
HAL Id: hal-01699599
https://hal.science/hal-01699599

Submitted on 7 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cost-Optimal Factored Planning: Promises and Pitfalls
Eric Fabre, Loïg Jezequel, Patrik Haslum, Sylvie Thiébaux

To cite this version:
Eric Fabre, Loïg Jezequel, Patrik Haslum, Sylvie Thiébaux. Cost-Optimal Factored Planning:
Promises and Pitfalls. ICAPS 2010 - 20th International Conference on Automated Planning and
Scheduling), May 2010, Toronto, Canada. �hal-01699599�

https://hal.science/hal-01699599
https://hal.archives-ouvertes.fr

Factored Planning

We assume a classical planning problem, composed of a set
of state variables (either propositions or finite domain vari-
ables) and a set of actions, each described by its precondi-
tions and effects. The objective is to find a plan with mini-
mum sum of (non-negative) action costs.

Factored planning methods decompose the problem into
subproblems, called factors or components. Each compo-
nent is a planning problem in itself, but they also interact.
The graph where interacting components are connected with
an edge is called the component interaction graph. Existing
factored planning methods require this graph to be a tree:
when it is not, it must be transformed into a tree by merg-
ing components. This is why the tree-width of the interac-
tion graph, which measures the greatest number of compo-
nents that have to be joined into one to obtain a tree, is often
quoted as one of the basic measures of problem factorability.

To decompose the problem, we may partition the set of
state variables and let components share actions (Brafman
and Domshlak 2006), or we may partition actions and share
variables across components (Amir and Engelhardt 2003;
Brafman and Domshlak 2008). We choose the former.2

What matters, conceptually, is that each component has
a set of locally valid plans. The factored planning problem
is to select a valid plan for each component that is compat-
ible with those selected for each of the components it inter-
acts with (i.e., its neighbours in the interaction graph). The
combination of those local (sequential) plans, synchronising
only execution of shared actions, is then a valid (partially
ordered) plan for the global problem.

Languages and Plans

Since each component is an ordinary planning problem (es-
sentially, an abstraction of the global problem onto the vari-
ables that make up the component), its set of locally valid
plans forms a regular language over the alphabet of the com-
ponents actions. In the shared action model, the condition
of compatibility of local plans for two neighbouring com-
ponents is that their local plans (which are words in their
languages) become equal when projected onto the subalpha-
bet of actions that they share. The combination of sets of
local plans over overlapping action alphabets corresponds to
forming the product of the languages. The product of all
components’ languages of locally valid plans equals the set
of all globally valid plans.

Any concrete instantiation of the factored planning
method has to manipulate representations of the regular sets
of local plans. If we impose, for example, a constant bound
on the length of any local plan, as previously done by Amir
& Engelhardt (2003) and by Brafman & Domshlak (2006),
these sets can be represented either exhaustively or by a
propositional or constraint formula.

2There is no essential difference between the two options, as
each can be transformed to the other with a linear size increase.
To transform a shared action model to a shared variable model,
duplicate shared actions and make all variabels they touch shared;
in the opposite direction, duplicate shared variables and add actions
to perform explicit synchronisation and alternating access.

Since the sets are regular, they can be represented by (de-
terministic or non-deterministic) finite automata. The op-
erations that the factored problem solving method requires,
viz. projection and product, can be performed – and per-
formed efficiently – directly on automata. To guarantee plan
optimality, we need a representation that also considers plan
costs. For this, we turn to weighted languages and the cor-
responding weighted automata (Mohri 2009).

Weighted Languages and Optimal Plans

A (regular) language is a set of strings. A weighted lan-
guage is a mapping from strings to a domain of numeric
values, which we take to be the non-negative reals. Weights
are interpreted additively: the product operation on weighted
languages sums the weights of the combined strings, while
projection minimises over compatible strings.

Formally, a weighted language L over alphabet Σ is a
function L : Σ∗ → R

+ ∪ {∞}, with the convention that
L(u) = ∞ when u does not belong to the language. The
projection ΠΣ′(L) of L on subalphabet Σ′ ⊂ Σ is such that

ΠΣ′(L)(u′) = min
u∈Σ∗,u|Σ′=u′

L(u), (1)

where u|Σ′ denotes ordinary, unweighted projection. The
product L1 × L2 of weighted languages L1 and L2 over al-
phabets Σ1 and Σ2, respectively, is the weighted language
over Σ1 ∪ Σ2 defined by

(L1 × L2)(u) = L1(u|Σ1
) + L2(u|Σ2

). (2)

This fits our interpretation of strings as plans and their
weights as plan costs. If L is the set of locally valid plans
for a component, with associated costs, and Σ′ the set of ac-
tions it shares with its neighbours, the projection of L onto
Σ′ is the shared action sequences that this component can
perform, i.e., an “outside view” of its local plan set, under
the assumption that if the component has more than one way
to perform a particular shared action sequence, it will choose
the cheapest. Similarly, the cost of a plan in the product of
two components languages, which is a valid plan for both,
sums the costs of the two local plans. This implies that the
cost of a shared action must be split between all components
that have it; it does not matter how the division is done.

