses the direction of thermally

driven motion. Similar effects were reported for buffer solutions [16].

The main results of the present paper concern the slip velocity along metal surfaces.

Though local heating of gold structures is widely used for manipulating of particles and

cells [2–4, 6] or powering microswimmers [7–11], there is at present no systematic study of

the creep flow along a conducting surface. Evidence for thermo-electric driving of hot silica

particles with a granular gold cap, was reported by one recent experiment [9]: Probing the

particle’s self-propulsion velocity in 10 mM solutions of NaCl, LiCl and NaOH, revealed

a salt-specific effect, which agrees qualitatively with the Seebeck coefficients of these elec-

trolytes, SNaCl > SLiCl > SNaOH. Since the thermophoretic self-propulsion is superposed on

motion due to radiation pressure and gravity, these data do not provide an absolute mea-

sure of vs, but only qualitative differences upon changing the ions. In summary, the data

of Ref. [9] confirm the existence of an electrolyte Seebeck effect for active Janus particles,

yet they do not provide clear evidence whether the thermoelectric driving is the same on

the silica and gold hemispheres, as suggested by the present work, or whether the Seebeck

effect vanishes on the metal surface.

F. Temperature gradient at the particle surface

Throughout this paper we have assumed that the temperature gradient is not modified

at the solid-water interface, which is justified as long as the heat conductivities of liquid and

particle, κw and κP , take similar values. For a sufficiently strong conductivity contrast, how-

ever, the particle deforms the temperature field in its vicinity. For a sphere, a conductivity

contrast modifies the parallel and perpendicular components of the temperature gradient

according to

∇‖TS → ξ‖∇‖TS, ∇⊥TS → ξ⊥∇⊥TS, (42)

with the well-known constants [15]

ξ‖ =
3κw

2κw + κP
, ξ⊥ =

3κP
2κw + κP

. (43)
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In order to account for the conductivity contrast in the results of the preceding sections,

one merely has to introduce these factors. Typical insulating materials, like silica and

polystyrene, show a somewhat lower heat conductivity than water. The most important

thermoelectric properties are proportional to parallel gradient, with a correction factor ξ‖

between 1 and 3
2
, which is usually of little relevance.

A more complex situation occurs for thin metal coatings. Metals conduct heat much

better than water, κm � κw. A metal coating of thickness d significantly deforms the

temperature profile of a sphere of radius a, if the conductivity contrast satisfies κm/κw > a/d;

in the thick-cap limit the metal surface becomes an isothermal [35]. Noting that κm decreases

for films of less than 100 nm, one finds that for micron-size particles, the temperature is

modified by coatings thicker than several tens of nanometer.

Most recent experiments are done on Janus particles with thinner coatings, of less than

10 nm, where the cap contribution to heat conduction and the resulting deformation of the

temperature field can be neglected. On the other hand, such thin gold coatings still have

significant electrical conductivity, and thus develop polarization charges as discussed in this

paper and shown in Figs. 2 and 4.

G. Transient and memory effects.

So far we have considered the steady-state Seebeck effect. The transient behavior after

switching on the heat source is readily obtained from the advection-diffusion equation for

the ions with Gauss’ law ∇ · E = ρ/ε. Thus we find

ρT (t) = ρT (∞)(1− e−t/τion), (44)

where the characteristic time scale expresses the time of ion diffusion over the screening

length,

τion =
λ2

2D
. (45)

With typical values D ∼ 10−9 m2/s and λ ∼ 50 nm, one finds τ ∼ µs.

Thus building up the Seebeck field requires a few microseconds, and the same time-

dependence occurs for the slip velocity. Indeed, the thermal and hydrodynamic time scales,

τth = λ2/α and τhy = λ2/ν, are by several orders of magnitude shorter, since both heat

diffusivity (α ∼ 10−7 m2/s) and kinematic viscosity (ν ∼ 10−6 m2/s), by far exceed ion
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diffusivity. It should be noted that τhy is much shorter than the hydrodynamic memory

of Brownian motion, τ ′hy = a2/ν [41]; this is due to the fact that in the latter case, the

hydrodynamic stress decays over the particle size a, whereas for phoretic and active particles,

the relevant stress is confined within the interaction length λ [31].

