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Abstract
In this work, we propose a generalized impedance approach to model dissipative interfaces used in vi-
broacoustic systems, usually composed of poroelastic materials. This approach is based, like the classical
impedance approach, on wave propagation. In the usual approach, the impedance is derived by Transfer
Matrix Method (TMM) from the knowledge of the waves propagating in the thickness of a laterally infinite
medium. Here, using Wave Finite Element Method (WFE), are predicted waves propagating in the thickness
of the medium and taking into account the lateral boundaries. It is shown on several examples that these
waves make possible to express the contribution of the dissipative layers on master parts, and thus to reduce
the size of the global system. Compared to the usual impedance approach, the present method makes possi-
ble to use the exact value of the impedance coefficient, taking into account the effect of the lateral boundary
conditions and of non-local effects on the response of the system.

1 Introduction

When dealing with the vibroacoustic response of systems involving vibrating structures, acoustic cavities
and dissipative interfaces, the key point is the modelling of the dissipative interface without introducing
too much computational complexity. Indeed, these dissipative interfaces are most often multilayer panels
including poroelastic materials. The complex behaviour of such materials can be predicted by using Biot-
Allard’s theory, leading though to very large computational cost if the Finite Element Method (FEM) is
used.

Several works deals with the reduction of the computational cost of the problem by using Component Mode
Synthesis (CMS) [1, 2, 3]. The limit of the approach lies in the large number of modes needed in the case
of complex geometries or in the high frequency range. Some others (e.g. [4, 5]) investigate the use of Padé
approximants to reduce the number of frequency steps of the computation. However, the accuracy of the
method is penalized by the choice of the evaluation frequencies. An adaptive algorithm can be used to find
the optimal evaluation points. Finally the efficiency of the method is limited by the need to compute the
response of the whole system at these points.

Typically, the common procedure consists in representing the interface by a constant coefficient, the wall
impedance, typically measured or computed by the Transfer Matrix Method (TMM) [6]. This method is
based on the representation of the movement as resulting from the contribution of propagating waves. It
results in very small computational times and can be used for multilayer packages. This method can also



be combined with FEM to eliminate the unknowns associated to the interface [7], to simulate the acoustic
response in the case of inhomogeneous dissipative panels, or to change the incidence angles depending on
the position of the element. However, TMM assumes flat geometry and infinite lateral dimensions. By
hypothesis, the method can not take into account effects of the boundary conditions, resulting from the
interaction of outward going waves and reflected waves on the boundaries. Another set of transfer matrix
methods is derived from the Floquet theory, using the hypothesis of periodicity. Among them, the Wave
Finite Element Method (WFE) [9, 10, 11] makes possible to compute propagating waves in a complex cross-
section unidirectional waveguide. This method makes possible to generalize the TMM by taking into account
the lateral boundary conditions, and extends naturally to non locally reacting materials. This method has been
intensively used in the last years in the case of elastic and viscoelastic layers [11, 12, 13, 14, 15, 16, 17]. It
makes possible to compute both dispersion curves and section modes. It can be used either to analyse energy
transfer mechanisms between waves or to predict the response of a structure by projecting the unknowns on
the basis of propagative waves.

We propose here an hybrid WFE-FEM method making possible to simulate at a reduced cost and in a large
frequency range the acoustic performance of a sound package. This technique is based on the derivation
of an additional dynamic stiffness matrix representing for the contribution of the interface on the master
domains. Such an approach has been used recently in [8] to couple FEM and TMM within Green function
formalism, making possible to extend the classical localized impedance to non-localized configurations by a
semi-analytical algorithm. In the present work, the correction matrix is expressed numerically as a function
of the wave modes predicted by WFE. These waves are compatible with the lateral boundary conditions
applied on the dissipative layer, so the correction matrix contains all of the information on the effect of
lateral boundary conditions.

The outline of the paper is the following. First, impedance approach is briefly recalled, then the calculation
of wave modes by WFE is presented. Thirdly the expression of the additional matrix representing for the
effect of the interface on the master system is derived as a function of the wave modes, in two cases: (i)
an absorption problem, (ii) the problem of transmission of sound through a two-layer poroelastic medium
submitted to sliding or clamped boundary conditions. Finally, several remarks on the computational cost are
presented.

