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Quasi-Fuchsian co-Minkowski manifolds

Thierry Barbot and François Fillastre

October 16, 2018

Abstract

This survey is an introduction to the geometry of co-Minkowksi space, the space
of unoriented spacelike hyperplanes of the Minkowski space. Affine deformations of
cocompact lattices of hyperbolic isometries act on it, in a way similar to the way that
quasi-Fuchsian groups act on hyperbolic space. In particular, there is a convex core.
There is also a unique “mean” hypersurface, i.e. with traceless second fundamental
form. The mean distance between the mean hypersurface and the lower boundary
of the convex core endows the space of affine deformations of a given lattice with an
asymmetric norm. The symmetrization of the asymmetric norm is simply the volume
of the convex core.

In dimension 2+1, the asymmetric norm is the total length of the bending lamination
of the lower boundary component of the convex core. We obtain an extrinsic proof of a
theorem of Thurston saying that, on the tangent space of Teichmüller space, the total
length of measured geodesic laminations is an asymmetric norm.

We also exhibit and comment the Anosov-like character of these deformations,
similar to the Anosov character of the quasi-Fuchsians representations pointed out
in [GW12].

Keywords— Co-Minkowski space, compact hyperbolic manifolds, Earthquake norm,
Codazzi tensors, convex core, Anosov representation
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1 Introduction

Action of hyperbolic isometries on model spaces Let Hd/Γ be an oriented compact
hyperbolic manifold. In the Klein projective model, the hyperbolic space Hd+1 is the interior
of a ball, and some features of the action of Γ can be described looking at the exterior of the
ball, naturally endowed with a Lorentzian structure of constant curvature one, and called
de Sitter space. Using affine duality with respect to the unit sphere, de Sitter space can be
seen as the space of totally geodesic hypersurfaces of Hd.

Since the work of G. Mess [Mes07, ABB+07], the action of cocompact lattices of O(d, 1)
on Lorentzian constant curvature model spaces attracted attention from geometers, see e.g.
the surveys [FS16, Bar16]. Apart from de Sitter space, Anti-de Sitter space has constant
curvature −1 and Minkowski space is the flat one. As we said, de Sitter space is the dual of
the hyperbolic space, and Anti-de Sitter space is its own dual, see e.g. [FS18]. Co-Minkowski
space is the dual of Minkowski space. More precisely, it is the space of spacelike hyperplanes
of Minkowski space. It comes with a degenerate metric of constant curvature one.

In other terms, if one wants to look at the action of subgroups of O(d, 1) on d + 1
dimensional model spaces1, up to duality, it is the same to consider Lorentzian model spaces
or constant curvature −1 model spaces:

Curvature −1 spaces
dual←→ Lorentzian spaces

Hyperbolic space ←→ de Sitter space

co-Minkowski space ←→ Minkowski space

Anti-de Sitter space ←→ Anti-de Sitter space

Co-Minkowski space The first part of this survey is an elementary introduction to co-
Minkowski space ∗Rd,1. This space has recently attracted attention under the name ”half-
pipe”, as introduced by J. Dancinger in [Dan11, Dan13]2, and used in recent works [Sep15,
Sch16, DMS14], see also [FS18].

We will focus on a “Klein model” of co-Minkowski space as the subspace Bd × R of the
affine space Rd+1, where Bd is an open unit ball, see Figure 1. In general, the interest

1We call a d-dimensional model space the quotient by the antipodal map of a pseudo-sphere in Rd+1, see
[FS18].

2The surface coMin
1+1 in Figure 2 would deserve the name half-pipe. The name co-Minkowki space

comes from the particular situation of this co-pseudo-Euclidean space, see the corresponding entry in the
Encyclopædia of Mathematics.
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Hyperbolic space Co-Minkowski space Anti-de Sitter space

Riemannian Degenerate Lorentzian

Figure 1: Affine models of the three 3d model spaces of constant curvature −1. Shadowed
discs are totally geodesics embedded hyperbolic planes.

of an affine model is that (unparameterized) geodesics are affine segments, so for example
some affine notions as convexity or convex hull are easily tractable. In the particular case
of co-Minkowski space, many analogues of classical differential geometry results are easier
than the original ones, for example:

• the (smooth) hypersurfaces carrying a non-degenerate induced metric are all hyper-
bolic, and when they are metrically complete, they are graphs of functions on the ball
Bd,

• the shape operator of graph hypersurfaces gives symmetric Codazzi tensors on the
hyperbolic space Hd,

• actually, the correspondence between complete hyperbolic hypersurfaces and hyper-
bolic symmetric Codazzi tensor is one-to-one, that gives a simplified co-Minkowski
version of the fundamental theorem of hypersurfaces (Section 2.3.1),

• complete hyperbolic hypersurfaces such that the trace of the shape operator vanishes
are called mean surfaces ; existence and uniqueness of such hypersurfaces are straight-
forward consequence of classical theory of elliptic PDE on the ball (Section 2.3.2),

• the functions whose graph is a boundary of the convex hull of the graph of a continuous
map b : ∂Bd → R are solutions of the classical Monge–Ampère equation (Section 2.3.3).

Another nice feature of the cylinder model of co-Minkowski space is that it allows an
easy definition of degenerations of hyperbolic or Anti-de Sitter manifolds to a co-Minkowski
manifold, as Figure 1 heuristically suggests. In turn, co-Minkowski geometry as a transitional
geometry between the hyperbolic geometry and the AdS geometry was the main motivation
of [Dan13, Dan11], see also [Sep15, FS18]. Unfortunately, such considerations are out of the
scope of the present survey.

The action of H1(Γ,Rd,1) By duality, the group of isometries of Minkowski space, that
is O(d, 1) ⋉ Rd,1, acts on co-Minkowski space, preserving the degenerate metric (see Re-
mark 2.2). For our purpose, it will be more relevant to restrict ourselves to the action of
O0(d, 1)⋉Rd,1, where O0(d, 1) is the connected component of the identity of O(d, 1). If Γ is
a Kleinian cocompact subgroup of O0(d, 1), then the representations of Γ into O0(d, 1)⋉Rd,1

are parametrized by maps τ : Γ→ Rd,1 satisfying a cocycle relation. Let Z1(Γ,Rd,1) be the
space of cocycles.

The choice of two totally geodesic embedding of Hd (on which Γ acts) into co-Minkowski
space will give different cocycles, related by a coboundary conditions. So we are interested
in the space H1(Γ,Rd,1), the quotient of the space of cocycles by the coboundaries. From an
extrinsic point of view, the vector space H1(Γ,Rd,1) is the space of deformations of Γ into
the group of affine isometries, up to conjugacy by translations. But H1(Γ,Rd,1) encodes
many much informations:

3



• due to Mostow rigidity theorem, for d > 2, it is not possible to non-trivially deform Γ
among Kleinian subgroups of O(d, 1). But it is possible to look at deformations of the
canonical representation of Γ into O(d+ 1, 1), that corresponds to the deformation of
the flat conformal structure of Hd/Γ. At an infinitesimal level, the deformations are
parametrized by H1(Γ, so(d + 1, 1)). Due to the well-known splitting so(d + 1, 1) =
so(d, 1)⊕ Rd,1, we have that

H1(Γ, so(d+ 1, 1)) = H1(Γ, so(d, 1))⊕H1(Γ,Rd,1)

but due to the Calabi–Weil infinitesimal rigidity theorem H1(Γ, so(d, 1)) reduces to 0
[Kap09, 8.10].

On the other hand, H1(Γ,R2,1) is also isomorphic, as a linear space, to the tangent
space of the Teichmüller space at (the conjugacy class of) Γ, when we consider the Te-
ichmüller space as the space of discrete, faithful representations of Γ into the isometries
of the hyperbolic plane up to conjugacy, see Section 3.4;

• there is a natural isomorphism between H1(Γ,Rd,1) and the space of traceless sym-
metric Codazzi tensors on Hd/Γ (see Proposition 3.17 for a proof using extrinsic co-
Minkowski geometry), and the space of traceless symmetric Codazzi tensors parametrizes
the space of infinitesimal deformations of the flat conformal structure of Hd/Γ, as well
as the space of infinitesimal deformations of the Riemannian metric of Hd/Γ preserving
the total volume and the harmonicity of the curvature [Laf83];

• H1(Γ,Rd,1) parametrizes the space of future complete flat globally hyperbolic maximal
Cauchy compact spacetimes (in short, future complete flat GHMC spacetimes), with
Γ as the linear part of the holonomy, see [Mes07, ABB+07, Bar05, Bon05] for more
details and precise definitions. The universal covers of such spacetimes isometrically
embed as convex sets in Minkowski space, whose duals in co-Minkowski space define
the convex cores that will be mentioned below, see Remark 3.24.

As a consequence of the first point, for d = 2, H1(Γ,Rd,1) is a vector space of dimension
(6g − 6), where g is the genus of H2/Γ. For d > 3, it is not clear whether H1(Γ,Rd,1) is
trivial or not. A classical result is that it has dimension at least r if Hd/Γ contains r disjoint
embedded totally geodesic hypersurfaces [Laf83, Kou85, JM87]. We give an elementary co-
Minkowski proof of this fact in Section 3.1. See for example [Apa90] and [JM87] for more
informations, and [BS07] for up-to-date references about this question.

The action of Γτ , that is Γ deformed by an element τ of Z1(Γ,Rd,1), onto co-Minkowski
space is also interesting in its own. Namely, here too, it is a baby toy model, this time
comparing to the study of quasi-Fuchsian hyperbolic manifolds on the one hand, and to
AdS GHMC manifolds on the other one (they are the Lorentzian analogues of quasi-Fuchsian
hyperbolic manifolds). We will focus on the following aspects. Let τ ∈ Z1(Γ,Rd,1).

• There exists a smooth hypersurface invariant under the action of Γτ . This is a simple
illustration of the general “Ehresmann–Weil–Thurston principle”, see Proposition 3.13.

• The group Γτ acts freely and properly discontinuously on co-Minkowski space, and
the quotient gives a (d + 1)-dimensional manifold homeomorphic to Hd/Γ × R (see
Lemma 3.1).

• The co-Minkowski manifold ∗Rd,1/Γτ has a convex core, i.e. it contains a non-empty
compact convex set. So the action of Γτ on co-Minkowski space is convex cocompact
in the sense of [DGK17b, DGK17a].

• The co-Minkowski manifold ∗Rd,1/Γτ contains a unique “mean” hypersurface, that is
with vanishing mean curvature. This situation is reminiscent of almost Fuchsian man-
ifolds, a particular case of quasi-Fuchsian manifolds which contain a unique minimal
surface, see [KS07].

• Moreover, ∗Rd,1/Γτ is foliated by CMC hypersurfaces, equidistant to the mean hyper-
surface, see Remark 3.16.
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We consider that co-Minkowski space is a toy model, because with a pedestrian approach,
we are able to give an almost self-contained presentation of the different properties evoked
above.

An asymmetric norm Until this point, all the mentioned results were previously more
or less known, at least under the form of dual statements in Minkowski space. Also, the
present survey contains the following original contribution.

As we said, the quotient of co-Minkowski space by Γτ has a convex core, and a unique
mean hypersurface, contained in the convex core. The mean distance between the lower
boundary component of the convex core and this mean hypersurface gives a non-negative
number, which is uniquely defined by the class in H1(Γ,Rd,1) of τ . This gives a map from
H1(Γ,Rd,1) to R+, which is actually an asymmetric norm on H1(Γ,Rd,1), see Section 3.3.2.
We will call it the S1 norm (see Remark 3.26 for the signification of S1).

The symmetrization of the S1 norm is:

• the volume of the convex core;3

• a “mean distance” between the future complete and the past complete flat GHMC
having the same holonomy (see Remark 3.24).

In dimension 2, it appears that this asymmetric norm corresponds to the earthquake
norm introduced by Thurston in [Thu98]. In particular, we obtain a new proof of Theo-
rem 5.2 in [Thu98], saying that the earthquake norm is an asymmetric norm on the tangent
of Teichmüller space. The tangent space of Teichmüller space can be identified with the
space of measured geodesic laminations, and the earthquake norm in the total length of the
lamination, see Section 3.4.

In turn, the volume of the convex core is the sum of the total length of the bending
laminations of its boundary. Here again, this result should be compared with its more
involved analogues in the hyperbolic and anti-de Sitter cases [Bro03, BST17].