A factored planning problem consists of a network of
components, each of which has its own weighted regular
language, Li over an action set Σi. Their product, L =
L1 × . . . × Ln is the language of all globally valid plans.
The projection of this language back to the alphabet of com-
ponent i, L′

i = ΠΣi
(L), is the weighted language of plans

that are both locally valid for component i and compatible
with some plan for every other component, where weights
reflect the global plan cost.

Theorem 1 If u⋆ is an optimal plan in L, with cost w⋆, then
u⋆
|Σi

is an optimal plan in L′
i = ΠΣi

(L), and L′
i(u

⋆
|Σi

) =

w⋆. Conversely, for any optimal plan u⋆
i in L′

i, there exists
an optimal plan u⋆ in L such that u⋆

i = u⋆
|Σi

.

In other words, knowing the “updated” local language L′
i for

each component allows us to construct a globally valid and
optimal plan u⋆ by finding locally valid and optimal plans

u⋆
1, . . . , u

⋆
n for each component. For illustration, contrast

figure 1(a) and (d) which represent L1 and L′
1: in 1(a), the

best plan appears to be taking the shared action α, with cost
1, while in 1(d) it can be seen that the global cost of this plan
is 7, while the cost of the optimal plan, taking action a, is 3.

The global plan is partially ordered; synchronisation is
needed only for shared actions, and then only between the
components that share the action. In a problem that fac-
tors well, components are small, so extracting local optimal
plans from a representation of each local language L′

i is easy.
The challenge of factored planning lies in computing those
representations without computing any explicit representa-
tion of the global language L. This is what the message
passing algorithm does.

The Message Passing Algorithm

The message passing algorithm (MPA) is a generic dis-
tributed optimisation method. It has been used for, e.g., in-
ference in belief networks (Pearl 1986), constraint optimisa-
tion (Dechter 2003) and other applications (Fabre 2003). It
operates by sending messages along edges of the interaction
graph. Messages are objects of the same type as compo-
nents: in our setting, they are sets of (weighted) plans.

Message Mi.j represents the knowledge of component i,
incorporating messages it has received from components on
its side of the tree, projected on the vocabulary Σi ∩ Σj

shared with the receiving component j. After messages
have stabilised, the product of the local language of compo-
nent i with its incomming messages, Li × (×k∈N(i)Mk,i),
yields the updated language L′

i, from which a globally valid
and optimal plan can be extracted. The algorithm requires
that ΠΣ′(L1 × L2) = ΠΣ′(L1) × ΠΣ′(L2) for any Σ′ that
contains shared vocabulary of L1 and L2. This condition
holds for weighted languages, and their representation by
weighted automata (cf. Fabre and Jezequel 2009).

Algorithm 1 The message passing algorithm (MPA) for fac-
tored planning. N(i) denotes the neighbours of component
i in the interaction graph G. I is the neutral element of ×.

Mi,j ← I, ∀(i, j) ∈ G
until stability of messages do

select an edge (i, j)
Mi,j ← ΠΣi∩Σj

(

Li ×
(

×k∈N(i)\jMk,i

))

done
extract solution from L′

i = Li ×
(

×k∈N(i)Mk,i

)

, ∀i

If the interaction graph is a tree the algorithm converges
to a solution in finite time, no matter in what order messages
are sent. Convergence with minimum number of messages
is achieved by a two-pass scheme, where the first pass starts
at the leaves, sending messages along every edge directed to-
wards the (arbitrarily chosen) root, and the second runs back
in the opposite direction, starting from the root. Thus, only
one message in each direction along each edge is needed, re-
sulting in polynomial runtime when the time to process each
message is polynomial.

In factored planning, it is not necessary to compute an ex-
plicit representation of L′

i, as long as a (minimum cost) plan
can somehow be extracted from (representations of) Li and

p

p

α, 1a, 3

1

q

q

α, 2b, 4

1

q1

q2

α, 2

α, 6

4

1

p, q1

p, q2

p, q1

p, q2

α, 3

α, 7

a, 3

4

a, 3

1

(a) (b) (c) (d)

Figure 1: (a)–(b) Weighted automata, representing locally
valid plans of components 1 and 2. (c) Projection of (b) on
the set of shared actions, {α} (after minimisation). This is
message M2,1 (see description of the MPA). (d) Product of
(c) and (a), representing the final plan set of component 1.
Note the final state cost of 4 in (c)–(d).

×k∈N(i)Mk,i. In fact, apart from final solution extraction,
the MPA works only with projections of Li onto shared sub-
alphabets. If Lpub(i) = ΠΣpub(i)

(Li), where Σpub(i) contains

all actions component i shares with any neighbour, then ev-
ery step of the factored planning algorithm apart from the
last may be carried out using Lpub(i) in place of Li.