2 Condensation on the interfaces of a poroelastic-acoustic system

We consider a system composed of a rigid acoustic cavity, covered partially by a poroelastic single layer on a
flat rigid wall (see Fig. 1). All of the other walls are rigid. No structural load excites the poroelastic domain.
The acoustic domain is written ΩA, the acoustic pressure is pa. The poroelastic domain is written ΩP and
is modelled using the (us,ut) formulation [18], denoting respectively the solid phase displacement and the
total displacement. The poroelastic/acoustic interface is written Γ and nA (resp. nP) is the normal vector on
Γ, pointing outward the domain ΩA (resp. ΩP). The variational formulation of the system can be expressed
in the frequency domain (exp(iωt)) by:

• for the acoustic cavity:

find pa such as for all δpa :∫
ΩA

(
1

ρ0ω2∇pa∇δpa − 1
ρ0c20

paδpa

)
dΩA =

∫
Γ ut · nAδpadΓ,

(1)

• for the poroelastic domain:

find us and ut such as for all δus and δut :∫
ΩP

(
σ̂s : ε(δus)− ω2ρ̃su

s · δus − ω2γ̃ρ̃equt · δus
)

dΩP

+
∫

ΩP

(
−pI : ε(δut)− ω2γ̃ρ̃equs · δut − ω2ρ̃equt · δut

)
dΩP =

∫
Γ−panP · δutdΓ,

(2)
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Figure 1: Description of a poroacoustic problem.

where ρ0 and c0 are respectively the density and the sound velocity of the acoustic air, where the coefficients
ρ̃eq and ρ̃s are equivalent densities characterizing respectively the fluid when the skeleton is motionless and
the skeleton, where γ̃ is a coupling coefficient, where ε(u) = 1

2

(
∇u +∇Tu

)
is the strain tensor associated

to the displacement field u and where p is the pore pressure. It is given as a function of the total displacement
and of the bulk modulus of the poroelastic material K̃eq by:

p = −K̃eq∇ · ut. (3)

Finally σ̂s is the stress tensor of the in-vacuo skeleton, and does not depend of the pore pressure. Expression
of all of the parameters depending on frequency can be found in [6, 18].

After discretization by Finite Elements, the dynamic equilibrium is obtained under the form:[
DAA(ω) DAP

DT
AP DPP(ω)

](
pA(ω)
qP(ω)

)
=

(
FA(ω)

0

)
(4)

where pA and qP are respectively the vectors of the nodal pressures in the cavity, and the vector of nodal
unknowns in the poroelastic domain, where the blocs Dii for i=A,P are the dynamic stiffness matrices of the
acoustic and the poroelastic domain, and where DAP is the coupling matrix. The problem has nA degrees of
freedom (dofs) associated to the acoustic domain and nP dofs associated to the poroelastic domain.

If this approach can be easily implemented in a Finite Element program, it is limited by the numerical cost.
The wavelengths travelling in the poroelastic medium are very short, and poroelastic elements are known
to have a slow convergence rate. This means that the poroelastic domain have to be meshed very finely to
provide accurate results, leading to a large number of nodes. Furthermore, with this formulation, 6 dofs per
node are used. It results so in a problem involving a large number of dofs. The total problem may involve
quite as many dofs for the poroelastic domain than for the acoustic domain, i.e. nA ≈ nP, so that adding a
dissipative interface to an acoustic rigid cavity increases considerably the computational cost. The number
of unknowns per node can be reduced up to one dof per node by choosing an equivalent fluid model to
represent the poroelastic material, but this approach can not be used for all kinds of materials. Nevertheless,
the procedure presented here can easily be applied to the case of equivalent fluid models.

To predict the response of complex multilayer panels applied on large areas, these approaches lead to huge
computation times, so that they are not used generally. Indeed, in this case, the poroelastic are modelled in
most cases by an equivalent localized impedance, so that no unknown is used for the poroelastic domain.