Using two successive identifications of the tangent space of Teichmüller space with its
cotangent space and a formula of Wolpert, the earthquake norm defines another asymmetric
norm on the tangent space of Teichmüller space, the length norm, see (41) for a formula.
The length norm defines an asymmetric Finsler structure on Teichmüller space, that in
turn defines a distance, now called the Thurston asymmetric distance, and introduced by
Thurston in [Thu98]. This distance recently attracted attention [PT07, PS15, Wal14]. Note
that the earthquake norm also induces an asymmetric distance on Teichmüller space, but,
to the best of our knowledge, nothing is known about this distance.

Anosov feature In the third and last part of the present survey, we see that co-Minkowski
space is also a baby toy model for the theory of Anosov representations, which has known
during the recent years, after the pioneering work of F. Labourie [Lab06] a series of de-
velopment (see [GGKW17], [CLS17], [GW12], [BCLS15], [KLP16], see also [Bar16] for a
complementary discussion on Anosov representations in the context of Lorentzian geometry,
and [Gho17] for a proof of the Anosov character of the representations considered in the
present survey).

Once more, it turns out that in the context of co-Minkowski space the theory of Anosov
representations reduces to a particularly simple form. Moreover, this point of view provides
a proof of the fact that convergence of cocycle implies uniform convergence of limit curves
(Lemma 4.11).

Acknowledgement The authors would like to thank the organizers of the conference
“Moduli spaces and applications in geometry, topology, analysis and mathematical physics”
in Beijing to offer them the opportunity of writing the present paper.

The present paper is also part of the Math Amsud 2014 project n◦38888QB-GDAR.

3This fact was noted to the first author by Andrea Seppi.
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2 Co-Minkowski geometry

Co-Minkowski space is the space of (unoriented) spacelike hyperplanes of Minkowski space.
We first investigate the space of oriented spacelike hyperplanes (Section 2.1). Then we in-
troduce a cylindrical affine model for co-Minkowski space, similar to the Klein ball model
of hyperbolic space (Section 2.2). In the cylindrical model, the co-Minkowski space is the
cylinder Bd × R, where Bd is the open unit ball of Rd centered at the origin. In partic-
ular, extrinsic co-Minkowski geometry of graphs of maps h : Bd → R can be investigated
(Section 2.3).

2.1 Definition of co-Minkowski space

2.1.1 Space of spacelike hyperplanes

Let us recall that the Minkowski space Rd,1 of Lorentzian geometry is the affine space Rd+1

endowed with the bilinear form

〈x, y〉d,1 = x1y1 + · · ·+ xdyd − xd+1yd+1 .

A hyperplane P of Rd,1 is spacelike (resp. timelike, lightlike) if the restriction of 〈·, ·〉d,1 to
P is positive-definite (resp. has signature (+, . . . ,+,−), is degenerate). The isometry group
of Rd,1 is O(d, 1) ⋉ Rd,1: it is made of translations and linear transformations preserving
〈·, ·〉d,1.

Linear spacelike hyperplanes are parametrized by the set of future unit normal vectors
(for 〈·, ·〉d,1):

Hd := {x ∈ Rd,1|〈x, x〉d,1 = −1, xd+1 > 0} .
Let gHd be the metric induced by 〈·, ·〉d,1 on the tangent spaces of Hd. It is well known that
(Hd, gHd) is a model of the d-dimensional hyperbolic space.

Let P be an affine spacelike hyperplane of Rd,1. If n ∈ Hd ⊂ Rd,1 is the future timelike
unit normal to P , then there exists h ∈ R such that

P = {y ∈ Rd,1|〈y, n〉d,1 = h} .

This defines a point
P̃ ∗ = (n, h)

in Rd+1×R = Rd+2. More precisely, the point P̃ ∗ belongs to one of the connected component
of the degenerate quadric

coMin
d+1 := {x ∈ Rd+2|〈x, x〉d,1,0 = −1}

where

〈(x1, . . . , xd+1, xt), (y1, . . . , yd+1, yt)〉d,1,0 = x1y1 + · · ·+ xdyd − xd+1yd+1 .

Note that coMin
d+1 is the space of oriented spacelike hyperplanes of Minkowski space. See

Figure 2.
We will denote by gcoMd+1 the degenerate (0, 2)-tensor induced by 〈·, ·〉d,1,0 on the tan-

gents spaces of coMin
d+1. The connected component coMin

d+1
+ = coMin

d+1 ∩ {xd+1 > 0} of
coMin

d+1 containing the point P̃ ∗ is homeomorphic to Hd × R. In those coordinates, the
degenerate metric gcoMd+1 on coMin

d+1
+ writes as

gcoMd+1 = gHd + 0dxt .

We also introduce the fibration:

π : coMin
d+1
+ → Hd

mapping (x1, . . . , xd+1, xt) to (x1, . . . , xd+1). It is a principal R-bundle; it is an isometry,
and the fibers are precisely tangent to the kernel of the degenerate metric gcoMd+1 .
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Figure 2: The dual of a spacelike hyperplane of Minkowski space Rd,1 in coMin
d+1. In the

picture, d = 1.

2.1.2 Isometries

As the “metric” gcoMd+1 is degenerate, it will be more relevant to consider a group acting on
coMin

d+1. As an isometry of Minkowski space sends spacelike hyperplanes onto spacelike
hyperplanes, it acts naturally on coMin

d+1. This is the way we define the isometry group of
coMin

d+1. More precisely, it is immediate that if

P = {y ∈ Rd,1|〈y, n〉d,1 = h}

is a spacelike hyperplane of Rd,1 and A ∈ O(d, 1), so that P̃ ∗ = (n, h), then

ÃP
∗
= (An, h)

and if v ∈ Rd,1,

P̃ + v
∗
= (n, 〈v, n〉d,1 + h) .

So O(d, 1)⋉Rd,1 acts linearly on coMin
d+1 via the representation

(A, v) 7→




0

A
...
0

tvJA 1


 , (1)

where J = diag(1, . . . , 1,−1) (recall that A ∈ O(d, 1) if and only if tA = JA−1J). So we
define the isometry group of coMin

d+1 as O(d, 1)⋉Rd,1 with the action on Rd+2 induced by
the representation (1). In particular, the group structure on O(d, 1)⋉Rd,1 is

(A1, v1) · (A2, v2) = (A1A2, v1 +A1v2) . (2)

Remark 2.1. Let O+(d, 1) be the subgroup of O(d, 1) preserving Hd. Then, O+(d, 1) ⋉
Rd,1 preserves the connected component coMin

d+1
+ , and the fibration π is O+(d, 1) ⋉ Rd,1-

equivariant. The elements of O+(d, 1)⋉Rd,1 inducing the identity map on Hd are precisely
the translations (elements of Rd,1).

Every fiber of π admits a natural affine structure, for which they are individually iso-
morphic the real line. The action of O+(d, 1)⋉Rd,1 preserves this affine structure along the
fibers.

Remark 2.2. The isometry group of coMin
d+1 is smaller than the group of transformations

preserving the degenerate metric gcoMd+1 . For example, for c > 0, the map Hc : Rd+2 →
Rd+2, Hc(x) = (x1, x2, . . . , xd+1, cxt), preserves 〈·, ·〉d,1,0 (hence it preserves coMin

d+1 and
gcoMd+1), but by definition it is not an isometry of coMin

d+1.
There does not exist any (non-degenerate) semi-Riemannian metric on coMin

d+1 invari-
ant under the isometry group of coMin

d+1 [FS18, Fact 2.27].
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2.1.3 Connection, geodesics

We have now the hypersurface coMin
d+1 in Rd+2 together with an “isometry group” and

a degenerate metric gcoMd+1 . As those elements are coming from the degenerate form
〈·, ·〉d,1,0 on the ambient Rd+2, there is no obvious metric notion of “unit normal vector”
to coMin

d+1. Nevertheless, we can proceed similarly to classical affine differential geometry
[NS94]. Namely, at a point x ∈ coMin

d+1, let us define as a “normal field” the vector field
N(x) = x. Obviously, N is transverse to coMin

d+1 and invariant under the group of isome-

tries of coMin
d+1. The choice of this normal field allows to define a connection ∇coMd+1

on
coMin

d+1 induced by the canonical connection D of the ambient linear space Rd+2:

DY X = ∇coMd+1

Y X + 〈X,Y 〉d,1,0N .

The following facts are easily checked, see [FS18, Section 4.2].

Fact 2.3. The connection ∇coMd+1

has the following properties:
• it is torsion free,
• compatible with the degenerate metric gcoMd+1 ,
• invariant under isometries,
• its (unparameterized) geodesics are intersection of coMin

d+1 with linear planes of Rd+2.

It follows from the last point that the intersection of coMin
d+1 with linear k-planes of

Rd+2 are totally geodesic. Those intersections will play a fundamental role as the following
fact shows.

Fact 2.4. The intersection of coMin
d+1 with a linear k-planes of Rd+2 is isometric (for the

metric induced by gcoMd+1) to the hyperbolic space of dimension k.

Moreover, ∇coMd+1

coincides with the Levi-Civita connection of the hyperbolic metric on
any such subspace.

Proof. Immediate as one can always find an isometry of coMin
d+1 sending a linear k-plane

to a linear k-plane contained in {xt = 0}.

2.1.4 Co-Minkowski space

The co-Minkowski space is the space of unoriented spacelike hyperplanes of Minkowski space,
that is the quotient of coMin

d+1 by the antipodal map.

Definition 2.5. The co-Minkowski space ∗Rd,1 is the following subspace of the projective
space: ∗Rd,1 = coMin

d+1/{± Id}, endowed with the push-forward of the degenerate metric
gcoMd+1 , denoted by g∗Rd,1 .

The connection ∇coMd+1

also induces a connection ∇∗
R

d,1

on ∗Rd,1.
We define the isometry group of ∗Rd,1 as the image of O(d, 1) ⋉ Rd,1 into PGL(d + 2),

by a projective quotient of the representation given by (1).
The map π : coMin

d+1
+ → Hd induces a R-fibration ∗π : ∗Rd,1 → Hd, which is an

isometry, and O(d, 1)⋉Rd,1-equivariant.
In will be interesting to work in a particular affine model of co-Minkowski space. This

will be the cylindrical coordinates introduced in the next section.

2.2 Cylindrical model

2.2.1 Klein ball model of the hyperbolic space

We have seen that the subspace Hd of Minkowski space, endowed with the induced metric,
is a model of the hyperbolic space. It is isometric to the subset {x ∈ Rd,1|〈x, x〉d,1 < 0} of
the projective space P(Rd,1) endowed with the push-forward metric.

The Klein ball model of the hyperbolic space is the image of the projective model of the
hyperbolic space in the affine chart {xd+1 = 1}. As a set, it is the open Euclidean unit ball
Bd. The push-forward of the hyperbolic metric on Bd is denoted by gHd . We will sometimes

8
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Figure 3: The hyperboloid Hd and the Klein ball model of the hyperbolic space.

use the notation Hd to designate the hyperbolic space (Bd, gHd). In the remainder of this
section, we give explicit formulas relating the hyperbolic geometry on Bd to the standard
Euclidean geometry on Bd, that will be needed in the sequel of the paper.

If x ∈ Bd, then the vector
(
x
1

)
of Rd,1 rescaled by the factor L−1(x) belongs to Hd, where

L(x) =
√
1− ‖x‖2

and ‖ · ‖ is the Euclidean norm on Bd:

‖(x1, . . . , xd)‖ =
√
x2
1 + · · ·+ x2

d ,

see Figure 3.
The expression of the hyperbolic metric gHd in the Klein ball model is:

gHd(x)(X,Y ) = L(x)−2〈X,Y 〉d + L(x)−4〈x,X〉d〈x, Y 〉d . (3)

where 〈·, ·〉d is the standard Euclidean metric on Rd ⊃ Bd, x ∈ Bd, X,Y ∈ TxB
d ∼= Rd. In

order to help computations, one may note that

DXL−1(x) = L−3(x)〈x,X〉d (4)

and
HessL = −LgHd , (5)

where Hess is the usual Hessian on Rd.
If ωBd if the restriction to Bd of the Euclidean volume form, and ωHd is the volume form

on Bd associated to the hyperbolic metric gHd , from (3) one obtains

ωBd = Ld+1ωHd . (6)

The main feature of the Klein ball model of the hyperbolic space is that the (unparam-
eterized) geodesics of gHd are exactly the affine segments in Bd. This is straightforward,
as the geodesics of Hd are the intersections of Hd with linear timelike planes of Rd,1. This
gives the following correspondence between the connections, see [FS18, Lemma 4.17].