As a consequence, we expect a rather intricate behavior of the particle motion during the

first milliseconds,

vs(t) = vels (1− e−t/τion) + vosms (1− e−t/τth), (46)

where the thermo-electric slip velocity vels corresponds to the first term of (35), and the

osmosis-driven one vosms to the remainder. The latter sets in on the heat-diffusion time scale

τth ∼ 10 nanoseconds. The Seebeck effect requires ion diffusion which occurs on the time

scale τion that may attain a microsecond. Since in many instances, the thermoelectric slip

velocity vels is stronger and carries the opposite sign [16–18], the onset of the Seebeck effect

could even result in a reversal of the direction of motion.

The above discussion applies to the double-layer at the conducting hemisphere, where the

local temperature gradient is determined by absorption of laser light by the gold coating.

At the insulating hemisphere, building up the stationary temperature profile requires heat

diffusion over a distance comparable to the particle radius. Thus the thermal time scale,

τ insth = a2/α, is of the order of ten microseconds, which is close to the ionic relaxation time

τion. Thus on an insulating surface, the time scales of the two terms in the slip velocity (46)

are not very different.

VI. SUMMARY

We find that hot metal structure in contact with an electrolyte solution, show thermo-

electric properties at the nanoscale that depend both on surface material properties and

ion-specific effects. Here we briefly summarize our main results.

The diffuse layer comprises a thermocharge ρT which is proportional to the surface tem-

perature TS. On a Janus particle, TS increases from the passive hemisphere to the heated

cap, and so does the thermocharge, resulting in a parallel component of the Seebeck field

along the particle surface.

On a conducting surface, such as a gold cap, however, the parallel temperature gradient

induces a polarization charge on the metal structure, which modifies the double layer such
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that the parallel component of the electric field vanishes at the surface. Yet this does not

affect the thermally induced slip velocity, which turns out to be identical on insulating and

conducting surfaces.

In previous work the Seebeck field had been considered like a field due to an external

voltage. We find that the near-field is rather different, as shown in Figs. 3 a and b. As a

consequence, the parallel field at a spherical particle (38) does not carry a factor 3
2
, contrary

to an external field (37) at a low-permittivity particles. The same difference occurs between

the thermoelectric contribution to the slip velocity (35) and the electroosmotic velocity.

Regarding specific-ion effects, our findings agree qualitatively with a recent experiment

on gold-capped silica particles, showing a significant variation of the self-propulsion velocity

with the used salts NaOH, NaCl, LiCl [9]. The data do not provide conclusive evidence for

thermoelectric driving along the metal cap.

From our analysis of the onset of thermoosmotic and thermoelectric driving, we expect

striking transient effects. Because of the slow diffusion of ions, as compared to diffusion of

heat and momentum, the thermo-electric slip velocity sets in on a microsecond timescale.

The much faster onset of thermoosmosis, should result in a two-step transient behavior upon

switching on the heating.

AL and AW acknowledge support by the French National reasearch agency through con-

tract ANR-13-IS04-0003. AW thanks Frank Cichos and Martin Fränzl for stimulating dis-

cussions.