Any implementation of the MPA must operate on a con-
crete representation of the sets of plans sent as messages.
For this, we will use weighted automata.

Weighted Automata

Weighted automata (Mohri 2009) are finite state transduc-
ers from strings to numbers, which we take to be non-
negative reals. Formally, a weighted automaton is a tuple
A = (S,Σ, T, I, F, ci, cf) where S is a finite set of states,
among which I, F ⊆ S are the initial and final states, Σ
is the finite alphabet (of actions), T ⊆ S × Σ × R

+ × S
is a finite set of weighted transitions, and the functions
ci : I 7→ R

+ and cf : F 7→ R
+ assign weights to

initial and final states.3 An accepting path in A is a se-
quence of transitions, π = t1, . . . , tk, that forms a con-
tiguous path from an initial state s0 ∈ I to a final state
sk ∈ F . The word produced by the path, σ(π), is the corre-
sponding sequence of transition labels. As for ordinary au-
tomata, we assume the existence of a distinguished “silent”
transition label ǫ; transitions labelled by ǫ are invisible in
the word produced by the path. The weight of the path is
c(π) = ci(s0) + (

∑

i=1...k c(ti)) + cf (sk), where c(ti) is
the weight of ti. The weighted language of A is defined by

L(A)(u) = min
paths π in A s.t. σ(π) = u

c(π) (3)

where the minimum is ∞ if A has no path accepting u. In
other words, the sequence of actions u is in the language if
there is an accepting path that produces it, as usual, and its
weight is the minimal weight over all paths that produce u.

As usual, A is said to be deterministic if it has a single
initial state (|I| = 1) and for any state s and action a ∈ Σ,
there is at most one transition (s, a, c, s′) ∈ T .

3The initial and final state costs play a role in the algorithms for
manipulating weighted automata.

Operations on Weighted Automata

To use weighted automata as our representation of plan sets
in the factored planning algorithm, we need to be able to
form products and project on subsets of actions. For effi-
ciency, it is also desirable that we can minimise automata,
but this is not essential for correctness or completeness of
the method. These operations are well known on ordinary fi-
nite automata; here we briefly sketch how they are extended
to the weighted case. We refer to Mohri (2009) for details.

The product, A1 × A2, of two weighted automata is ob-
tained by forming the classical, unweighted, parallel prod-
uct4 and assigning transition and state weights the sum of
their weights in A1 and A2. Figures 1(a), (c) and (d) show
an example. Product preserves determinism: if A1 and A2

are both deterministic, then so is A1 ×A2.
The projection of A on a subset of actions Σ′ ⊆ Σ is ob-

tained by replacing the label of any transition labelled with
some a 6∈ Σ′ by the silent label ǫ, followed by weighted
version of standard ǫ-removal. Figures 1(b)–(c) shows an
example of projection. Projection may produce a non-
deterministic automaton. For efficiency, we want to min-
imise the automata representing messages. The determini-
sation and minimisation procedures for WA are essentially
analogues of those for ordinary automata, but the former is
more complicated due to the management of weights. We
refer to Mohri’s text (2009) for details.

Unlike ordinary automata, not every WA is determinis-
able. Briefly, the reason is that a non-deterministic WA may
accept an arbitrarily long string along paths with different
weights, and deciding which path is the cheaper (and there-
fore the right one) may require looking at the entire string.
However, as noted above, determinisation is not essential for
either correctness or completeness of the factored algorithm;
it is only a tool that may improve efficiency.

The product (for two WA), projection and minimisation
procedures all run in time polynomial in the size of their
input. As a convention, we assume that automata are simpli-
fied (“trimmed”) by removing states that are not reachable
from any initial state, and states from which no accepting
state is reachable. This is also a polynomial time operation.
Determinisation, when it is possible, may as usual produce
an exponentially larger automaton as output (and thus take
exponential time). An important step in proving the com-
plexity results in the next section will be to show that under
the right conditions, determinisation is either not required,
or possible without the exponential blow-up.

Implementation Applying the MPA using weighted au-
tomata to represent sets of plans, we obtain a cost optimal
factored planner. The construction of initial automata rep-
resenting sets of locally valid plans for each component is
the same as computing the (constrained) abstraction onto the
set of variables that belong to the component (just as in the
construction of a PDB). The extraction of a tuple of com-

4The parallel product synchronises only transitions with labels
that the automata share, leaving each automaton free to take non-
shared transitions. Thus, this product mirrors the one on languages:
L(A1 × A2) = L(A1) × L(A2). This is unlike the synchronous
product, which implements language intersection. The two coin-
cide when A1 and A2 work on the same alphabet.

patible local plans works like the second pass of the MPA,
where each component sends to those below only a single
plan. This plan is extracted by direct graph search on its fi-
nal automaton. We have implemented this algorithm, using
the OpenFST library5 for automata operations, in a planner
called Distoplan.