Proposition 2.6 (Weyl formula). If ∇H
d

is the Levi-Civita connection of gHd and D is the
canonical connection on Bd, then

∇H
d

X Y = DXY + L−2(x)(〈x,X〉dY + 〈x, Y 〉dX) . (7)

Corollary 2.7. If HessH
2

is the Hessian given by ∇H
2

, then, for a smooth map f : Bd → R,

HessH
2

f(x)(X,Y ) = Hess f(x)(X,Y )−L−2(x)(〈x,X〉d d f(x)(Y )+〈x, Y 〉d d f(x)(Y )) . (8)

Also,

L−1(x)Hess f(x)(X,Y ) =
(
HessH

2

(L−1f)(x)(X,Y )− (L−1f)(x)gHd(x)(X,Y )
)

. (9)

9



Proof. (8) follows from (7) and

HessH
2

f(x)(X,Y ) = X.Y.f(x)− d f(x)(∇H
d

X Y ) . (10)

Finally, (9) comes from (8), (3) and

Hess fg = fHess g + gHess f + d f ⊗ d g + d g ⊗ d f . (11)

Fact 2.8. If ∆ is the Euclidean Laplacian on Bd, then

trg
Hd

Hess f(x) = L2(x)(∆f −Hess f(x)(x, x)) . (12)

If ∆H
d

is the Laplacian on Bd given by gHd , then

trg
Hd

L−1Hess f = ∆H
d

(L−1f)− d(L−1f) . (13)

Proof. Let A be the linear operator such that Hess f(x)(X,Y ) = gHd(x)(AX, Y ). For x 6= 0,
let (ei)1,··· ,d be an orthonormal Euclidean basis of TxB

d, such that e1 = x/‖x‖. The
definition of A and (3) give, for i > 1,

〈Aei, ei〉d = L2(x)gHd(x)(Aei, ei) = L2(x)Hess f(x)(ei, ei) ,

and
〈Ae1, e1〉d = L2(x)Hess h(x)(e1, e1) + L−2(x)〈x,Ax〉d .

Also from the definition of A and (3),

L−2(x)〈x,Ax〉d = L2(x)gHd(x)(x,Ax) = L2(x)Hess f(x)(x, x) .

(12) follows from trg
Hd

Hess f(x) =
∑d

i=1〈Aei, ei〉d. Also, (13) is immediate from (9).

Let us end this section with some basic facts about (smooth) hyperbolic Codazzi tensors.

Definition 2.9. A (0, 2)-tensor C on Hd is a (hyperbolic) Codazzi tensor if it satisfies the
the Codazzi equation on Hd:

(∇H
d

X )C(Y, Z) = (∇H
d

Y )C(X,Z) .

Lemma 2.10. Let C be a (0, 2)-tensor on Bd. Then C is a hyperbolic Codazzi tensor if
and only if

DX(LC)(Y, Z) = DY (LC)(X,Z) .

Proof. The definition of Codazzi tensor means that

X.C(Y, Z)− C(∇H
d

X Y, Z)− C(Y,∇H
d

X Z) = Y.C(X,Z)− C(∇H
d

Y X,Z)− C(X,∇H
d

Y Z) .

Developing this expression using (7), one obtains, at a point x,

DXC(x)(Y, Z) − L−2(x)〈x,X〉dC(Y, Z) = DY C(x)(X,Z)− L−2(x)〈x, Y 〉dC(X,Z) .

Writing C = L−1LC, developing the above expression and using (4) leads to the result.

Fact 2.11. Let S be a (0, 2)-tensor on Bd. If DXS(Y, Z) = DY S(X,Z), then there exists
a function F = (F1, . . . , Fn) with Fi : B

d → R such that S is the Jacobian matrix of F .

Proof. Let Ωj =
∑d

i=1 Sijdx
i. As

∂Sij

∂xk
=

∂Skj

∂xi
, dΩj = 0, so by Poincaré Lemma, there exists

a function Fj : B
d → R such that dFj = Ωj .

Fact 2.12. Let F = (F1, . . . , Fd) with Fj : Bd → R. Then there exists f : Bd → R with
∂f
∂xi

= Fi if and only if ∂Fi

∂xj
=

∂Fj

∂xi
.

In other term, the Jacobian matrix of F is a Hessian matrix (namely the one of f) if
and only if it is a symmetric matrix.

10
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Proof. One implication is Schwarz’s theorem. On the other direction, the one-form ω =∑d
i=1 Fidx

i is closed by hypothesis, hence exact by Poincaré Lemma, and it suffices to set
ω = df .

We finally obtain the following classical result [BBD+81, OS83, BS16].

Lemma 2.13. Let C be a (0, 2)-tensor on Bd. Then C is a symmetric hyperbolic Codazzi
tensor if and only if there exists f : Bd → R such that

C = L−1Hess f .

2.2.2 Affine representation of co-Minkowski space

To keep track of some relevant affine notions such as convexity, we will work in an affine
model of co-Minkowski space. Namely, we will consider the affine model of co-Minkowski
space given by the central projection of coMin

d+1
+ onto the hyperplane {xd+1 = 1} of Rd+2.

Observe that in doing so, we favor the coordinate xd+1, i.e. we distinguish the future timelike
vector (0, . . . , 0, 1) of Rd,1. We will go back on this remark in Section 4. In the hyperplane
{xd+1 = 1}, the image of coMin

d+1 is the cylinder Bd × R, where Bd is the open unit ball
centered at the origin of Rd.

We denote by π : Bd × R→ Bd the projection on the first factor. It corresponds to the
fibration π : coMin

d+1
+ → Hd. We will call vertical lines the fibers of π. They correspond to

parallel spacelike hyperplanes in Minkowski space.

Remark 2.14. In those coordinates Bd × R ⊂ Rd+1, the degenerate metric g∗Rd,1 of co-
Minkowski space is gHd + 0dx2

t . The degenerate metric g∗Rd,1 defines a ”distance” between
points of co-Minkowski space. Actually this distance is nothing but the the Klein projective
metric: if x, y ∈ Bd×R, then they are on a line meeting ∂Bd×R∪{∞} either at two distinct
points I, J , or at I = J =∞. Then the Klein projective distance is d(x, y) = 1

2 | ln[x, y, I, J ]|,
where [·, ·, ·, ·] is the cross-ratio, see [FS18].

Remark 2.15. The boundary at infinity of co-Minkowski space is ∂Bd×R. It parametrizes
the set of lightlike affine hyperplanes of Minkowski space, and it is called Penrose boundary
in [Bar05]. Note that (Rd \ B̄d) × R parametrizes the set of affine timelike hyperplanes of
Minkowski space, but we don’t need to consider it.

The interest of an affine model is essentially given by the following facts. The first one
is an immediate consequence of the last point of Fact 2.3.

Fact 2.16. (Unparameterized) geodesics of ∗Rd,1 in the cylindrical model Bd×R are (affine)
geodesic segments.

The second fact follows from Fact 2.4 and by construction.

11



Fact 2.17. The intersection of Bd × R with any affine k-plane not containing a vertical
line, with the metric induced by g∗Rd,1 , is isometric to the hyperbolic space of dimension k.

In particular, Bd × {0} ∼= Bd is the Klein ball model of the d-dimensional hyperbolic
space.

When k = d, we will call the intersection of Bd × R with a d-plane not containing a
vertical line a hyperbolic hyperplane.

Remark 2.18. As every non-degenerate tangent plane of co-Minkowski space is isometric
to the tangent plane of a hyperbolic space, the sectional curvature of co-Minkowski space is
−1.

2.2.3 Duality

This cylindrical affine model can be directly described from Minkowski space as follows. Let
P be an affine spacelike hyperplane of Rd,1, and let (x, 1) be a normal vector, with x ∈ Bd.
Then there exists a number h such that

P = {y ∈ Rd,1|〈
(
x

1

)
, y〉d,1 = h}

and P defines a point P ∗ = (x, h) ∈ Bd × R, see Figure 4.
Let us give more precisions about the“duality”between Minkowski space and co-Minkowski

space. We already know that if P is a spacelike hyperplane of Minkowski space, then P ∗ is
a point in ∗Rd,1. Conversely, if P is a hyperbolic hyperplane of ∗Rd,1, let P ∗ be the inter-
section of all the hyperplanes of Minkowski space whose duals are points in P . For future
reference, let us express this fact in terms of the cylindrical coordinates Bd × R.

Fact 2.19. Let P be a hyperbolic hyperplane of co-Minkowski space, which is the graph of the
affine function h : Bd → R, h(x) = 〈x, v〉d+ c. Then the point P ∗ dual to P has coordinates
P ∗ = (v,−c) ∈ Rd × R = Rd,1.

In other terms, if P is a point of Minkowski space, then the hyperplane P ∗ in co-
Minkowski space is the graph of the affine map h : Bd → R, h(x) = 〈P,

(
x
1

)
〉d,1.

Proof. Let us fix x ∈ Bd. Then the point X = (x, 〈v, x〉d + c) ∈ Bd × R of co-Minkowski
space belongs to P . Its dual is the spacelike hyperplane of Minkowski space defined as

X∗ = {(y, yd+1) ∈ Rd × R|〈
(
x

1

)
,

(
y

yd+1

)
〉d,1 = 〈v, x〉d + c}

i.e. X∗ = {(y, yd+1) ∈ Rd×R|〈
(
x
1

)
,
(

y
yd+1

)
〉d,1 = 〈

(
x
1

)
,
(

v
−c

)
〉d,1} and obviously (v,−c) belongs

to this hyperplane. As x was arbitrary, (v,−c) belongs to all the hyperplanes dual to the
points of P , that is the definition of P ∗.

The proof of the following facts are left to the reader.

Fact 2.20. 1. If P is a hyperbolic hyperplane in co-Minkowski space ∗Rd,1, then P ∗ is a
point in Minkowski space Rd,1 and (P ∗)∗ = P .

2. Let P and Q be two hyperbolic hyperplanes in ∗Rd,1.

(a) if P and Q meet in ∗Rd,1 then P ∗ and Q∗ are joined by a spacelike segment in
Rd,1.

(b) if P is strictly above Q in B̄d × R, then Q∗ − P ∗ is a future directed timelike
segment in Rd,1.

(c) if P and Q have a common point in ∂Bd × R, then P ∗ and Q∗ are joined by a
lightlike segment.

The vector space structure of Minkowski space corresponds via duality to the vector
space structure on the space of restrictions to Bd of affine maps.

12



Fact 2.21. Let hQ and hP be the restriction to Bd of affine maps, such that their graphs
are the hyperbolic hyperplanes P,Q of co-Minkowski space, and let λ ∈ R. Then the graph
of hP + λhQ is dual to the point P ∗ + λQ∗ of Minkowski space.

Remark 2.22. A convex spacelike hypersurface S of Minkowski space is the boundary
of the intersection of half-spaces bounded by spacelike hyperplanes. A hypersurface is F-
convex if it is the boundary of a spacelike convex hypersurface such that any spacelike vector
hyperplane is the direction of a support plane, and if the surface is in the future side of its
support planes. Each support plane P has a normal vector of the form

(
x
1

)
for x ∈ Bd, so

there is h(x) ∈ R such that

P = {y|〈y,
(
x

1

)
〉d,1 = h(x)} .

The graph S∗ of the function h in Bd×R is actually a convex hypersurface, see [FV16, BF17].
In more classical terms, h is the support function of the convex set K bounded by S:

h(x) = maxk∈K〈
(
x

1

)
, k〉d,1 . (14)

Let us suppose furthermore that S is the graph of a function f : Rd → R. Then if k ∈ K
there is y ∈ Rd such that k =

(
y

f(y)

)
, and from (14),

h(x) = maxy∈Rd〈
(
x

1

)
,

(
y

f(y)

)
〉d,1 = maxy∈Rd{〈x, y〉d − f(y)} ,

i.e. h is nothing but the conjugate (Legendre–Fenchel dual) of f .
In the same way, convex hypersurfaces of Minkowski space which are in the past side

of their support planes have dual hypersurfaces in the cylindrical model of co-Minkowski
space, which are graphs of concave function h : Bd → R.

Example 2.23. The dual surface of the hyperboloid {y|〈y, y〉d,1 = −t2, yd+1 > 0} is the
graph of the function Bd → R, x 7→ −tL(x). Note that this function is convex (see (5)). In
the same way, dual surface of the hyperboloid {y|〈y, y〉d,1 = −t2, yd+1 < 0} is the graph of
the concave function h(x) = tL(x).

Remark 2.24. Any hypersurface in Minkowski space which is an envelope of spacelike
hyperplanes has a dual hypersurface in co-Minkowski space. This is more easily seen in the
other way. For any C2 function h : Bd → R, there exists a map χ : Bd → Rd,1, the normal
representation, such that P = {y|〈y,

(
x
1

)
〉d,1 = h(x)} is tangent to χ(Bd) at the point χ(x),

see [FV16, 2.12]. Pay attention to the fact that χ is in general not a regular map, and that
the concept of tangent hyperplane has to be understood in a generalized sense. The simplest
example is when h is the restriction to Bd of an affine map: its graph is a hyperplane P in
the cylindrical model Bd × R of co-Minkowski space, and χ(Bd) is reduced to a point, the
dual point of P in Minkowski space.