2.1 Impedance approach

The impedance approach consists in the replacement of the three-dimensional modelling of the dissipative
layers by a frequency dependent parameter. The idea behind the method is that if the load applied on the
acoustical domain is known exactly, there is no need to solve for the dynamic response of the panel. First,



the work of the normal displacement of the dissipative interface on the acoustic cavity is written as a function
of the acoustic pressure unknowns: ∫

Γ
ut · nAδpadΓ ≈ pa

TDcorrpa. (5)

The question is thus how to estimate the correction matrix Dcorr. Knowing the localized impedance, defined
by the ratio of the pressure by the normal velocity to the acoustic interface:

Zs(ω) =
pa(ω)

iωut · nA
(6)

the relation in (5) becomes: ∫
Γ

ut · nAδpadΓ =

∫
Γ

1

iωZs(ω)
paδpadΓ. (7)

If the interface is homogeneous in the section, it is reasonable to assume that the impedance is constant on
the interface, so that the equations of the acoustic domain become:

(DAA(ω)−Dcorr(ω)) pA(ω) = Fa(ω) (8)

where the correction matrix Dcorr is:

Dcorr(ω) =
1

iωZs(ω)
C (9)

and where the matrix C is such that: ∫
Γ
paδpadΓ ≈ pa

TCpa. (10)

No unknown is associated to the poroelastic domain, so the size of the problem is only nA. Computation
time is slightly larger than for the problem without interface, because the problem involves complex matrices
and is non linear in frequency, but is still very small. In particular, the method can be used for any type of
multilayer packages since the impedance value of such package can be derived from TMM.

The difficulty of the approach lies in the estimation of the value of the impedance coefficient. Indeed, its value
depends of the incidence angle and so of the excitation as well as on the boundary conditions. Classically
is used the impedance coefficient measured in impedance tube or computed by TMM at normal incidence.
Recently, Jeong and Brunskog [19] showed that for the absorption problem and locally reacting materials,
the best incidence angle to represent a diffuse field is around 55◦. Finally, it should be remarked that TMM
is only valid for infinite geometries. If some boundary conditions are applied on the lateral faces of the
package, reflection of waves at these boundaries may lead to non uniform impedance values, so that the
value predicted by TMM may not reflect the real behaviour of the material. These effects may be neglected
in most cases, when dimensions of the system are much larger than the wavelengths, but they may occur
when small dimensions are considered.

In the two following sections, we show that for flat geometries, the procedure used here can be adapted to
take into account lateral boundary conditions. A transfer matrix relating each section can be derived from
Finite Elements matrices of a substructure of the poroelastic domain. This makes possible to derive the
propagation constants and the section wave modes of the poroelastic sample. These modes can be used
to express the correction matrix exactly, allowing to take into account boundary effects and non-localized
effects.

2.2 Computation of propagatives modes

We consider a block of poroelastic medium, of arbitrary cross-section, and of thickness LP. The system
coordinates are written (x, y, z), where the thickness direction is z. It is possible to predict the waves



propagating in the medium, in the direction of the thickness, by using Floquet theory. Indeed, characteristics
of the waves do not depend on the length of propagation. The medium being homogeneous, the material
properties are constant in the thickness direction. It is possible to model only a substructure of length d �
LP, for which the equations of the dynamic obtained by Finite Elements are:

D(ω)qP(ω) = FP(ω). (11)

If only on element is used to mesh the thickness of the substructure, the vector of the nodal unknowns qP

and of the nodal loads FP can be partitioned between the nodes present in the left section (1) z = 0 and the
right section (2) z = d under the form:[

D11 D12

D21 D22

](
qP1

qP2

)
=

(
FP1

FP2

)
(12)

so that a transfer matrix relating nodal unknowns and the nodal loads between the two sections can be
defined:

T

(
qP1

−FP1

)
=

(
qP2

FP2

)
(13)

with:

T =

[
−D−1

12 D11 −D−1
12

D21 −D22D
−1
12 D11 −D22D

−1
12

]
. (14)

Wave modes are the eigen modes of the transfer matrix T:

T = ΦΛΦ−1 (15)

where Φ is the matrix of the eigenvectors and Λ = (diag(λi))i is the matrix of the eigenvalues, called
propagation constants. Each of the propagation constants is related to a wavenumber propagating in the
direction z and to the length of the substructure:

λi = exp(−ikizd). (16)

Among the waves, half are such as |λi| =< 1. These waves propagate in the direction +z and are called
progressive waves. The others propagate in the direction −z.