Conditions for Polynomial Time Complexity
When the interaction graph forms a tree, the message pass-
ing algorithm converges to a solution, using a linear number
of messages. In applications like finite domain constraint
optimisation, the size of messages, and the complexity of
computing the product of a component and its incoming
messages, are bounded by the size of the components them-
selves. Therefore, bounding component size is sufficient to
make the MPA run in polynomial time (assuming basic op-
erations are polynomial time). When the interaction graph is
not a tree but has tree-width bounded by w, it can be trans-
formed into a tree with an increase in component size that is
exponential only in w.

But planning is a harder problem. Even when the inter-
action graph is a tree, limiting the size of components is not
sufficient to prevent messages from growing exponentially.6

This issue has not been observed in previous factored plan-
ning methods, due to the choice of message representations
that are by their very nature bounded. But the use of such
representations also limits the planner to finding only solu-
tions within the bound, forcing it to use iterative deepening
on those parameters to achieve even completeness.

Yet, it is possible to find conditions that are sufficient to
guarantee polynomial runtime also for the factored planning
method using the unbounded weighted automaton represen-
tation, because the necessary operations (i.e., product and
projection) are polynomial in the size of their input. It is
simply a question of finding conditions which limit the size
of automata handled by the MPA. We will examine one set
of conditions, closely related to those assumed by Brafman
& Domshlak (2008), and show that it suffices. The key is
bounding the number of shared action occurrences in any
locally valid plan. Later we show that this condition is not
essential, using an example of a problem where it does not
hold but message growth is still polynomial.

First, we state a general condition for tractability of fac-
tored planning using our representation. In the next two
subsections we examine two special cases that imply this
condition. Let Ci and Mi,j denote the weighted automata
representing component i and the message from i to j, re-
spectively, let Σpub(i) be the subset of actions that component

i shares with any neighbour, and let Cpub(i) = ΠΣpub(i)
(Ci).

|A| denotes the number of states in automaton A.
In this analysis, we need to make a few more specific as-

sumptions about how the MPA is implemented. First, we
assume that it follows the two pass scheme, so no more
than one message is sent in each direction along each edge.
Second, when computing the outgoing message ΠΣi,j

(Ci ×
Mj1,i × . . . × Mjk,i) of component i, we exploit that

5http://www.openfst.org/
6A simple example demonstrating this can be constructed using

a factored binary counter.

ΠΣi,j
(Ci) = ΠΣi,j

(Cpub(i)) and that product is associative,

by computing C ′
pub(i) = (. . . (Cpub(i)×Mj1,i)× . . .)×Mjk,i,

incrementally, using the messages received by i so far, and
then each outgoing message as ΠΣi,j

(C ′
pub(i)). This way,

Mj1,i× . . .×Mjk,i is never computed explicitly. The result
C ′

pub(i) computed in the first pass is kept, and updated with

the additional message in the second pass. Finally, as noted
earlier, a factored planner must only extract a minimum cost
element (plan) of L(Ci × (×k∈N(i)Mk,i)), which does not,
in principle, require Ci to be made explicit.

Theorem 2 Let n be the number of components, and
poly(n) a polynomial in n. If the component interaction
graph is a tree, and

(a) |Cpub(i)| ≤ poly(n), and Cpub(i) is computable in time
polynomial in n, for each component i;

(b) |Mi,j | ≤ poly(n), for each pair i, j;

(c) |C ′
pub(i)| ≤ poly(|Cpub(i)|+|Mj1,i|+. . .+|Mjk,i|), where

C ′
pub(i) = Cpub(i)×Mj1,i×. . .×Mjk,i, for each component

i and subset of neighbours {j1, . . . , jk} ⊆ N(i);
(d) Mi,j = ΠΣi,j

(C ′
pub(i)) is computable in time polynomial

in |C ′
pub(i)|; and

(e) given a WA A over Σpub(i), a minimum cost plan in

L(Ci ×A) can be found in time polynomial in n;

then the run time of the factored planner is polynomial in n.
Proof (sketch): The two-pass MPA requires only a linear
number of messages to be sent and processed. Conditions
(a)–(d) imply that each step of generating and processing
each message is polynomial. Condition (e) ensures that the
final plan extraction is also polynomial. 2

Determinisation is the only potentially non-polynomial step
in processing a message: in cases where it is not needed, or
does not produce an exponential blow-up (as, for example,
in the proof of lemma 5), condition (d) is met.