Remark 2.25. The duality between Rd,1 and ∗Rd,1 can also be seen in Rd+2, looking at
Rd,1 as a degenerate quadric in Rd+2. See [FS18, Section 2.5] for more details.

2.2.4 Isometries in cylindrical coordinates

Let us write the action of the isometry group of co-Minkowski space in the cylindrical
coordinates Bd × R. First let us state some facts about the action of hyperbolic isometries
on Bd. The group O+(d, 1) acts by isometries on the hyperbolic space Hd, and hence on
the Klein ball model. More precisely, let x ∈ Bd and A ∈ O+(d, 1). We will denote by A · x
the image of x by the isometry of the Klein ball model defined by A. We have

1(
A
(
x
1

))
d+1

A

(
x

1

)
=

(
A · x
1

)
. (15)

13



Note that as A is a linear isometry of Minkowski space Rd,1, we have

|
(
A
(
x
1

))
d+1
|2(‖A · x‖2 − 1) = ‖x‖2 − 1

i.e. (
A
(
x
1

))
d+1

=
L(x)

L(A · x) , (16)

so, together with (15), one obtains

A

(
x

1

)
=

L(x)

L(A · x)

(
A · x
1

)
. (17)

For simplicity, let us fix also the following coordinate system; every element (x1, . . . , xd+1)
of Rd+1 has a horizontal component x̄ = (x1, . . . , xd) and a vertical component xd+1. If
〈x̄, ȳ〉d is the scalar product of horizontal elements, we have, for x, y ∈ Rd,1, 〈x, y〉d,1 =
〈x̄, ȳd〉d − xd+1yd+1.

Lemma 2.26. Let (x, h) ∈ Bd × R and (A, v) ∈ O+(d, 1) ⋉ Rd,1. Then the isometry of
co-Minkowski space defined by (A, v) acts on the cylindrical coordinates as follows:

(A, v)(x, h) =

(
A · x, L(A · x)

L(x)
h+ 〈A · x, v̄〉d − vd+1

)
. (18)

Proof. When the isometry is linear, i.e. when v = 0, the elements of the image of (x, h) by
(A, v) are elements of Rd,1 satisfying:

h = 〈
(
x

1

)
, A−1

(
y

yd+1

)
〉d,1

= 〈A
(
x

1

)
,

(
y

yd+1

)
〉d,1

(17)
= 〈 L(x)

L(A · x)

(
A.x

1

)
,

(
y

yd+1

)
〉d,1 .

Therefore, the image of (x, h) by (A, 0) is (A · x, L(A·x)
L(x) h).

In the case of a translation by a vector v =
(
v̄
vd

)
we have:

h = 〈
(
x

1

)
,

(
y

yd+1

)
−
(

v̄

vd+1

)
〉d,1

= 〈
(
x

1

)
,

(
y

yd+1

)
〉d,1 − 〈x, v̄〉d + vd+1 .

Hence the image of (x, h) by the translation is

(x, h+ 〈x, v̄〉d − vd+1) .

The Lemma follows because from (2), (A, v) = (Id, v)(A, 0).

Remark 2.27. There is an easy way to see the action of O+(d, 1) in the coordinates Bd×R.
Actually, Bd×R is foliated by the graphs of the functions tL, t ∈ R. Note that those graphs
are, for t 6= 0, the duals of the two-sheeted hyperboloids centered at the origin in Minkowski
space, see Example 2.23. Observe that for the sheet with positive (respectively negative)
xd+1, the parameter t is negative (respectively positive). Hence if (x, h) ∈ Bd × R belongs
to the graph of tL for some t, then for any A ∈ O+(d, 1), (A, 0)(x, h) still belongs to the
graph of tL, and of course its projection onto Bd × {0} is (A · x, 0), see Figure 5.

Remark 2.28. In order to fully understand the action of O(d, 1) onto co-Minkowski space,
we have to describe the action of − Id ∈ O(d, 1) onto Bd ×R. It is actually straightforward
that

(− Id, 0)(x, h) = (x,−h) . (19)
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Figure 5: Action of (A, 0) on Bd × R.

We now describe the action of the isometries of co-Minkowski space on functions. Let
S be a hypersurface in Minkowski space which is the graph of a map h : Bd → R. Then,
for (A, v) ∈ O+(d, 1) ⋉ Rd,1, due to (18), the hypersurface (A, v)S is the graph of the map
(A, v)h : Bd → R defined as

(A, v)h(x) :=
L(x)

L(A−1 · x)h(A
−1 · x) + 〈x, v̄〉d − vd+1 . (20)

Lemma 2.29. Let h : Bd → R be a C2 map and (A, v) ∈ O+(d, 1)⋉Rd,1. Then

Hess[(A, v)h](x)(X,Y ) =
L(x)

L(A−1 · x) Hessh(A
−1 · x)(DA−1(x)X,DA−1(x)Y ) .

Proof. As (Id, v)h is the sum of h with an affine function, we clearly have Hess[(Id, v)h](x) =
Hessh(x). So we need to check the result only for (A, 0). As

Hess[(A, 0)h] = Hess

(
L

L ◦A−1
(h ◦A−1)

)
,

the result follows from the rules (11) and

Hess(f ◦ g)(x)(X,Y ) = Hess f(g(x))(d g(x)(X), d g(x)(Y )) + d f(g(x))(Hess g(x)(X,Y )) ,
(21)

using the two following facts during the computations:
• L

L◦A is an affine map by (16), so has null Hessian;
• Differentiating two times (15) we obtain

A
(
X
0

)
d+1

DA(x)(Y ) +A
(
Y
0

)
d+1

DA(x)(X) +A
(
x
1

)
d+1

HessA(x)(X,Y ) = 0 ,

so using (16) again,

d
L

L ◦A ⊗ dA+ dA⊗ d
L

L ◦A +
L

L ◦A HessA = 0 .
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Lemma 2.30. Let h : Bd → R be a convex map. Then for (A, v) ∈ O+(d, 1)⋉Rd,1, (A, v)h
is a convex map.

Note that from (19), (− Id, 0)h is concave if h is convex.

Proof. The simplest way to see this is to argue that the dual of the epigraph of h is a future
convex set in Minkowski space, see Remark 2.22. The isometry (A, v) will send this future
convex set to a future convex set (because A ∈ O+(d, 1)), whose support function is exactly
(A, v)h, hence convex.

2.2.5 Connection in cylindrical coordinates

Clearly, the restriction of the vector field ∂
∂xt

= (0, . . . , 0, 1) of Rd+2 to coMin
d+1 is invariant

under the action of the isometries of coMin
d+1. It is also immediate to see that ∂

∂xt
is

parallel: ∇coMd+1 ∂
∂xt

= 0. We will denote by T the image of ∂
∂xt

in co-Minkowski space. An

elementary computation (see Figure 6) shows that in the cylindrical coordinates Bd × R,

T = L
∂

∂xt
. (22)

In particular, T is invariant under the action of O+(d, 1) ⋉ Rd,1, and T is parallel:

∇∗
R

d,1

T = 0. Observe that the trajectories of the flow generated by T are the vertical
lines. In Minkowski space, the flow generated by T corresponds to parallel displacement of
spacelike hyperplanes.

With the help of T, one can express the connection ∇∗
R

d,1

in the cylindrical coordinates.
Namely, at each point (x, h) ∈ Bd×R, we set T(x, h) as the vector basis for the R-component
of the tangent space. Hence a vector field X of Bd×R can be written X = Xh+XTT, with
Xh ∈ TxB

d and XT ∈ R. If Y is another vector field of Bd × R, then

∇∗
R

d,1

Y X = ∇Yh
Xh + Yh(XT)T + YT[T, X ] . (23)

This is easily checked using the definition of the connection ∇∗
R

d,1

and the fact that T is
parallel.

2.2.6 Volume form

For future reference, let us mention that a volume form ωcoMd+1 is also given on coMin
d+1.

For v1, . . . , vd+1 vectors of Rd+2 tangent to coMin
d+1, set

ωcoMd+1(v1, . . . , vd+1) := ωRd+2(v1, . . . , vd+1,N)

(recall that N is the vector field N(x) = x on coMin
d+1). This form is invariant under

orientation preserving isometries and parallel for ∇coMd+1

. It induces a parallel form ω∗Rd,1
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on co-Minkowski space, invariant under orientation preserving isometries, and called the
volume form of co-Minkowski space.

In the cylindrical coordinates, ω∗Rd,1 is defined as follows. At a point of Bd × R, let
v1, . . . , vd be an oriented free family of non-vertical tangent vectors. In particular, v1, . . . , vd
are tangent to a hyperbolic hyperplane, so, keeping the same notation, we can consider a
family v1, . . . , vd of oriented orthonormal vectors fields, such that v1, . . . , vd,T is positively
oriented. Then ω∗Rd,1 is the unique (d+1)-form which is equal to 1 when evaluated at such
a family of vectors.

2.3 Extrinsic geometry of graphs

Let h : Bd → R be a C2 map. Its graph S is a hypersurface in Bd×R, hence in co-Minkowski
space if one uses the cylindrical coordinates. Note that the graph is always transverse to the
vertical vector field T defined by (22), so the metric induced on S by the ambient degenerate
metric g∗Rd,1 of co-Minkowski space is always a hyperbolic metric, that does not give too
much informations. But still, some informations can be obtained from the extrinsic geometry
of S. To do so, we will consider the vector field T as the normal vector to S.

2.3.1 Second fundamental form and mean curvature

Let h : Bd → R be a C2 map and let S be its graph. Any vector field of S can be written
X + dh(X)L−1T, where X is a vector field of Bd.

Fact 2.31. For any smooth vector field X on Bd and C2 map h : Bd → R,

∇∗
R

d,1

(Y+L−1 dh(Y )T)(X + L−1 dh(X)T) = ∇H
d

Y X + L−1 dh(∇H
d

Y X)T + L−1Hess h(X,Y )T .
(24)

Proof. First let k ∈ {1, . . . , d}. As X does not depend on the ∂
∂xt

direction, and as Tk = 0,

[T, X ]k = Ti ∂Xk

∂xi
−X i ∂Tk

∂xi
= 0, and [T, X ]t = −X i ∂Tt

∂xi
= −X(L). Also, as L−1 dh(X) does

not depend on the vertical coordinate, [T, L−1 dh(X)T] = 0. At the end of the day, if we
are at a point x ∈ Bd,

[T, X + L−1 dh(X)T] = −X(L)
∂

∂xt
= −X(L)L−1T = L−2〈x,X〉T .

So from (23),

∇∗
R

d,1

(Y +L−1 dh(Y )T)(X + L−1 dh(X)T) = ∇Y X + (Y (L−1 dh(X)) + L−3 dh(Y )〈x,X〉d)T .

We have Y (L−1 dh(X)) = L−1(Y (X(h))+Y (L−1) dh(X), and from (10), L−1(Y (X(h)) =

L−1HessH
d

h(X,Y ) +L−1 dh(∇Y X). Also, if we are at the point x, Y (L−1) = 〈x, Y 〉dL−3:

∇∗
R

d,1

(Y +L−1 dh(Y )T)(X + L−1 dh(X)T) = ∇Y X + L−1 dh(∇Y X)T + L−1XT

with X = HessH
d

h(X,Y ) + L−2〈x, Y 〉d dh(X) + L−2〈x,X〉d dh(Y ), and by (8), X =
Hessh(X,Y ).

Given two vector fields tangent to S, the graph of h, then their co-Minkowski connection
decomposes as a part tangent to S, and a part colinear to T, where T may be think as a unit
normal vector field to S. Mimicking the classical theory of surfaces, we define the second
fundamental form IIh of S as the colinearity factor. More precisely, Equation (24) says that
for x ∈ Bd and X,Y ∈ TxB

d,

IIh(x)(X,Y ) = L−1(x)Hess h(x)(X,Y ) . (25)

Remark 2.32. From Lemma 2.13, the second fundamental form is a symmetric Codazzi
tensor on Hd, and any symmetric Codazzi tensor on the hyperbolic space is the second
fundamental form of a unique hypersurface in co-Minkowski space. This is a kind of “fun-
damental theorem for hypersurfaces” in co-Minkowski space, with the condition about the
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first fundamental form reduced to the hypothesis that the metric is hyperbolic. Note that
here there is no Gauss condition, i.e. for d = 2 there is no relation between the curvature of
the induced metric and the determinant of the second fundamental form.