When homogeneous Dirichlet boundary conditions are applied on lateral faces, such as sliding or clamped
boundary conditions, the vector of unknowns qP can be partitioned into:

qP =
〈
qP

T
r ,0

T
〉T

= RqPr. (17)

The same procedure as previously can be followed, by replacing the dynamic stiffness matrix of the uncon-
strained substructure D by the constrained matrix Dc = RTDR. The transfer matrix Tc obtained makes
possible to define the modes of the non-constrained structure by Tc = ΦcΛcΦ

−1
c . Finally, the mode shapes

of the propagating modes in the structure are defined by:

Φ = RΦc (18)

and the waves propagate with the propagation constants Λc.

For numerical reasons, the eigen modes are in fact not directly computed from the knowledge of the transfer
matrix T. Indeed, the inversion of the block D12 (Eq. (14)) may lead to large numerical errors. Here have
been used the approach developed in [9].

This method can be used with any model and is valid either with displacement-displacement formula-
tions, displacement-pressure formulations or equivalent fluid models. The difference between these possible
choices lies in the conditioning of the matrices and appears when considering the expression of the forced re-
sponse of the poroelastic sample to an arbitrary excitation. In the following section we consider the (us,ut)
formulation.



2.3 Condensation procedure

The aim of this section is to show how to compute the value of the correction matrix Dcorr from the knowledge
of the propagative modes.

2.3.1 Absorption problem

In this part, the condensation procedure is presented in the case of an absorption problem. The poroelastic
sample is prescribed to an arbitrary pressure field paΓ on z = LP and is clamped on the face z = 0.

In the present case, the boundary conditions are:

FP(z = LP) = FA→P
qP(z = 0) = 0

(19)

where the load exerted by the external pressure field paΓ is written FA→P and is such as:∫
Γ
−paΓnP · δutdΓ ≈ δutTFA→P . (20)

Finally, the vector of external load acting on the poroelastic domain is:

FA→P = −DT
APpA. (21)

The displacements and loads at the two sections are expressed as a combination of the propagative modes:

Φ+
q Q+(0) + Φ−q Q−(0) = 0

Φ+
FQ+(LP) + Φ−FQ−(LP) = −DT

APpA
(22)

so that the amplitudes in the section z = LP are given by:(
Q+(LP)
Q−(LP)

)
=

[
µ 0
0 I

]
︸ ︷︷ ︸

IL

[
I (Φ+

q )−1Φ−q µ

(Φ−F )−1Φ−Fµ I

]−1

︸ ︷︷ ︸
B−1

(
0

(Φ−F )−1DT
APpA

)
︸ ︷︷ ︸

Fimp

(23)

where the modes shapes Φ are partitioned onto their displacements components Φq and their load compo-
nents ΦF and are separated in an equal set of progressive (+) and recessive (-) waves such as:

|λ+
i | <= 1 and |λ−i | >= 1. (24)

The diagonal matrix µ is defined by:

µ = (diag(µi))i with µi = (λ+
i )LP/d. (25)

The step of pre-multiplication by inverse matrices (Φ+
q )−1 and (Φ−F )−1 and multiplication by µ makes

possible to normalize efficiently the matrix B and thus to reduce numerical errors during the resolution of
the problem [20]. Furthermore, it can be observed that no exponentially growing term is used (‖µ‖ < 1), so
the method is stable.

Now, referring to Eq. (1) and Eq. (4), it can be seen that only the poroelastic degrees of freedom present at
the poroelastic interface are needed. Thus the fluid dynamic equilibrium can be written:

DAApA(ω) + D∗APqP|Γ(ω) = FA(ω) (26)



where D∗AP is the restriction of the coupling matrix DAP to the poroelastic degrees of freedom qP|Γ at the
poroelastic-acoustic interface Γ. This vector is also the value of the degrees of freedom present on the section
z = LP, which means:

qP|Γ = qPz=LP
=
[
Φ+
q ,Φ

−
q

](Q+(LP)
Q−(LP)

)
. (27)

It can be observed that the vector Fimp can be written as a function of the vector of the nodal pressures of the
acoustic cavity:

Fimp =

(
0

(Φ−F )−1DT
APpA

)
= CpA (28)

so that finally the dynamic equilibrium of the acoustic cavity can be written under the form:

(DAA + Dcorr) pA(ω) = FA(ω) (29)

with
Dcorr = D∗AP

[
Φ+
q ,Φ

−
q

]
ILB−1C. (30)

2.3.2 Transmission problem

This work can also be done to express the correction matrix in a transmission problem, when two arbitrary
pressure fields are applied on the two extremities of the sample. The acoustic domains are partitioned into
domain 1 (excitation room) and domain 2 (reception room). The global system of equations can be written:D11 0 D1P

0 D22 D2P

DP1 DP2 DPP

pA1

pA2

qP

 (ω) =

F1

F2

0

 (ω) (31)

where the matrices D11 and D22 are the matrices of the acoustic domains 1 and 2 respectively, where DPP

is the dynamic stiffness matrix of the poroelastic sample. The anti-diagonal blocs DiP for i ∈ {1, 2} are
coupling matrices, and are such that DPi = DiP

T . It can be shown that the same form as previously is
obtained: [(

D11 0
0 D22

)
+ Dcorr

](
pA1

pA2

)
(ω) =

(
F1

F2

)
(ω) (32)

where the correction matrix is given by:

Dcorr =

[
D∗1P

[
Φ+
q ,Φ

−
q

]
I1B

−1C

D∗2P

[
Φ+
q ,Φ

−
q

]
I2B

−1C

]
. (33)

The matrices D∗iP for i ∈ {1, 2} denote repectively the part of the coupling matrices DiP relative to the
poroelastic degrees of freedom on the interface between the domain i and the poroelastic domain. The
matrix C makes possible to compute the load exerted on each wave due to an pressure loading on each side
of the porous domain. It is given by:

C =

[(
Φ+
F

)−1
DP1 0

0 −
(
Φ−F
)−1

DP2

]
. (34)

The matrix B can be computed by:

B =

[
I (Φ+

F )−1Φ−Fµ
(Φ−F )−1Φ+

Fµ I

]
(35)

where µ = diag(µi) with µi = (λ+
i )LP/d.

Finally the matrices I1 and I2 are given by:

I1 =

[
I 0
0 µ

]
, I2 =

[
µ 0
0 I

]
. (36)



2.3.3 Case of multilayers

In the case of composite materials, where different materials are used in the section but their arrangement
is constant in the thickness of the sample (e.g. double porosity materials), the previous approach is still
valid. However, when several layers of different materials are used in the thickness direction, the approach
previously developed has to be modified to add continuity equations at the interfaces.

First, the wave modes of each of the layers are evaluated separately. Then, continuity of the displacements is
assessed at each interface i separating the layer i − 1 and the layer i. At a poroelastic/poroelastic interface,
the use of (us,ut) formulation within the Johnson-Champoux-Allard [6] approximation results in the con-
tinuity of the pressure and of the invacuo stress tensor, as well as of the solid displacement and the normal
total displacement but also in the discontinuity of the transverse total displacements. The continuity of the
continuous part c of the displacements is written by:(

Φq
+
c,i−1Q

+
i−1(i) + Φq

−
c,i−1Q

−
i−1(i)

)
−
(
Φq

+
c,iQ

+
i (i) + Φq

−
c,iQ

−
i (i)

)
= 0 (37)

and the continuity of the normal loads at the interface is written by:(
ΦF

+
i−1Q

+
i−1(i) + ΦF

−
i−1Q

−
i−1(i)

)
+
(
ΦF

+
i Q+

i (i) + ΦF
−
i Q−i (i)

)
= 0 (38)

For example, in the case of the problem of the transmission of sound through an interface composed by 2
poroelastic layers made in different materials, the wave modes in the two domains are respectively given by
(Φ1,µ1) and (Φ2,µ2), with ‖µ1‖ < 1 and ‖µ2‖ < 1. The correction matrix Dcorr is then given by Eq. (33)
using the following expressions:

B =


I (ΦF

+
1 )−1ΦF

−
1 µ1 0 0

(Φq
−
c,1)−1Φq

+
c,1µ1 I −(Φq

−
c,1)−1Φq

+
c,2 −(Φq

−
c,1)−1Φq

−
c,2µ2

(ΦF
+
2 )−1ΦF

+
1 µ1 (ΦF

+
2 )−1ΦF

−
1 I (ΦF

+
2 )−1ΦF

−
2 µ2

0 0 (ΦF
−
2 )−1ΦF

+
2 µ2 I

 , (39)

C =


(
ΦF

+
1

)−1
DP1 0

0 0
0 0

0 −
(
ΦF
−
2

)−1
DP2

 and I1 =

[
I 0 0 0
0 µ1 0 0

]
, I2 =

[
0 0 µ2 0
0 0 0 I

]
.

(40)

3 Numerical examples

In this section we present two numerical examples validating the present approach, in the case of an absorp-
tion problem and a transmission problem, in the case of single and bilayer samples. It is shown in particular
that, at the difference of impedance approach or hybrid FE-TMM algorithms[7], the present approach makes
possible to take into account the effects of the lateral boundary conditions applied on the sample. If they
can be neglected in the case of samples of large area, they can modify strongly the acoustic behaviour of the
sample when small dimensions are considered, depending on the material. The parameters of the materials
are provided in Appendix A in Table 1.

3.1 Absorption case

We consider here a rectangular acoustic cavity of dimensions Lx = 40cm, Ly = 30cm and Lz = 50cm,
excited by an imposed displacement in the corner (x = 0, y = 0, z = Lz). In this cavity, a poroelastic



layer of thickness LP = 5cm of material A is glued on the wall z = 0 (see Fig. 2). The mesh consists in
(15 × 10 × 25) linear hexaedric H8 elements for the acoustic domain and (15 × 10 × 5) H8 elements for
the poroelastic domain. Because the absorbing layer is very soft and bonded on a hard wall, the poroelastic
layer is modelled by a fluid with limp frame assumption. It is furthermore justified by the Frame Stiffness
Influence [21] of the material (FSI < 0.5).

Acoustic cavity

Porous domain

Lz

LP

Lx

Ly~x

~y~z

0

Prescribed
displacement

Figure 2: Description and notation for the absorption problem.

Figure 3 shows the sound pressure level in the cavity predicted with FEM, present approach and normal
impedance. The sound pressure levels predicted by the three approaches are well superposed on the whole
frequency range.
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Figure 3: Sound pressure level in the acoustic cavity.

3.2 Transmission case

We consider here a transmission tube of rectangular section Lx = 10cm and Ly = 8cm. The length of the
two acoustic cavities are Le = Lr = 45cm. All of the walls are rigid. Between these two cavities is placed
a dissipative interface composed of L1 = 5cm of material A and L2 = 3cm of material B. The excitation
room is excited by an imposed acoustic displacement in the corner (x, y, z) = (0, 0, 0), and all other walls
are considered as rigid. The boundary conditions at the lateral faces of the poroelastic samples are set either
sliding or clamped for each of the materials.

Figure 5 presents the sound pressure levels in each cavity when using Finite Elements or condensation
procedure, in the case of sliding or clamped boundary conditions on the lateral walls of the muffler. It can
be observed that the results of FEM are superposed with the results obtained with the present approach for
each type of lateral boundary conditions. However, due to infinite geometry assumption made in TMM, the
coupled FEM-TMM presented in [7] can only be applied in the case of sliding boundary conditions. In this
case, the results are superposed with FEM.
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Figure 4: Description and notation for the transmission problem.
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(a) Sliding boundary condition. line: FEM, + present, dash-
dots: FEM+TMM.
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(b) Clamped boundary condition. line: FEM, + present,
dash-dots: sliding boundary condition.

Figure 5: Sound pressure levels in excitation between 1Hz and 800Hz. Red: emission room and blue:
reception room.

For higher frequencies, section modes of the acoustic tube becomes propagative, resulting in a non-uniform
excitation pressure field in both cavities. The present approach leads once again to the same results as Finite
Elements. In this case, (8 × 8 × 60) linear H8 elements have been used for each cavity, leading to at least
10 acoustic wavelengths per element. In the thickness direction of the two poroelastic domains, 20 and 15
elements are used in the FEM study.