Appendix A: Thermocharge of an uncharged particle

Here we derive in detail the thermocharge of an uncharged spherical particle. Since the

thermocharge is small, we may resort to Debye-Hückel approximation, and for the spherical

geometry, the thermoelectric potential can be given explicitly in terms of a multipole ex-

pansion. We first provide the general formulae for weak coupling, evaluate them for a 1D

geometry, and then consider insulating and conducting particles with non-uniform surface

temperature.
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1. Debye-Hückel theory

Here we derive the thermocharge of an uncharged hot particle in some more detail than in

the main text. We start from the relation between thermocharge density ρ and thermoelectric

field E obtained in Sect. II,

∇ρ+
ε

λ2
(S∇T − E) = 0. (A1)

This equation has two solutions, and the electrostatic potential consists of two contributions

accordingly,

ϕ = ϕT + ϕσ. (A2)

The first one, ET = S∇T and ρ = 0, corresponds to the far-field (5) with zero charge density

and the thermoelectric potential

ϕT = −S(T − T0), (A3)

whereas the second solution is given by the screened Debye-Hückel potential ϕσ. Indeed,

completing ∇ρ = (ε/λ2)E with Gauss’ law ρ = εdivE, one finds E = −∇ϕσ, where ϕσ

solves the Debye-Hückel equation

∇2ϕσ =
ϕσ
λ2
. (A4)

2. 1D geometry

These equations have been solved previously for a 1D geometry between a hot and a cold

plate [24], and for a uniformly heated spherical particle [25]. With the constant temperature

gradient ∇T along the z−direction, one readily calculates the Seebeck field,

E = S∇T
(

1− cosh(z/λ)

cosh(L/2λ)

)
, (A5)

where −L/2 ≤ z ≤ L/2. If the system size L is much larger than the Debye length λ, one

has the bulk field E = S∇T ; at the boundaries, E is exponentially screened and vanishes

at the hot and cold surfaces.

The corresponding thermocharge at the boundaries is given by Gauss’ law,

ρT = ε∂zE = −εS∇T sinh(z/λ)

cosh(L/2λ)
. (A6)

For L � λ, this simplifies to ρT = ∓εS∇Te(±z−L/2)/λ, resulting in positive and negative

charge layers at the hot and cold boundaries.
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3. Spherical particle

For a spherical particle, the inhomogeneous solution (A3) is given by a multipole expan-

sion for the temperature field,

T (r) = T0 +
∞∑
n=0

tnPn (c)
an+1

rn+1
, (A7)

where c = cos θ is the cosine of the polar angle. The mean excess surface temperature

t0 = q/4πκa is determined by the rate of heat absorption q, the thermal conductivity of the

solvent κ, and the particle radius a.

The homogeneous solution ϕσ is obtained as a series

ϕσ =
∞∑
n=0

cnPn (c)
kn (r/λ)

kn (a/λ)
, (A8)

in terms of Legendre polynomials Pn (c) with c = cos θ, and the modified spherical Bessel

function of the second kind kn (x). For the sake of notational convenience, we introduce the

factor kn (a/λ), such that the radial solutions are normalized at the particle surface r = a.

4. Insulating particle

The coefficients cn of the homogeneous solution remain to be determined from the electro-

static boundary conditions at the particle-water interface. For a low-permittivity material

we may put εP/εw → 0. Then the boundary conditions require that the normal component

of the electric field vanishes,

E⊥(r = a) = 0. (A9)

Taking the radial derivative of ϕ, putting r = a, and rearranging terms we find

cn = Stn(n+ 1)
λ

a

kn (a/λ)

k′n (a/λ)
.

with the dimensionless derivative k′n (x) = ∂xkn(x).

These coefficients determine the thermopotential ϕ. In order to simplify the resulting

expressions we note that the ratio of Debye length λ and particle radius a is at most of the

order of a few percent. Expanding in powers of the small parameter λ/a,

kn (r/λ)

kn (a/λ)
=
a

r
e(a−r)/λ

[
1 +

λ

a

n (n+ 1)

2

(
1− a

r

)
+ ...

]
,
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we find that the first terms of the series are well approximated by

kn (r/λ)

kn (a/λ)
≈ a

r
e(a−r)/λ (n <

√
a/λ).