The shape operator shape(h) of S is the symmetric linear mapping associated to the sec-
ond fundamental form by the hyperbolic metric: IIh(X,Y ) = gHd(shape(h)(X), Y ). From

(9), if gradH
d

is the gradient for gHd , we have

shape(h)(X) = ∇H
d

X gradH
d

(L−1h)− (L−1h)X .

The mean curvature Mean(h) of the graph of h is the trace for the hyperbolic metric of
the shape operator times 1/d. From the definition or Fact 2.8, it can be written in different
ways: with the help of the the Euclidean Laplacian ∆

Mean(h)(x) =
1

d
Trg

Hd

(
L−1Hess h

)
(x) =

1

d
L(x)(∆h(x) −Hess h(x)(x, x)) , (26)

or with the help of the hyperbolic Laplacian ∆H
d

Mean(h)(x) =
1

d
∆H

d

(L−1h)(x)− (L−1h)(x) . (27)

Remark 2.33. Let us suppose that h : Bd → R is C2 and convex. Using a basis of
eigenvectors, it follows from (26) that Mean(h) is non-negative, and that if Mean(h) = 0
then h is affine.

Proposition 2.34 ([Li95]). If the graph of a C2 convex function h : Bd → R has its mean
curvature bounded from above, then h has a continuous extension to B̄d.

Proof. Suppose that there is C such that for any x ∈ Bd, Mean(h)(x) < C. Let θ ∈ ∂Bd,
and let hθ be the restriction of h to the segment parametrized by r ∈ [0, 1[ from the origin
to θ. Let us also denote l(r) =

√
1− r2. By (26),

h′′
θ (r) < Cl(r)−3 .

For 1/2 < r < 1, we write

h′
θ(r) ≤ h′

θ(1/2) + C

∫ r

1/2

l−3

and as, for 1/2 < t < 1, (1− t2)−1 < (1− t)−1, we have

h′
θ(r) < h′

θ(1/2) + 2C(1− r)−1/2 . (28)

Also, as h is convex, hθ is convex, hence for 1/2 < r < 1,

h′
θ(1/2) ≤ h′

θ(r) . (29)

Let us define

g(θ) =

∫ 1

1/2

h′
θ − hθ(1/2) .

As
∫ 1

1/2(1− r)−1/2dr is finite, by (28) and (29), g(θ) is well defined. Also, together with

(28), (29) and the Dominated convergence theorem, g is continuous.

2.3.2 Mean surfaces

Definition 2.35. A hypersurface S of co-Minkowski space is called mean if it is the graph
of a C2 function h : Bd → R with Mean(h) = 0.

Abusing terminology, the function h itself may be also called mean.
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Note that when d = 2, the mean surface is not critical for the area functional, as all the
graphs of functions B2 → R in co-Minkowski space have the same area form (because they
are all isometric to the hyperbolic plane).

Due to (26), h is mean if and only if for any x ∈ Bd, ∆h(x)−Hess h(x)(x, x) = 0. This
is an elliptic equation with only second-order terms, that allows to apply strong results of
PDE theory. For this, we have to consider boundaries conditions.

Definition 2.36. Let b : ∂Bd → R be a continuous map. A continuous function h : Bd → R
is called a b-map if it extends continuously as b on ∂Bd.

Proposition 2.37. For any continuous function b : ∂Bd → R, there is a unique C∞ smooth
mean b-map, denoted by hmean

b .

Proof. The uniqueness is classical from the ellipticity of L−1Mean [GT01, Theorem 3.3].
Existence follows from the fact that the elliptic equation ∆f(x) − Hess f(x)(x, x) = 0 has
only second-order terms and that the domain is a ball, see [GT01, Corollary 6.24’]. Dividing
the equation by L2, we obtain a strictly elliptic equation, and regularity theorems apply,
e.g. [GT01, Corollary 8.11].

Lemma 2.38. If bn : ∂Bd → R are continuous functions uniformly converging to b : ∂Bd →
R, then hmean

bn
is converging to hmean

b .

Proof. Let bn such that the supremum of |bn − b| is arbitrarily small. Then Mean(hmean
bn

−
hmean
b ) = 0, with boundary data bn − b. By the maximum principle [GT01, Theorem 3.1],

hmean
bn

− hmean
b is arbitrarily small. The same conclusion holds for hmean

b − hmean
bn

.

Remark 2.39. For a continuous map b : ∂B → R, it is possible to associate to hmean
b a

(non-regular and non convex) dual hypersurface in Minkowski space, see Remark 2.24. For
d = 2, at points of regularity, this surface has zero mean curvature. We refer to [FV16] for
more details.

2.3.3 Convex hull

Let b : ∂Bd → R be a continuous map. Let

Ab = {a|a : Rd → R is an affine function and a|∂Bd ≤ b}

and for x ∈ Bd, let us define

h−
b (x) := sup{a(x)|a ∈ Ab} , (30)

and
h+
b (x) := −h−

−b(x) . (31)

Proposition 2.40. For any x ∈ Bd, h−
b (x) defines a convex b-map h−

b : Bd → R. Moreover,
if h : Bd → R is a convex b-map, then h−

b ≥ h.
For any x ∈ Bd, h+

b (x) defines a concave b-map h+
b : Bd → R. Moreover, if h : Bd → R

is a concave b-map, then h+
b ≤ h.

In general, we have h+
b ≥ h−

b . If h+
b = h−

b , then b is the restriction to ∂Bd of an affine
map of Rd.

Proof. The properties of h−
b are proved in the proof of Theorem 1.5.2 in [Gut01]. The

properties of h+
b then follows immediately from (31). The last property is then obvious, as

affine maps are the only ones being in the same time convex and concave.

Let Λ(b) be the graph of b : ∂Bd → R in ∂Bd × R, and let CH(b) be the affine convex
hull of Λ(b) in Rd+1, that is, the smallest convex set of Rd+1 containing Λ(b). Note that as
B̄d × R is a convex set containing Λ(b), then CH(b) ⊂ B̄d × R.

Lemma 2.41. The boundary of CH(b) is the union of the graphs of h+
b and h−

b .

19



Proof. This follows from the definitions of h+
b and h−

b , because CH(b) is the intersection of
all the half-spaces containing Λ(b).

The set CH(b) satisfies the local geodesic property: for any x ∈ CH(b) \ Λ(b), x lies in
an open segment contained in CH(b) \ Λ(b) [Smi15, Theorem 4.19].

Lemma 2.42. The mean surface given by the boundary condition b : ∂Bd → R is contained
in the convex hull CH(b):

h−
b ≤ hmean

b ≤ h+
b .

Proof. Let a ∈ Ab. By the maximum principle [GT01, Theorem 3.1], a − hmean
b attains its

maximal value on ∂B. But on ∂Bd, a ≥ b, so on Bd, a − hmean
b ≤ a|∂Bd − b = b − b = 0,

i.e. a ≤ hmean
b . Then by definition of h−

b , h
−
b ≤ hmean

b . Similarly, one proves that h−
−b ≤

hmean
−b = −hmean

b i.e. h+
b = −h−

−b ≥ hmean
b .

Lemma 2.43. If (bn)n∈N is a sequence of continuous functions from ∂Bd into R converging
uniformly to b : ∂Bd → R, then (h−

bn
)n∈N (resp. (h+

bn
)n∈N) is converging to h−

b (resp. h+
b ).

Proof. Let ǫ > 0 and x ∈ Bd. Then there exists an affine function a such that h−
b (x) ≥ a(x),

a(x)+ǫ ≥ h−
b (x) and a|∂Bd ≤ b. In particular, for n large enough, a|∂Bd−ǫ ≤ bn. As a|∂Bd−ǫ

is an affine function, then h−
bn
(x) ≥ a(x) − ǫ. As a was chosen such that a(x) + ǫ ≥ h−

b (x),

then h−
bn
(x) + 2ǫ ≥ h−

b (x). A similar conclusion holds, exchanging the roles of b and bn.

Remark 2.44. The dual in Minkowski space of the epigraph of a convex b-map is a convex
set. Its domain of dependence, or Cauchy domain, denoted by Ω−

b , is the interior of the
intersection of the future side of all the lightlike hyperplanes containing it. This intersection
is nothing but the dual of the the epigraph of h−

b . The domain of dependence Ω−
b is future

complete. Considering h+
b instead of h−

b , and concave figures instead of convex ones, we
obtain the domain of dependence Ω+

b . See Figure 8 and [Bar05, Bon05] for more details.

Remark 2.45. The function hmean
b is the solution of the Dirichlet problem for an elliptic

linear equation. The convex function h−
b is the solution of the Dirichlet problem for the

Monge–Ampère equation, see [Gut01].

2.3.4 The mean curvature measure

For a C2 function h : Bd → R, we have defined in Section 2.3.1 the mean curvature function,
which is non-negative if h is convex by Remark 2.33. For a convex C2 function h : Bd → R,
let us define the mean curvature measure

MM(h) = dMean(h)ωHd ,

where ωHd is the volume form given by the hyperbolic metric on Bd. By (6) and (26), for
any ϕ ∈ C0

0 (B
d) (here the subscript 0 means “with compact support”),

MM(h)(ϕ) =

∫

Bd

(∆h(x)−Hessh(x)(x, x))L−d(x)ϕ(x) d x .

If moreover ϕ ∈ C∞
0 (Bd), by integration by part:

MM(h)(ϕ) =

∫

Bd

(∆ϕ(x) −Hessϕ(x)(x, x)) h(x)L−d(x) d x . (32)

For any convex function h : Bd → R, let us define MM(h) as the linear form on C∞
0 (Bd)

defined by (32). On any compact ball K contained in Bd, by standard convolution, one can
find a sequence (hi)i∈N of C∞ convex functions uniformly approximating h. For any C∞

function ϕ whose support is included in K, we clearly have MM(hj)(ϕ)→MM(h)(ϕ). As
MM(hj) is a measure, it is also a distribution, and the preceding limit says that MM(h)
is also a distribution on K [H0̈3, Theorem 2.1.8]. Actually, as the MM(hj) are measures,
then MM(h) is a measure on K [H0̈3, Theorem 2.1.9, Theorem 2.1.7]. Changing K and
using the localization property of distribution [H0̈3, Theorem 2.2.4], it follows that MM(h)
is a measure on Bd. More precisely, MM(h) is a Radon measure on Bd.

The following result is given by [H0̈3, Theorem 2.1.9, Theorem 2.1.7].
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Lemma 2.46. Let (hn)n∈N be a sequence of convex functions from Bd into R converging
to a convex function h : Bd → R. Then the sequence of measures (MM(hn))n∈N weakly
converges to MM(h).

Recall the action of isometries on functions defined by (20). Recall also from Lemma 2.30
that if h is convex, then (A, v)h is convex for (A, v) ∈ O+(d, 1)⋉Rd,1.

Lemma 2.47. Let ϕ ∈ C0
0 (B

d) and (A, v) ∈ O+(d, 1)⋉Rd,1. Then:

MM((A, v)h)(ϕ) = MM(h)(ϕ ◦A) .

Proof. We will prove the result for a C2 function h, the general result follows by approxi-
mation. In the C2 case, the result follows because by definition

MM(h)(ϕ ◦A) =
∫

Bd

(ϕ ◦A)(x)(Trg
Hd

L−1Hess h)(x)dωHd(x)

so by a change of variable, as A is a hyperbolic isometry,

MM(h)(ϕ ◦A) =
∫

Bd

ϕ(x)(Trg
Hd

L−1Hess h)(A−1 · x)dωHd(x) ,

and by Lemma 2.29,

(Trg
Hd

L−1Hess h)(A−1 · x) = (Trg
Hd

L−1Hess [(A, v)h])(x) .

2.3.5 The fundamental example of a wedge

Let us consider an elementary example to give a geometric insight on the mean curvature
measure introduced in the previous section. This example will make clear that, for well-
chosen convex functions, this measure is a kind of ”pleating measure”, similar to the notion
developed by Thurston for isometric pleated embeddings of hyperbolic surfaces in the 3-
dimensional hyperbolic space, see sections 3.3.4 and 3.4.

Let l be the intersection of Bd with an affine hyperplane of Rd, which separates Bd into
two connected components l− and l+, where l− is the component containing the origin 0
of the coordinates of Rd. Let pl be the (Euclidean) orthogonal projection of 0 onto l, and
let nl = pl/‖pl‖. If l is a vector hyperplane, then l− is chosen arbitrarily, and nl is the
(Euclidean) unit normal vector pointing to l+.

Definition 2.48. The canonical map hl : Bd → R associated to l is defined as hl(x) =
1

L(pl)
〈x − pl, nl〉.

Observe that hl is an affine map vanishing on l. Let 1A be the indicator function of a
set A.