A good agreement can be observed between the two curves in the whole frequency range. A slight difference
occurs in the high frequency range, making possible to illustrate an advantage of the method over FEM. In
fact, the result of the condensation procedure does not depend on the number of elements in the thickness,
at the difference of FEM, for which the number of elements in thickness is a discriminating parameter,
especially for problem involving compression of materials. The slight difference is actually due to the non
convergence of FEM: the very small wavelengths travelling in the materials at such frequencies need a mesh
much finer to reach convergence at these frequencies.

4 Remarks on computation times

The gain achieved with this method grows with the ratio of the thickness dimension by the section area.
This gain is illustrated on Fig. 7. Because computation times observed with our in-house code are not
representative of times obtained with modern finite element software, we present here times divided by an
arbitrary reference value. This value was fixed equal to the time needed to solve the problem with the present
approach in the case of the finest section mesh (100 dofs in the section).

It can be observed that the time needed to compute the section modes increases with the size of the section
mesh, as well as the time needed to compute the correction matrix Dcorr. This calculation involves solving a
linear system of larger size, in which inverse matrices are needed for conditioning. On the other hand, it is



1000 1500 2000 2500 3000 3500 4000
60

70

80

90

100

110

120

130

Frequency (Hz)

Lp
 (

dB
)

 

 

Figure 6: Pressure levels in the higher frequency range. Red: Emission room, blue: reception room. line:
FEM, dots: present approach.

clear on Fig. 7 that the time needed to solve the problem does not depend on the number of elements used
to discretize the thickness direction. If all of the modes are taken, the number of unknowns associated to
each interface component is equal to twice the number of dofs in one section. This aspect is interesting in
two cases: (i) when a large number of elements are used in the thickness, (ii) or when several iterations are
needed to evaluate the sound pressure level depending on the thickness of the multilayer and on the order in
which the materials are placed.
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Figure 7: Relative computation times obtained for the absorption problem with 10 acoustic elements along
z direction, depending on the number of dofs in the section, the number of elements in thickness and the
method.

Several strategies can be adopted to reduce further the computational cost. First, component mode synthesis
can be used on the acoustic domain to reduce the number of dofs associated to it. In [3] was shown that a limit
of the method lies in the number of dofs associated to the poroelastic domain: its efficiency is larger when
the number of acoustic dofs is much larger than the number of dofs associated to dissipative interface. With
the present approach, all of the poroelastic unknowns are condensed, so that CMS techniques may be very
efficient. On another hand, the method can be easily coupled with an approach using Padé approximants (see
for example [4]). Thus, the number of frequencies in which the modes are computed would be reduced to a
small number of evaluation frequencies, saving large computation times and memory, while time needed to



predict the sound level at these frequencies would be reduced by using a condensed model (present approach)
instead of FEM. Finally, a point still under investigation is the question of the use of all of the waves to predict
the response.

5 Conclusion

A procedure to condense the unknowns associated to dissipative domains has been presented. The main idea
lies in the use of propagative waves in the thickness direction to compute the load exerted by the interface
on the acoustic part, as a function of the ambient pressure. Thus, the algorithm results in a system of
lower size than the original system. The method applies to flat interfaces, and can be considered as an
generalized impedance model for the dissipative interfaces, because it does not assume any hypothesis on
the displacement and stress fields in the section plane of the dissipative interface. Thus lateral boundary
conditions exerted on the interface can be taken into account as well as non localized effects. Finally, the
projection of the displacement field and of the normal load fields on the progressive waves makes possible
to reach convergence of the results at any frequency with only 1 element in the thickness direction, making
possible to save computational cost in the case of thick layers.
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A Material parameters

Parameter Material A Material B
Acoustic parameters

Porosity φ 0.937 0.9520
Resistivity σ (N.s.m−4) 50485 21300

Tortuosity α∞ 2.57 1.6
Viscous length Λ (µm) 57.41 100
Thermal length Λ′ (µm) 61.62 300

Structural parameters
Skeleton density ρs (kg.m−3) 95.66 38.4
First Lame’s coefficient λ (Pa) 57037 34420

Second Lame’s coefficient µ (Pa) 24444 10870
Hysteretic dissipation η 0.105 0.04

Table 1: Parameters of materials.
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