If the number of state variables in each component is at
most a logarithmic function of n, then the size of each com-
ponent automaton, Ci, is polynomial in n, and plan extrac-
tion can be done in polynomial time by simply searching
Ci × (×k∈N(i)Mk,i). Thus, in this case, conditions (a) and
(e) of theorem 2 are easily met. However, as pointed out
by Brafman and Domshlak (2008), this restriction can be
waived if each component has some other property that al-
lows a (minimum-cost) plan, compatible with constraints on
the shared parts of the plan, to be found in polynomial time.
Conversely, if components have no such property, the fol-
lowing holds:

Theorem 3 If extracting a plan in polynomial time requires
|Ci| to be polynomially bounded, then any problem that the
factored planning method solves in polynomial time has a
polynomial length plan, if it has any plan at all.

Theorem 3 implies that for problems known to have a plan,
when we do not care about optimality, the unbounded au-
tomata representation offers no complexity theoretic ad-
vantage over using a representation with bounded local

plan length in an iterative deepening search. But the un-
bounded factored method can also – under the right con-
ditions – prove unsolvability and optimality in polynomial
time, whereas a method using a length-bounded represen-
tation can never prove anything more than that there is no
(better) plan within the length bounds examined so far. In
this respect, such methods are similar to encoding bounded
planning into, e.g., SAT.

Bounded Shared Sequence Length

Brafman and Domshlak (2008) consider a setting where the
number of shared action occurrences in any local plan for
any component is bounded by a constant K, and each lo-
cal planning problem, taking account of constraints imposed
by incomming messages, can be solved in polynomial time.
Under these restrictions, they show that the problem can be
encoded as a CSP which can be decided in polynomial time.
(To actually solve the planning problem, they repeat this for
increasing values of K, up to the smallest that allows a plan

to be found, or up to 2|V |, where V is the set of state vari-
ables, if no solution exists.)

Next, we show that this assumption implies part of our
tractability condition. Like Brafman and Domshlak (2008),
we leave the mechanism by which local component plans,
compatible with constraints imposed by neighbour compo-
nents, are extracted open, assuming only that it runs in poly-
nomial time.7 Thus, if we impose this bound artificially and
apply iterative deepening, we obtain the same complexity
guaratees for non-optimal planning (on solvable instances).

Theorem 4 If condition (e) of theorem 2 holds, and if for
each component i, |Σpub(i)| ≤ M and every locally valid
plan contains at most K shared action occurrences, where
M and K are constant, then conditions (a)–(d) are also met.
Proof: Lemma 5 (below) gives that |Cpub(i)| is polynomially
bounded. Moreover, when condition (e) holds Cpub(i) can be
constructed in polynomial time, by enumerating sequences
of at most K shared actions. Conditions (b) and (d) also
follow from lemma 5, and condition (c) from lemma 6. 2

Lemma 5 Let A be a weighted automaton over alphabet Σ,
and Σ′ ⊂ Σ. If for any word in w ∈ L(A), |w|Σ′ | ≤ K,

i.e., w contains at most K letters from Σ′, then ΠΣ′(A) is
a determinisable WA, and determinisation of this automaton
results in a WA that has no more than K|Σ′|K states.
Proof: The automaton obtained by projecting A on Σ′ may
be non-deterministic, but it is determinisable. In short, the
reason for this is that it cannot accept strings of arbitrary
length (Mohri 2009).

Since the length of words in L(ΠΣ′(A)) is bounded by

K, there are at most |Σ′|K distinct words in the weighted

language, and at most K|Σ′|K distinct prefixes of words in
this language. Therefore, any deterministic automaton rep-
resenting this language can reach at most K|Σ′|K distinct
states. Determinisation does not produce an automaton con-
taining states that cannot be reached, nor dead end states

7Note, however, that our implementation does compute compo-
nent automata explicitly, and uses a plain search for plan extraction.

0 1

b1

· · ·

b1

m

b1

L H

bi−1

bi

L H

bn−1

(a) (b) (c)

Figure 2: Automata representations of components (a) C1,
(b) Ci, i = 2, . . . , n− 1, and (c) Cn.

if the input automaton does not have them. Hence, deter-
minisation of ΠΣ′(A) results in an automaton with at most

K|Σ′|K states. 2

Lemma 6 Let j1, . . . , jd be neighbours of i, and for each
jk, Σi,jk

their set of shared actions. If Cpub(i) and each
Mjk,i are deterministic, and any plan accepted by Cpub(i)

contains at most K (shared) actions, then C ′
pub(i) = Cpub(i)×

Mj1,i × . . . × Mjd,i is a deterministic WA and minimisa-
tion of this automaton results in a WA that has no more
than K|Σpub(i)|

K states. Furthermore, any plan accepted

by C ′
pub(i) contains no more than K (shared) actions.