Definition 2.49. A wedge on a hyperplane l is a continuous map h : Bd → R of the form
h = h− + (h+ − h−)1l+ where h−, h+ are two affine maps.

The angle of a wedge (in the co-Minkowski sense) is the unique real number α such that,
with the notations above,

h+ − h− = αhl . (33)

The wedge is therefore a piecewise affine map, admitting l as a locus of non-differentiability
(if the angle is nonzero).

Fact 2.50. A wedge is convex and different from an affine map if and only its angle is
positive.

Proof. By definition, hl is positive on l+ \ l. And h is strictly convex if and only if on l+ \ l,
h+ = h− + αhl > h−, that is true if and only if α > 0.
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Remark 2.51. The hyperplane l in Bd defines a timelike vector hyperplane in Minkowski
space, namely, if Bd is identified with the Klein ball model of the hyperbolic space in Rd,1,
the vector hyperplane passing through l × {1}. Let vl be its unit spacelike normal vector
pointing to the side containing l+. Then it is easy to see that

vl =
1

pl

(
nl

‖pl‖

)
, (34)

and so the canonical map hl is the restriction to Bd × {1} of the linear map (x, xd+1) 7→
〈
(

x
xd+1

)
, vl〉d,1. If l is a vector hyperplane, then vl =

(
nl

0

)
. Moreover, if P+ and Pl are the

duals of the graphs of h+ and h−, then P+−P− is colinear to v, that expresses the definition
(33) (compare also with Fact 2.21). The absolute value of α is the Minkowski length of the
spacelike segment P+ − P−. See Figure 7.

Fact 2.52. Let A ∈ O+(d, 1). Then hA·l =
L

L◦A−1hl ◦A−1.

Proof. With the notations of Remark 2.51, we clearly have vA·l = A(vl), hence hA·l(x) =

〈
(
x
1

)
, A(vl)〉d,1 = 〈A−1

(
x
1

)
, vl〉d,1, and by (17), A−1(

(
x
1

)
) = L(x)

L(A−1·x)

(
A−1·x

1

)
.

Fact 2.53. The image of the graph of a wedge by an orientation preserving co-Minkowski
isometry is the graph of a wedge of same angle.

Proof. The result is obvious from Remark 2.51, as a co-Minkowski isometry acts as a
Minkowski isometry on the dual objects, and hence sends a spacelike segment to a spacelike
segment of same length.

The choice of the normal nl gives an orientation on the vector hyperplane l, which is also
isometric to Hd−1. We denote by ωH

l its volume form for the hyperbolic metric.

Lemma 2.54. Let h be a convex wedge of angle α on a hyperplane l. Then the following
identity holds:

MM(h) = αωH

l .

The simplest illustration of the lemma is for d = 1, l = {0} and h(x) = |x| = −x+2x1R+
.

Then the angle is equal to 2, and h′′ in the sense of distributions is equal to 2δ(0).

Proof. From (33), h = h− + αhl1l+ , so as h− is affine, in the sense of distributions, ∂ijh =
α∂ij(hl1l+). By successive integrations by part, for φ ∈ C∞

0 , using that hl = 0 on l and
that hl is affine, we obtain, in the sense of distributions, ∂ijh = α∂ihl(nl)jdS, where dS is
the (Euclidean) area form on l (nl is an inward normal vector for l+).

Hence by (32) and (33), the measure MM(h) is given by, for x ∈ l,

α(〈nl, gradhl〉+ 〈nl, x〉〈gradhl, x〉)L−d(x) dS(x) . (35)

Let us first consider that l is the intersection of Bd with a vector hyperplane. Then,
〈nl, x〉 = 0, 〈nl, gradhl〉 = 1, and from (6), L−d(x) dS = dωH

l . At the end of the day, (35)
becomes α dωH

l , that is the wanted result when l is defined by a vector hyperplane. The
general case follows by performing an orientation-preserving isometry sending l to a vector
hyperplane, and using Lemma 2.47 and Fact 2.53.

Remark 2.55. Given a hyperplane l of Bd weighted by a positive number α, it is almost
clear how to construct a convex wedge in co-Minkowski space with angle α. This construction
can be easily extended to non intersecting weighted hyperplanes (see Section 3.3.4), or to a
“polyhedral case”, i.e. weighted hyperplanes are allowed to meet to form a convex cellulation
of Hd, together with a natural compatibility conditions at the weights, see [FV16, 4.4] and
[FS17] for the d = 2 case. This is a polyhedral version of the Christoffel problem, whose aim
is to find a convex hypersurface in Minkowski space prescribing the dual Mean curvature
measure — called the area measure of order one in this setting. The Christoffel problem in
Minkowski space is the subject of [FV16].

The polyhedral construction is also a version of the classical Maxwell-Cremona corre-
spondence or Maxwell lift, see [Izm18].
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PSfrag replacements

Rd,1∗Rd,1

vl

αv
P−

Bd

P+

l

l

l̃

l− l+

P ∗
−

P ∗
+

h− h+

Figure 7: The spacelike segment in Minkowski space dual to a convex wedge in co-Minkowski
space.

3 Action of cocompact hyperbolic isometry groups

3.1 Translation parts as cocycles

Let Γ be a subgroup of O+(d, 1) such that Hd/Γ is a compact oriented hyperbolic manifold.
A cocycle τ ∈ Z1(Γ,Rd,1) is a map τ : Γ→ Rd,1 satisfying, for A,B ∈ Γ,

τ(AB) = τ(A) +A(τ(B)) .

Let us denote

Γτ = {(A, τ(A))|A ∈ Γ} .
From (2), Γτ is a subgroup of the isometry group of Minkowski space. In turn, it defines

a group of isometries of co-Minkowski space, that we will also denote by Γτ .
In the cylindrical coordinates Bd × R of co-Minkowski space, Γ acts freely and properly

discontinuously on Bd × {0}. As co-Minkowski space is the product manifold Bd × R, due
to (18), the following result is trivial, but worth to notice.

Lemma 3.1. The action of Γτ on ∗Rd,1 is free and properly discontinuous.

A coboundary is a particular cocycle of the form

τ(A) = Av − v

for a given v ∈ Rd,1. The group H1(Γ,Rd,1) is the quotient of the space of cocycles by the
space of coboundaries: two cocycles are in relation if and only if they differ by a coboundary.

In the following, we make the implicit assumption that we are looking at Γ such that
H1(Γ,Rd,1) is not reduced to zero.

Let us give a criterion of non-triviality. Let us suppose that the compact hyperbolic
manifold Hd/Γ contains n disjoints embedded totally geodesic hypersurfaces H1, . . . , Hn.
Also, let us set some positive weights ωi to each Hi. This is actually a simplicial measured
geodesic lamination λ on Hd/Γ.

A lift to Bd of a Hi is a hyperplane l. Recall from (34) that a vector vl of R
d,1 is assigned

to any such l. Let us denote by L̃ the set of the lifts the Hi. Let us fix an arbitrary base
point x̃ ∈ Bd \ L̃. Then define, for A ∈ Γ, and for any path c : [0, 1]→ Bd, transverse to L̃
and joining x̃ to A · x̃:

τλ(A) =
∑

j∈c([0,1])∩L̃

ωjvj . (36)

Clearly, the definition of τλ is independent from the choice of the path c among paths
transverse to L̃ joining the same endpoints.
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Fact 3.2. With the notations above, τλ ∈ Z1(Γ,Rd,1).

Proof. Let A,B ∈ Γ. Let cA, cB : [0, 1] → Bd be paths transverse to L̃, and joining x̃ to
A · x̃ and B · x̃ respectively. Let cAB be the concatenation of cA with A · cB. This is a path
joining x̃ to (AB) · x̃ and transverse to L, so

τλ(AB) =
∑

j∈(cAB([0,1])∩L̃)

ωjvj =
∑

j∈(cA([0,1])∩L̃)

ωjvj +
∑

j∈(A·cB([0,1])∩L̃)

ωjvj .

By definition of vl, we clearly have vA·l = A(vl), and A acts linearly on Rd,1, so

τλ(AB) =
∑

j∈(cA([0,1])∩L̃)

ωjvj +A


 ∑

j∈(cB([0,1])∩L̃)

ωjvj


 = τ(A) +A(τ(B)) .

Fact 3.3. Let τ ′λ be the cocycle defined by (36), but choosing another basepoint x̃′. Then
τ ′λ − τλ is a coboundary.

Proof. For any A ∈ Γ, let c : [0, 1] → Bd be a path transverse to L̃ joining x̃ to A · x̃, and
let c′ : [0, 1]→ Bd be a path transverse to L̃ joining x̃′ to A · x̃′. Let c̄ : [0, 1]→ Bd be any
path transverse to L̃ joining x̃ to x̃′. Then the concatenation c∗ of c̄ with c′ and −A · c̄ is a
transverse path joining x̃ to A · x̃, so

τλ(A) =
∑

j∈(c∗([0,1])∩L̃)

ωjvj =
∑

j∈(c̄([0,1])∩L̃)

ωjvj +
∑

j∈(c′([0,1])∩L̃)

ωjvj −
∑

j∈(A·c̄([0,1])∩L̃)

ωjvj

=
∑

j∈(c̄([0,1])∩L̃)

ωjvj + τ ′λ(A)−A


 ∑

j∈(c̄([0,1])∩L̃)

ωjvj




so if v is the vector −∑
j∈(c̄([0,1])∩L̃) ωjvj we have τγ(A)− τ ′γ(A) = Av − v.

So for each choice of positive weights, we have constructed an element of H1(Γ,Rd,1).
Clearly, a linearly independent change in the weights will produce a different element in
H1(Γ,Rd,1), hence we have a simple geometric proof of the following classical result (see the
Introduction).

Theorem 3.4. If Hd/Γ contains n disjoints embedded totally geodesic hypersurfaces, then
the dimension of H1(Γ,Rd,1) is ≥ n.

3.2 Equivariant maps

Let τ ∈ Z1(Γ,Rd,1). We will give more details on the action of Γτ by looking at particular
functions. The analysis is simplified using the cylindrical coordinates of co-Minkowski space.
We say that a continuous map h : Bd → R is Γ-invariant if its graph is invariant for the
action of Γ, i.e. for all A ∈ Γ, (A, 0)h = h (recall (20)):

∀x ∈ Bd, (L−1h)(A · x) = (L−1h)(x) ,

in other terms, h is Γ-invariant if and only if L−1h is invariant for the action of Γ. In
particular, if h is Γ-invariant, as the action of Γ is cocompact on Bd, L−1h is bounded. Note
that the function L is obviously Γ-invariant (see Remark 2.27 for a geometric viewpoint).

Fact 3.5. Let h be a Γ-invariant function. Then h extends continuously as the constant
zero function on ∂Bd.

Proof. There exists two constants c1, c2 such that c1 ≤ L−1h ≤ c2, so c1L ≤ h ≤ c2L, and
the result follows.
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Definition 3.6. A continuous map h : Bd → R is τ -equivariant if its graph is invariant for
the action of Γτ , i.e. for all A ∈ Γ, (A, τ(A))h = h, using the notation introduced in (20).

The vector space structure of Z1(Γ,Rd,1) fits well with the vector space structure of
maps, as the following lemma shows. Its proof is trivial from Definition 3.6.

Fact 3.7. Let τ1, τ2 ∈ Z1(Γ,Rd,1) and let h1 and h2 be τ1 and τ2-equivariant maps respec-
tively, and α ∈ R. Then h1 + αh2 is (τ1 + ατ2)-equivariant. In particular, the difference
between two τ-equivariant map is a Γ-invariant map.

Fact 3.8. If there are τ, τ ′ ∈ Z1(Γ,Rd,1) such that there is a map τ and τ ′-equivariant, then
τ = τ ′.

Proof. For any A ∈ Γ and any x, using the definition of equivariance, we obtain 〈A ·
x, τ(A)〉d − τ(A)d+1 = 〈A · x, τ ′(A)〉d − τ ′(A)d+1.

The following fact is clear from the definition of τ -equivariant map and Lemma 2.29.

Fact 3.9. Let h : Bd → R be a C2 τ-equivariant function. Then L−1Hessh is Γ-invariant:

(L−1 Hessh)(x)(X,Y ) = (L−1 Hessh)(A · x) (DA(x)(X), DA(x)(Y )) .

Remark 3.10. Fact 3.9 says that the second fundamental form of the hypersurface which
is the graph of h (see Section 2.3.1) defines a symmetric (0, 2)-tensor on Hd/Γ. Moreover
this tensor is a symmetric Codazzi tensor, see Remark 2.32.

It can be useful to note the following converse to Fact 3.9.