In the most relevant near-field range, this approximation is even valid for n < a/λ. To

leading order in the small parameter λ/a, we have k′n (a/λ) /kn (a/λ) = −1 +O(λ/a). Then

the above coefficient simplifies according to

cn = Stn(n+ 1)
λ

a
, (A10)

and the electrostatic potential reads as

ϕ = −S
∑
n

tnPn(c)

(
an+1

rn+1
− (n+ 1)

λ

r
e(a−r)/λ

)
. (A11)

The screened term is by a factor λ/a smaller than the first one; yet their radial derivatives

cancel each other at r = a, thus satisfying (A9).

The normal component of the electric field reads, to leading order in λ/a,

E⊥(r) = S∇⊥T (r)(1− e(a−r)/λ). (A12)

In the screened terms we have discarded factors of a/r, since they are close to unity in the

range where the exponential function is finite. This explicits how the thermocharge screens

the normal electric field. The parallel field component, on the contrary, is hardly affected

by the thermocharge,

E‖(r) = S∇‖T (r)(1 +O(λ/a)). (A13)

The thermocharge density follows from Gauss’ law, ρT = −∇2ϕσ. With the same ap-

proximations as for the normal field component above, we have

ρT =
ε

λ
e(a−r)/λS∇⊥T |S. (A14)

Integrating over the radial coordinate we find the charge per unit area

σT =

∫ ∞
0

drρT = εS∇⊥T |S. (A15)

Integrating over the particle surface gives the total charge

QT = −4πaεSt0, (A16)

which is determined by the isotropic component of the excess temperature.
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5. Conducting particle

The thermocharge ρT is the same as obtained above for an insulating particle. The bound-

ary conditions, however, impose that the parallel component of the electric field vanishes,

whereas the normal component is eventually compensated by a polarization charge density

σP of the surface r = a,

E⊥ = −σP
ε
, E‖ = 0. (A17)

Writing the surface charge as a series σP =
∑

n snPn(c) and inserting the potential ϕ, we

determine the coefficients cn and sn to leading order in λ/a,

cn = Stn, sn = −εStn
λ

(n > 0).

The isotropic terms are particular because of charge conservation,

c0 =
λ

a
St0, s0 = 0.

Then the electrostatic potential reads

ϕ = −St0
a− λea−rλ

r
− S

∑
n>0

tnPn(c)

(
an+1

rn+1
− ea−rλ

)
. (A18)

Resorting to the same approximation as in the insulating case, we have

ϕ = −St0
a− λea−rλ

r
− S(TS − 〈TS〉)

(
1− ea−rλ

)
, (A19)

with the surface temperature TS and its mean value 〈TS〉. The polarization charge is given

by

σP =
ε

λ
S(TS − 〈TS〉), (A20)

For the normal component of the electric field we find

E⊥(r) = S∇⊥T (r)− S(TS − 〈TS〉)
λ

e
a−r
λ . (A21)

In the screened terms we have discarded factors of a/r, since they are close to unity in the

range where the exponential function is finite. This explicits how the thermocharge screens

the normal electric field.

To linear order in the excess temperature, the parallel field component,

E‖(r) = S∇‖T
(
1− e(a−r)/λ

)
, (A22)
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vanishes at the surface and tends to the Seebeck field well beyond the double layer.

The thermocharge density follows from Gauss’ law, ρT = −∇2ϕσ. With the same ap-

proximations as for the normal field component above, we have

ρP =
ε

λ2
e(a−r)/λS(TS − 〈TS〉). (A23)

Appendix B: Poisson-Boltzmann theory

Consider a charged surface in contact with an electrolyte solution. In mean-field theory,

the electrostatic potential ϕσ satisfies the Poisson-Boltzmann equation

∇2ϕσ = −ρ
ε

=
kBT

eλ2
sinh

eϕσ
kBT

. (B1)

If the particle radius is much larger than the Debye screening length, the curvature of the

surface can be neglected. Then the Laplace operator reduces to the second derivative with

respect to the vertical coordinate z, and the potential is the 1D solution [28]