Proof: Product preserves determinism: hence C ′
pub(i) is de-

terministic, and therefore minimisable. L(Cpub(i)) contains

at most |Σpub(i)|
K distinct sequences. The language accepted

by Cpub(i)×Mj1,i×. . .×Mjd,i is, modulo weights, the inter-

section of L(Cpub(i)) and L(Mj1,i)∩. . .∩L(Mjd,i), so it too

cannot accept more than |Σpub(i)|
K distinct sequences. Thus,

there is a deterministic prefix tree automaton (like that in the
proof of lemma 5) with at most K|Σpub(i)|

K states accepting

L(Cpub(i) ×Mj1,i × . . .×Mjd,i). 2

Bounded Shared Sequence Length Is Not Essential

Above we have shown that bounding the number of shared
action occurrences in any local plan is sufficient to ensure
polynomial runtime. Next we show that it is not necessary,
i.e., that the factored planner using the weighted automata
representation provably runs in polynomial time also on cer-
tain problems where no such bound holds.

We examine a scaling family of problems. Each consists
of n components in a line (n ≥ 3), whose automata are
as shown in figure 2. Component C1 can take transition b1

(shared with C2) at most m times, where m ≤ poly(n). A
plan exists iff m ≥ n. Note that components Ci, 1 < i < n,
have locally valid plans that contain an unbounded number
of shared action occurrences; hence theorem 4 cannot be
used to show tractability on this problem set.

Theorem 7 The factored planner decides this problem in
time polynomial in n.
Proof: The interaction graph is a tree (a simple chain). The
size of each component automaton is bounded by m, so con-
ditions (a) and (e) of theorem 2 are met.

Pick any component r to be the root. In the first pass,
messages are sent from C1 to C2 to C3 etc. up to Cr, and
from Cn to Cn−1 to Cn−2 etc. down to Cr. We show, by
induction, that message Mi,i+1 is

0 · · ·
bi

k (k = m− i + 1)
bi

(4)

and, by another induction, that message Mi,i−1 is

0 · · ·
bi−1

k (k = n− i + 1)
bi−1

(5)

The base cases are simple: M1,2 equals C1 and Mn,n−1

equals Cn, since all their actions in shared. Mi,i+1 =
Π{bi}(Ci × Mi−1,i). By inductive assumption, the prod-
uct Ci ×Mi−1,i is

0,L 1,H

bi−1
1,L

bi
2,H

bi−1
2,L

bi
· · ·

bi−1
k,H

bi−1
k,L

bi

where k = m− i+1. Trimming state k,L and projecting on
{bi} gives Mi,i+1 as in (4). Similarly, Ci ×Mi+1,i is

0,L 0,H

bi−1
1,L

bi
1,H

bi−1
2,L

bi
· · ·

bi−1
k,H

bi−1

where k = n − i + 1. Projecting on {bi−1} gives (5). If
m− r +1 ≥ n− r +1, the product Cr ×Mr−1,r ×Mr+1,r

is the same as Mr,r−1 shown above. If m−r+1 < n−r+1,
it has no reachable accepting state, as expected since in this
case the problem is unsolvable. The messages sent from Cr

to Cr−1 etc. down to C1 continue the same pattern, while
the messages from Cr to Cr+1 etc. up to Cn are identical to
those sent in the opposite direction.

Thus, the size of all intermediate results is bounded by n
or m, giving conditions (b) and (c) of theorem 2. Condition
(d) is met since no determinisation is needed. 2

Planning Benchmarks

We believe that the majority of existing planning bench-
marks are not suited to factoring, but since no adequate mea-
sure of “factorability” is yet known, we can only offer anec-
dotal evidence of this.

We have examined indicative measures of the interaction
graphs, and, of course, tried to come up with working de-
compositions but failed. As an example, many domains in-
volve objects moving, or being transported, on a “roadmap”
or network. These can be decomposed along the network
structure, but in this decomposition, the size of each compo-
nent grows with the total number of moving objects in the
problem, since all components must distinguish for each ob-
ject if it is or is not present. Even in planning domains where
the underlying problem intuitively ought to be amenable to
factoring, we often find that the particular PDDL encodings
of those benchmarks do not factor well, or at least not well
enough for factored planning to pay off.

Amir & Engelhardt (2003) tested their factored planner
on a simple “robot & rooms” domain. We have done the
same, and found that our planner scales polynomially with
problem size. More relevantly, we have found three standard
(IPC) planning benchmark domains for which we were able
to formulate new PDDL encodings of their underlying prob-
lems in such a way that growing problem size is primarily
reflected in the number of components (i.e., size of individ-
ual components remains either constant, or tends to grow
more slowly). The domains are the two Promela domains
(Philosophers and Optical-Telegraph) and Pipesworld (with
and without tankage restrictions).8 Results on these domains
are mixed.

8The alternative PDDL encodings are available from us on re-
quest. The fact that all domains hail from IPC4 is a coincidence.

The Promela Domains The IPC4 Promela domains are
PDDL encodings deadlock detection problems, generated
by automatic translation from models in the Promela lan-
guage (Hoffmann et al. 2006). The two domains model
the classic “dining philosophers” example, and a communi-
cations protocol for an optical telegraph system. Both are
deadlockable, but can be made deadlock free by a small
change to the model (in the case of the dining philosophers,
make one of the philosophers pick up his forks in opposite
order; in the optical telegraph model, arrange the stations in
a line instead of a circle).