Lemma 3.11. Let h : Bd → R be a C2 map such that L−1Hessh is Γ-invariant. Then
there exists a unique τ ∈ Z1(Γ,Rd,1) such that h is τ-equivariant.

Proof. Let A ∈ Γ. As A acts as an affine map on Bd × R, by the rule of the Hessian of a
composition (21) and the invariance of the Hessian, we obtain

Hess(h ◦A)(x)(X,Y ) = Hess h(A · x)(DA(x)(X), DA(x)(Y )) = Hessh(x)(X,Y ) ,

hence h and h ◦A differ by an affine map, that in turn gives a vector τ(A−1) ∈ Rd,1:

h(x) − h(A · x) = 〈τ(A−1),

(
x

1

)
〉− .

Writing h(x)− h(A · (B · x)) as h(x)− h(B · x) + h(B · x)− h(A · (B · x)), it follows that τ
satisfies the cocycle relation. Uniqueness is given by Fact 3.8.

Now let us check that the discussion is not void. First there are easy examples in the
coboundary case.

Fact 3.12. Let τv be a coboundary, i.e. there is v ∈ Rd,1 such that τv(A) = Av − v. Then
hv(x) = −〈x, v̄〉d + vd+1 is a τv-invariant map.

In full generality, if the cocycle is equal to zero, we know the function −L which is a
C∞ Γ-invariant function with positive definite Hessian. By the very general “Ehresmann–
Weil–Thurston holonomy principle” [Gol18], for cocycles close to 0 enough, there exist τ -
equivariant maps, which depends continuously on the cocycle. For convenience we recall the
argument in our very simplified case, which follows the lines from [CEG06, Lemma I.1.7.2].
We need to take care about convexity, that is also classical [Gho02].

Proposition 3.13. For any cocycle τ there exists a C∞ convex (resp. concave) τ-equivariant
function h(τ).

Moreover, if τn → τ , then there exist C∞ convex (resp. concave) τn-equivariant functions
h(τn) such that (h(τn))n∈N converges to h(τ), and the second partial derivatives of h(τn)
converge to the second partial derivatives of h(τ).
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Proof. Clearly it suffices to prove the statement for the convex case. Also by Fact 3.7, it
suffices to prove it for any cocycle close to 0.

Let {Bi(ri)}i=1,...,k be disjoint open balls of Hd, such that Γ · ∪iBi(ri) is a covering of
Hd. On B1(r1), let us set h1 = −L. For A ∈ Γ and y ∈ A · B1(r1), let us set h1(y) =
−L(y) + 〈

(
y
1

)
, τ(A)〉d,1. Such a function h1 is C∞ and τ -equivariant on Γ · B1(r1). The

function h1 converge to −L uniformly on each orbit of B1(r1) if τ goes to 0. Also the first
partial derivatives of h1 converge to the ones of −L uniformly on each orbit of B1(r1) if τ
goes to 0. Moreover, the Hessian of h1 is equal to the one of −L on Γ ·B1(r1), in particular
it is positive definite.

Let r′i < ri for all i, such that Γ · ∪iBi(r
′
i) is still a covering of Hd. Up to change

the indices, suppose that B2(r2) has non empty intersection with the orbit of B1(r1). Let
W be an open neighborhood of B2(r

′
2) ∩ Γ · B1(r

′
1) such that its closure is contained in

B2(r2) ∩ Γ · B1(r1). Let φ be a bump function which is equal to 1 on B2(r
′
2) ∩ Γ · B1(r

′
1)

and whose support is contained in W . Note that the function φh1 is well-defined and C∞

on Hd, by setting the zero value out of W .
Let us define f = φh1 + (1− φ)(−L) on B2(r2). The function f is C∞, and equal to h1

on Γ · B1(r
′
1) ∩ B2(r

′
2). When the cocycle goes to 0, f and its first and second derivatives

go to −L and to its respective derivatives, uniformly on B2(r
′
2). In particular, we suppose

that the cocycle is sufficiently small, so that the Hessian of f is positive definite.
Then we define h2 = f on B2(r

′
2), and by equivariance we define h2 on Γ ·B2(r

′
2). Also we

set h2 = h1 on Γ ·B1(r
′
1). By construction, h2 is well defined on the non-empty intersections

between orbits of B1(r
′
1) and orbits of B2(r

′
2). Clearly, h2 converges to −L when the cocycle

goes to 0. As the Hessian of h2 converges to the one of −L uniformly on B2(r
′
2), by Fact 3.9,

this is true on each element in the orbit of B2(r
′
2), in particular the Hessian of h2 is positive

definite.
In the same way, if r′′i < r′i is such that Γ · ∪iBi(r

′′
i ) is still a covering of Hd, then we can

construct a function h3, equivariant on the orbit of B1(r
′′
1 )∪B2(r

′′
2 )∪B3(r

′′
3 ) and satisfying

the statement of the proposition. After a finite number of steps, we have constructed the
wanted functions.

Corollary 3.14. For any τ ∈ Z1(Γ,Rd,1), there exists a continuous map bτ : ∂B → R such
that any τ-equivariant map extends continuously as bτ on ∂B.

Moreover if τ1, τ2 ∈ Z1(Γ,Rd,1) and α ∈ R, then bατ1+τ2 = αbτ1 + bτ2 . And τ is a
coboundary if and only if bτ is the restriction to ∂Bd of an affine map of Rd.

Proof. From Proposition 3.13, there exists a C∞ convex τ -equivariant map. From Fact 3.9,
Mean(h) is a Γ-invariant function, hence bounded, so by Proposition 2.34, there exists a
continuous function bτ : ∂B → R that extends continuously h. As the difference of two τ -
equivariant map is a Γ-invariant function, and as a Γ-invariant function extends continuously
as the zero function on ∂B (Fact 3.5), it follows that bτ is the continuous extension of any
τ -equivariant map.

The second property is obvious from the definition of bτ and Fact 3.7. The last property
follows from Fact 3.12

From the existence of bτ we deduce easily the existence of a unique τ -equivariant mean
map in the following lemma. The maps whose graphs are the boundary of the convex hull
of the graph of bτ will be introduced in Section 3.3.

Corollary 3.15. Let τ ∈ Z1(Γ,Rd,1). There exists a unique C∞ τ-equivariant map, denoted
by hmean

τ , satisfying Mean(hmean
τ ) = 0. Moreover, for α ∈ R and τ ′ ∈ Z1(Γ,Rd,1), hmean

τ+ατ ′ =

hmean
τ + αhmean

τ ′ , and hmean
τ is the restriction to Bd of an affine map if and only if τ is a

coboundary.

Proof. By Corollary 3.14 and Proposition 2.37, we know that there exists a unique C∞ map,
denoted by hmean

τ , having bτ as values on ∂B, and such that Mean(hmean
τ ) = 0. This map

is τ -equivariant. Indeed, apply an element of Γτ to the graph of hmean
τ . Then we obtain

the graph of a map with vanishing Mean and boundary value bτ , so it has to be hmean
τ by

uniqueness.
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The second point is clear from Fact 3.7 and the fact that hmean
τ satisfies a linear equation,

namely ( 1d∆
H

d − 1)hmean
τ = 0. The last point is immediate from Corollary 3.14.

Remark 3.16. For any t ∈ R, the map hmean
τ − tL is τ -equivariant, with mean curva-

ture equal to t. Hence the graphs of these maps gives a smooth foliation of ∗Rd,1/Γτ by
hypersurfaces of constant mean curvature.

Corollary 3.15 allows to recover a classical relation between cocycles and traceless Codazzi
tensors [Laf83, OS83, BS16]. Let CodΓ0 be the vector space of traceless symmetric Codazzi
tensors on Hd/Γ. Let τ ∈ Z1(Γ,Rd,1). By Corollary 3.15, there is a map hmean

τ whose
second fundamental form is a Γ-invariant traceless Codazzi tensor (see Remark 3.10), hence
it defines an element of CodΓ0 , denoted by Cod(τ). By Corollary 3.15, the map Cod :
Z1(Γ,Rd,1)→ CodΓ0 is linear. The kernel of this map corresponds to the τ such that hmean

τ is
affine, hence to the coboundaries by Corollary 3.15. We thus obtain an injective morphism
from H1(Γ,Rd,1) to CodΓ0 , still denoted by Cod.

Proposition 3.17. The map Cod : H1(Γ,Rd,1)→ CodΓ0 is an isomorphism.

Proof. Let C ∈ CodΓ0 , that defines a Γ-invariant symmetric traceless Codazzi tensor C̃ on
Hd. By Lemma 2.13, there exists h : Bd → R such that C̃ = IIh. From Lemma 3.11, there
exists a cocycle τ such that h is τ -equivariant, hence as IIh is traceless, by the uniqueness
part of Corollary 3.15, we will have h = hmean

τ .

3.3 Volume of the convex core and asymmetric norm

3.3.1 Convex core

Let τ ∈ Z1(Γ,Rd,1). There is an associated map bτ : ∂Bd → R given by Corollary 3.14. This
map has a graph Λ(bτ ), and we will look at its convex hull CH(τ) in the affine space Rd+2,
as well as the functions h−

bτ
and h+

bτ
(see Section 2.3.3) whose graphs are the boundary of

CH(τ). We will denote those two last maps by h−
τ and h+

τ respectively.
The argument to check the following fact is analogous to the one used in the proof of

Corollary 3.15.

Fact 3.18. The map h−
τ and h+

τ are τ-equivariant, in particular CH(τ) is globally invariant
for the action of Γτ .

Lemma 3.19. Let τ ∈ Z1(Γ,Rd,1). Then:

1. for any convex (resp. concave) τ-equivariant map h, then h ≤ h−
τ (resp. h ≥ h+

τ ),
2. h+

τ = −h−
−τ ,

3. For α > 0, h−
ατ = αh−

τ ,
4. h−

τ + h−
τ ′ ≤ h−

τ+τ ′ and h+
τ + h+

τ ′ ≥ h+
τ+τ ′.

Proof. The two first points are from the definitions of h+
τ and h−

τ , Proposition 2.40 and
Corollary 3.14. The third point follows from (30) and the fact that bατ = αbτ . The forth
point follows from the first point, as h−

τ + h−
τ ′ is a convex (τ + τ ′)-equivariant function.

Lemma 3.20. Let τv be a coboundary, then h−
τv = hmean

τv is an affine map and h−
τ+τv =

h−
τ + h−

τv . Conversely, if h−
τ = hmean

τ , then hmean
τ is affine and τ is a coboundary.

Proof. If τ is a coboundary, we know that there exists a τ -equivariant affine map (Fact 3.12).
Hence the convex hull of Λ(bτ ) is a piece of an hyperplane, and this hyperplane is also the
τv-mean hypersurface. Then h−

τ+τv = h−
τ + h−

τv follows from (30) because hτv is an affine
map. For the second part, on the one hand, Mean(hmean

τ ) = 0. On the other hand, if
hmean
τ = h−

τ , then hmean
τ is convex, hence affine (Remark 2.33), so bτ is the restriction to

∂Bd of an affine map. By Corollary 3.14, τ is a coboundary.

Definition 3.21. The convex core of ∗Rd,1/Γτ , denoted by CC(τ), is the smallest non-empty
convex set of ∗Rd,1/Γτ .
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∗
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∗

Figure 8: The volume of the convex core CC(τ) is a“mean distance”between a past complete
flat GHMC spacetime and a future complete flat GHMC spacetime with the same holonomy.

In the above definition, “convex”has to be understood in the strong sense of geodesically
convex: C is convex if for x, y ∈ C, any geodesic between x and y belongs to C. So for
example, a single point or a small open ball may not be convex. In the cylindrical model of
the universal cover, this notion of convexity coincides with the affine one.

Clearly, CC(τ) = CH(τ)/Γτ . Hence ∗Rd,1/Γτ has a compact convex core, so the action
of Γτ on ∗Rd,1 is convex cocompact, in the sense of [DGK17b, DGK17a].

Recall the volume form on co-Minkowski space, Section 2.2.6. Let us denote by Vol the
induced volume on ∗Rd,1. It is then immediate than for any τ ∈ Z1(Γ,Rd,1),

Vol(CC(τ)) =

∫

Hd/Γ

h+
τ − h−

τ . (37)

Here by abuse of notation, we denote in the same way the Γ-invariant function h+
τ − h−

τ

and the corresponding function on the compact hyperbolic manifold Hd/Γ. The integration
is implicitly with respect to the volume form given by the hyperbolic metric.

Definition 3.22. The function vol : H1(Γ,Rd,1)→ R associates Vol(CC(τ)) to any repre-
sentative τ of an element of H1(Γ,Rd,1).