ϕσ(z) = −2kBT

e
ln

1 + ge−z/λ

1− ge−z/λ , (B2)

with the shorthand notation

ĝ = ge−z/λ, g =
√

1 + `2/λ2 − `/λ. (B3)

The parameter g is given by the ratio of the Gouy-Chapman length ` = e/(2π`B|σ|) and

the Debye length λ = 1/
√

8π`Bn. With the Bjerrum length `B = e2/(4πεkBT ) one finds

`

λ
=

e

2π|σ|`Bλ
=
e
√

8nεkBT

|σ| , (B4)

with the salinity n. In the following we assume that σ is positive, corresponding to the usual

situation of a negative surface charge −σ.

The electric field E⊥ = −dϕ/dz is perpendicular to the surface and reads

E⊥ = −σ
ε
e−z/λ

1− g2
1− ĝ2 . (B5)

At the particle surface, one readily verifies the relation E(0) = −σ/ε.
The charge density ρ in the diffuse layer is given by the second equality in (B1). An

equivalent form in terms of the parameter g is obtained from Gauss’ law ρ = εdE/dz,

ρ =
σ

λ
e−z/λ

(1− g2)(1 + ĝ2)

1− ĝ2 . (B6)
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Integrating over z one finds ∫ ∞
0

dzρ(z) = σ, (B7)

which is opposite to the surface charge density −σ. We also give the excess ion concentration

δn = n+ + n− − 2n = 2n

(
cosh

eϕσ
kBT

− 1

)
. (B8)

The Debye-Hückel approximation is obtained by taking the limit of small surface charge,

where `/λ� 1 and g = 1
2
λ/`, resulting in

ϕσ = −σλ
ε
e−z/λ, E⊥ = −σ

ε
e−z/λ, ρ =

σ

λ
e−z/λ, δn = n

(
eϕσ
kBT

)2

.

Appendix C: Determination of the polarization charge σP

Anticipating that the σp is much smaller than the uniform surface charge σ0, we expand

the Poisson-Boltzmann potential to linear order,

ϕσ = ϕσ0 + σP
dϕσ0
dσ0

. (C1)

Taking the parallel gradient component, we have

∇‖ϕσ = ∇‖ϕσ0 −
∇‖σP
σ0

2kBT

e
√

1 + b2
, (C2)

where b = `/λ is the ratio of the Gouy-Chapman length ` and the Debye length λ. Noting

that this gradient vanishes at the surface (z = 0) and solving for ∇‖σP , we obtain

∇‖σP
σ0

= − e

2kBT

√
1 + b2

(
S∇‖T −∇‖ϕσ0

)
. (C3)

Now we compute the last term in parentheses at z = 0

∇‖ϕσ0 = ζ
∇‖T
T

+
kBT

e

1√
1 + b2

(∇‖ε
ε

+
∇‖T
T

)
. (C4)

Inserting this in Eq. (C3), we obtain finally the surface charge σP in Poisson-Boltzmann

theory as,

∇‖σP
σ0

= −e
√

1 + b2

2kBT

(
S∇‖T − ζ

∇‖T
T

)
+

1

2

(∇‖ε
ε

+
∇‖T
T

)
. (C5)

With the permittivity gradient ∇ε = (dε/dT )∇T , we obtain the integral

σP
σ0

= −
(
e
√

1 + b2

kBT
(ST − ζ)− d ln ε

d lnT
− 1

)
∆T − 〈∆T 〉

2T
. (C6)
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The last factor follows from the condition of charge neutrality,

〈σP 〉 =
1

S

∫
S

σPdS = 0.

In the weak-coupling limit, the Gouy- Chapman length is large as compared to the Debye

length, b � 1. Expanding in first order in b−1, we find the surface polarization charge in

Debye- Hückel approximation as,

σP =
εS

λ
(∆T − 〈∆T 〉) , (`/λ� 1). (C7)
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