Promela models are made up of processes communicat-
ing via message channels (queues). In both domains mod-
els, the network of processes and channels forms a ring,
i.e., each process communicates only with two neighbouring
processes (via one or two channels for each). Thus, if each
process and channel is made into a component, we would
expect to find a very sparse interaction graph. However, the
IPC4 PDDL encoding – because it is based on a general,
automatic translation from Promela – enforces a global syn-
chronisation between processes and channels, which makes
the interaction graph effectively a clique.

We have devised alternative PDDL encodings of both do-
mains which yield the expected interaction structure. (The
tree-width of the interaction graph is 2 for Philosophers
problems, and at most 4 in the Optical-Telegraph domain.)
The encodings are straightforward; the only difficulty is in
expressing the global deadlock condition (which is the goal)
locally. This is done by allowing each process to condition-
ally block when none of its normal transitions in the current
state are applicable (e.g., when the fork it needs to pick up
is already taken). The conditional blocking action marks
the related channel so that from this point on no other ac-
tion which would unblock the process (e.g., by returning the
missing fork) can take place. When all processes are condi-
tionally blocked, the system is deadlocked.

Experiments and Results Figure 3 summarises experi-
ment results in the Promela domains. The results are mostly
expected: The factored planner scales polynomially with in-
creasing problem size, and it is totally unaffected by whether
the problem has a solution (deadlock) or not. In the Optical-
Telegraph domain, the planner spends most of its time
(around 90%) constructing initial automata.

As points of comparison, we tested SATPLAN (the IPC
2006 version; Kautz, Selman, and Hoffmann 2006) and the
Fast Downward implementation of state space search with
the recent landmark cut heuristic (Helmert and Domshlak
2009). As expected, SATPLAN is lightning-fast at find-
ing solutions in the deadlockable problems, but it is com-
pletely unable to prove unsolvability of even the tiniest dead-
lock free instance. The heuristic search based planner scales
exponentially, except on solvable instances of the Philoso-
phers domain, where the landmark cut heuristic turns out to
achieve perfect accuracy.

Pipesworld The Pipesworld domain models the prob-
lem of transporting (liquid) products through a network of
pipelines and transit areas. The main simplification of the
planning benchmark, compared to the real application, is
that the continuous flow of liquid is divided into discrete,

����

���

�

��

���

����

�� �� �� �� �� �� 	�
� �� ���

�
�

�
��

�

���������������������

��������
� �!�����"#��

$�%&'�(

����

���

�

��

���

�� �� �� �� �� �� 	�
� �� ���

�
�

�
��

�

���������������������

��������
� �!�����"#��

(a) (b)

����

���

�

��

���

����

� �� �� �� �� �� �� �� �� ��

�	

�
�
�

��
����������	��

�	������
����	����
����

 �!"#�$
���

�

��

���

����

� �� �� �� �� �� �� �� �� ��

�	

�
�
�

��
����������	��

�	������
����	����
����

(c) (d)

Figure 3: Planner runtimes (logarithmic scale) on the alter-
native PDDL encodings of Promela domains: (a) Philoso-
phers, deadlockable; (b) Philosophers, deadlock free; (c)
Optical-Telegraph, deadlockable; (d) Optical-Telegraph,
deadlock free.

unit-sized “batches” (Hoffmann et al. 2006).

The pipeline networks are fairly sparse, and operations
on each pipeline affect only the adjacent transit areas, so
the problem can be decomposed along the network struc-
ture. However, the IPC4 PDDL encoding gives every batch
a unique name (whereas in the real application, only the type
of product it is made up of matters). Just as in other “named
object” movement domains, this makes components grow in
size with the total number of batches in the system, which
grows, quite fast, with network size.

We replace the named batches by (bounded) counters
keeping track of the number of batches of each product type
in each area. For each pipeline segment, we use a number of
ordered “slots”, equal to the segment length, which record
what type of product is at each position (this is needed to
model the FIFO behaviour of a pipe). In this encoding, com-
ponent automata grow with the maximum number of batches
of each type, which is typically a smaller quantity (across
the IPC4 problem set, the maximum is 9). Limitations on
storage space in areas, which are modelled in the “tankage”
version of the domain, further limit the range of counters.

Mapping problem instances from the IPC4 Pipesworld en-
coding to our formulation is not as straightforward as in the
Promela domains. Depending on whether we interpret the
goal as absolute (i.e., “have N units of type X at A”) or rel-
ative (i.e., “have N units more of type X at A”) we can end
up with problems that are much easier, or problems that are
unsolvable. We experimented with both mappings.

Results and Analysis The reformulated Pipesworld do-
main seems like a good candidate for a problem suited to
factored planning, but the performance of the planner is dis-
appointing: it fails to solve even the smallest IPC instances
in reasonable time. To understand why, we examine a family
of simple problem instances, shown schematically in figure

0
4
0
0

8
0
0

1
2
0
0

Size (Cubed)

R
u
n
ti
m

e
 (

lin
e
a
r)

2^3 8^3 10^3 12^3

(a) (b)

Figure 4: (a) Layout of the Pipesworld problem (two product
types). Dashed lines mark component boundaries. Ai’s are
storage areas, Pi’s are pipes; white slots are empty. The goal
is to have one batch of type X at An. (b) Runtime vs. n3.

4(a). On these instances, the planner scales roughly as n3,
as shown in figure 4(b).

We can show a lower bound on the size of messages sent,
which is polynomial in the length of the component chain
(actually, in the total amount of storage spaces in it) but ex-
ponential in the number of different product types. The main
reason for this is that the message sent from the ith com-
ponent to its neighbour describes all possible plans for the
subsystem to one side of it, assuming no constraints from
the other. We conjecture that there is a similar upper bound.
Even though the smaller instances in the IPC4 set have net-
works that are short lines like this, the number of products
and storage capacities are much higher than in our problem,
causing message sizes to rise very rapidly.

Conclusions

There are still significant gaps in our understanding of fac-
tored planning. What are adequate measures of factorability,
and how can we use them to automatically detect and de-
compose problems amenable to factoring? What restrictions
are essential to guarantee polynomial complexity? Bounded
tree-width (of some interaction graph) is known to be neces-
sary, but not sufficent; we have shown that additionally lim-
iting the number of shared action occurrences is sufficient,
but not necessary.

Previous factored planning methods have used bounded
representations in combination with iterative deepening, es-
sentially running the factored solver many times, whereas
we use an unbounded representation to compute all valid
plans in one run. Both methods have their flaws: The it-
erative method cannot prove unsolvability nor optimality
without exhausting the bound space. Our method requires
stronger conditions to guarantee polynomial runtime, which
is overkill for solvable instances of non-optimal planning.

There is a space of other possibilities to explore: intel-
ligent combinations of backtracking search and computing
entire sets of local plans, and alternative message passing
strategies such as iteratively tightening constraints across the
whole system using multiple passes.

Analysis of the cases where the factored planner fails
suggest we should perhaps be looking at more powerful
representations, instead of the (less powerful) intrinsically
bounded ones. For example, there are regular expressions
with exponentiation, which have a corresponding automata

representation. And, of course, the most compact represen-
tation we have of a set of plans is a planning problem. The
question is how to perform projection on it?

Finally, we have observed that current planning bench-
marks do not factor well. In some cases, this can be blamed
on the encoding, but in most, it appears to us that no amount
of reformulation is going to help. We conjecture that a rea-
son for this is that planning benchmarks usually model only
one narrow aspect of an application problem. If we were
tackling an integrated planning problem, e.g., involving lo-
gistics, inventory management, production planning, etc.,
opportunities for decomposition would naturally arise.

Acknowledgements This work was supported by the
Franco-Australian program for Science and Technology,
Grants 18616NL and FR080033. E. Fabre is also supported
by the European 7th FP project DISC (DIstributed Super-
visory Control of large plants), Grant INFSO-ICT-224498,
and by the INRIA/ALU-Bell joint research lab. S. Thiébaux
and P. Haslum are supported by the Australian Research
Council discovery project DP0985532 “Exploiting Structure
in AI Planning”.

References
Amir, E., and Engelhardt, B. 2003. Factored planning. In
Proc. IJCAI’03.

Brafman, R., and Domshlak, C. 2006. Factored planning:
How, when and when not. In Proc. AAAI’06.

Brafman, R., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Proc.
ICAPS’08.

Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.

Fabre, E., and Jezequel, L. 2009. Distributed optimal plan-
ning: an approach by weighted automata calculus. In Proc.
CDC’09.

Fabre, E. 2003. Convergence of the turbo algorithm for
systems defined by local constraints. Research report PI
4860, INRIA.

Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. ICAPS’09.

Hoffmann, J.; Edelkamp, S.; Thiébaux, S.; Englert, R.; Li-
porace, F.; and Trüg, S. 2006. Engineering benchmarks
for planning: the domains used in the deterministic part of
IPC-4. Journal of AI Research 26:453–541.

Kautz, H.; Selman, B.; and Hoffmann, J. 2006. SAT-
PLAN: Planning as satisfiability. In 5th International
Planning Competition Booklet. http://zeus.ing.

unibs.it/ipc-5/.

Kelareva, E.; Buffet, O.; Huang, J.; and Thiébaux, S. 2007.
Factored planning using decomposition trees. In Proc. IJ-
CAI’07.

Mohri, M. 2009. Weighted automata algorithms. In Hand-
book of Weighted Automata. Springer. chapter 6, 213–255.

Pearl, J. 1986. Fusion, propagation, and structuring in
belief networks. Artificial Intelligence vol. 29:241–288.