By Lemma 3.20, vol is well-defined. Actually, the following result is straightforward to
check from Lemma 3.20 and Lemma 3.19.

Proposition 3.23. vol is a norm on H1(Γ,Rd,1).

Remark 3.24. The volume of the convex core has the following geometric meaning in
Minkowski space. From a cocycle τ , we have the boundary map bτ , that defines two convex
sets Ω+

bτ
and Ω−

bτ
in Minkowski space, see Remark 2.44. It follows from the previous section

that those two sets (here denoted by Ω+
τ and Ω−

τ ), are invariant under the action of Γτ on
Minkowski space. Actually the action is free and properly discontinuous on Ω+

τ ∪Ω−
τ , and the

quotient Ω−
τ (resp. Ω+

τ ) is a future complete flat (resp. past complete) Globally Hyperbolic
Maximal Cauchy Compact (in short, GHMC) spacetime. As the addition of a coboundary to
the cocycle τ will only change the origin in Minkowski space, then H1(Γ,Rd,1) parametrizes
the space of future complete (or past complete) flat GHMC spacetimes with a given linear
holonomy, up to conjugacy. See [Bar05, Bon05] for more details.

Moreover, for any cocycle τ , we have that −Ω−
τ = Ω+

−τ . Now, for any x ∈ Bd, let us
denote by width(x) the Lorentzian distance between the support plane of Ω+

τ with outward
unit normal

(
x
1

)
, and the support plane of Ω−

τ with inward unit normal
(
x
1

)
. Note that the

map x 7→ width(x) is Γ-invariant. Then the mean width, defined as
∫
Hd/Γ

width(·), is given
by (37), see Figure 8.
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3.3.2 Asymmetric norm

In the previous section we showed that the volume of the convex core is a norm on H1(Γ,R).
We now see that it is actually the symmetrization of an asymmetric norm on H1(Γ,R).

For a cocycle τ , the S1 norm is defined as follows

‖τ‖S1 =

∫

Hd/Γ

hmean
τ − h−

τ . (38)

(The denomination will be motivated in Remark 3.26.)
By Lemma 3.20, if τv is a coboundary, then ‖τ + τv‖ = ‖τ‖+ ‖τv‖ = ‖τ‖. Hence ‖ · ‖ is

well defined on H1(Γ,Rd+1).

Proposition 3.25. The S1 norm ‖ · ‖S1
defines an asymmetric norm on H1(Γ,Rd+1), i.e.

∀[τ ], [τ ′] ∈ H1(Γ,Rd+1)

1. ‖[τ ]‖S1
≥ 0;

2. ‖[τ ]‖S1
= 0 if and only if [τ ] = 0.

3. ‖[τ ] + [τ ′]‖S1
≤ ‖[τ ]‖S1

+ ‖[τ ′]‖S1
.

4. ∀α ≥ 0, ‖α[τ ]‖S1
= α‖[τ ]‖S1

;

Proof. The first property comes from Lemma 2.42. The second point is Lemma 3.20. The
third and forth points are immediate consequence of Lemma 3.19.

It is obvious from (38) and (37) that vol the symmetrization of ‖ · ‖S1
:

vol([τ ]) =
1

2
(‖[τ ]‖S1

+ ‖ − [τ ]‖S1
) .

3.3.3 Mean curvature measure

We now explain how ‖ · ‖S1 is related to the mean curvature measure introduced in Sec-
tion 2.3.4. From Lemma 2.47, we have that for any convex τ -equivariant map h, the measure
MM(h) is Γ-invariant, and then defines a Radon measureMMΓ(h) onHd/Γ. Actually, there
is a nice expression for this measure. Let h be a convex τ -equivariant function. By defini-
tion of hmean

τ , MM(h) = MM(h) −MM(hmean
τ ) = MM(h − hmean

τ ). On the other hand,
h− hmean

τ is Γ-invariant, so we deduce easily that for any C∞ function ϕ on Hd/Γ,

MMΓ(h)(ϕ) =

∫

Hd/Γ

(h− hmean
τ )(

1

d
∆H

d − 1)ϕ .

Taking ϕ = 1,

MMΓ(h)(Hd/Γ) =

∫

Hd/Γ

hmean
τ − h ,

in particular, if h = h−
τ , by definition of the S1 norm,

‖τ‖S1 = MMΓ(h−
τ )(H

d/Γ) . (39)

Remark 3.26. Consider the convex set Ω−
τ in Minkowski space, as well as the ǫ-equidistant

convex set Ω−
τ (ǫ) (it is the dual convex set in Minkowski space of the epigraph of h−

τ − ǫ in
Bd × R). By a Lorentzian version of the Steiner formula proved in [FV16], the volume of
(Ω−

τ \ Ω−
τ (ǫ))/Γτ is a polynomial in ǫ of degree d + 1. Up to a dimensional constant, the

coefficient in front of ǫd is nothing but MMΓ(h−
τ )(H

d/Γ). The analoguous quantity in the
classical theory of convex bodies is called the (total) area measure of order one [Sch14], and
usually denoted by S1, that explains our terminology (see also Remark 2.55).

Lemma 3.27. Let τn → τ . Then bτn (resp. h−
τn) pointwise converge to bτ (resp. h−

τ ).
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Proof. By Proposition 3.13, we have convex (resp. concave) τn-equivariant functions con-
verging to a τ -equivariant convex (resp. concave) function. For any n, as the concave and
the convex τn-equivariant functions coincide on ∂Bd with bτn given by Corollary 3.14, they
bound a convex body Kn of Rd+1. Let us denote by K the convex body bounded by the
τ -equivariant convex and concave functions.

Let us denote by Cd+1 the space of non-empty compact sets of Rd+1, endowed with the
Hausdorff topology. Suppose that there is a subsequence (Kni

) of (Kn) that converges to
K ′ in Cd+1. Then K ′ is a convex body [Sch14, Theorem 1.8.6]. Moreover, each point of K ′

is the limit of a sequence of points (xni
) with xni

∈ Kni
[Sch14, Theorem 1.8.8]. From this

it is easy to deduce that K ′ = K.
Now as the τn-equivariant functions are converging, they are bounded, and in turn the

sequence of convex bodies (Kn)n is bounded in Bd × R ⊂ Rd+1. By the Blaschke selection
theorem [Sch14, Theorem 1.8.7], there is a subsequence Kni

converging to a convex body
K ′. Moreover, the sequence Kn is contained in a compact subspace of Cd+1 [Sch14, Theo-
rem 1.8.4]. As we saw that any convergent subsequence of (Kn) converges to K, it follows
that (Kn) converges to K.

As the limit of any convergent sequence (xni
) with xni

∈ Kni
must belong to K [Sch14,

Theorem 1.8.8], it is easy to deduce that bτn → bτ . This easily implies the Hausdorff conver-
gence of CH(τn) to CH(τ), see e.g. [Smi, Lemma 2.1], which in turn gives the convergence of
h−
τn to h−

τ , as the Hausdorff convergence of convex bodies implies the Hausdorff convergence
of the boundaries [Sch14, Lemma 1.8.1].

Remark 3.28. By standard properties of convex functions, it follows from Lemma 3.27
that h−

τn converges to h−
τ uniformly on any compact sets of Bd. But one cannot deduce a

uniform convergence of bτn from the pointwise convergence [hm].
Actually we will obtain the uniform convergence of the h−

τn as a byproduct of the con-
siderations of Section 4. In particular, Lemma 4.11 will imply the following proposition,
without mention to the mean curvature measure.

Proposition 3.29. The S1 norm ‖ · ‖S1
: H1(Γ,Rd,1)→ R is continuous.

Proof. Let τn → τ . From Lemma 3.27, h−
τn converges to h−

τ , and, using a partition of

the unity, it is not hard to deduce from Lemma 2.46 that MMΓ(h−
τn) weakly converge to

MMΓ(h−
τ ), so that the result follows from (39).

3.3.4 Simplicial measured geodesic laminations

We use the notations and definitions of Section 3.1, where we have considered a simplicial
measured geodesic lamination λ on the compact hyperbolic manifold Hd/Γ. Namely we have
supposed thatHd/Γ contains n disjoints embedded totally geodesic hypersurfacesH1, . . . , Hn

with positive weights ωi.
Let us push the construction a step forward. For any y ∈ Bd, let c : [0, 1]→ Bd be any

curve transverse to L̃ joining the base point x̃ to y, and define

hλ(y) =
∑

j∈c[0,1]∩L̃

µjhlj (y)

where hlj is the canonical map associated with lj (Definition 2.48).

Fact 3.30. If τλ is the cocycle given by (36), then hλ = h−
τλ
.

Proof. As the weights are positive, by Fact 2.50, hλ is a convex map.
Let us check that hλ is τλ-equivariant. Let c̃ : [0, 1] → Bd be a path joining x̃ to A · x̃,

and let c′ : [0, 1]→ Bd be a path joining x̃ to y, both assumed to be transverse to L̃. Then
the concatenation of c with A · c′ is a path joining x̃ to A · y, hence

hλ(A · y) =
∑

j∈(c([0,1])∩L̃)

ωjhlj (y) +
∑

j∈(A·c′([0,1])∩L̃)

ωjhlj (y) ,
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and as by definition hl(y) = 〈
(
y
1

)
, vl〉d,1, then

∑
j∈(c([0,1])∩L̃) ωjhlj (y) = 〈

(
y
1

)
, τλ(A)〉d,1. Also,∑

j∈(A·c′([0,1])∩L̃) ωjhlj (y) =
∑

j∈(c′([0,1])∩L̃) ωjhA·lj(A · y), and by Fact 2.52, hA·lj(A · y) =
L(A·y)
L(y) hl(y). The equivariance is proved.

A hλ is a convex τγ-equivariant map, then hλ ≤ h−
τλ
. By construction, the graph of

hλ is made of segments joining points of graph of bτλ , hence it is contained in CH(bτλ), so
hλ ≥ h−

τλ .

The length length(λ) of a simplicial measured geodesic lamination λ on Hd/Γ is de-
fined as sum of the weights times the total volume of the corresponding totally geodesic
hypersurfaces. By Lemma 2.54 and (39), we obtain the following.

Proposition 3.31. Let λ be a simplicial measured geodesic lamination on Hd/Γ. Then

length(λ) = ‖τλ‖S1 .

Remark 3.32. There is no reason why for d ≥ 3 any cocycle should arise from a (simpli-
cial) measured geodesic lamination on Hd/Γ. So for d ≥ 3, the concept of measured geodesic
lamination is not sufficient. A more suitable concept is the one of measured geodesic strat-
ification, introduced in [Bon05]. In contrast, we will see in the next section that for d = 2,
any cocycle arises from a measured geodesic lamination.

3.4 The case of dimension 2 + 1

In this part we study the particularities of the d = 2 case. We will denote by TeichS the
Teichmüller space of a compact surface homeomorphic to H2/Γ. We will denote by g the
genus of S.

3.4.1 Goldman isomorphism

The Teichmüller space TeichS can be defined as the space of faithful and discrete represen-
tations of π1S into Isom0(H

2) up to conjugacy. Let ρ be such a representation such that Γ =
ρ(π1S). Then the tangent space of TeichS at ρ naturally identifies withH1(π1(S), isom(H2)),
where π1S acts on the Lie group isom(H2) via Ad ρ [Gol84]. Using the hyperboloid model
H2 for H2, isom(H2) can be identified with o(2, 1). Let us write it as follows.

Theorem 3.33 ([Gol84]). There is a vector space isomorphism

Gold : H1(Γ, o(2, 1))→ TH2/Γ TeichS .

There is also a one-to-one correspondence between vectors of R2,1 and infinitesimal
Minkowski isometries of o(2, 1) —this may be seen for example using the Minkowski cross
product, see e.g. [DG99]. This identification gives a vector space isomorphism

C : H1(Γ,R2,1)→ H1(Γ, o(2, 1)) ,

and in turn we have the following vector space isomorphism

ξ = Gold ◦C : H1(Γ,R2,1)→ TH2/Γ TeichS .

In particular, we obtain the following.

Corollary 3.34. The vector space H1(Γ,R2,1) has dimension 6g − 6.

3.4.2 Mess homeomorphism

Let us call an entire segment of B2 a segment of B2 whose endpoints are in ∂B2. A geodesic
lamination L̃ of B2 is a non-empty closed union of disjoint entire segments of B2. Let L̃ be
a geodesic lamination on B2 which is invariant under the action of Γ. Then the image L of
L̃ under the projection is a geodesic lamination on the compact hyperbolic surface B2/Γ.
A measured geodesic lamination λ = (L, µ) on B2/Γ is the data of a geodesic lamination L
together with a transverse measure µ, that is the data of a Radon measure on each compact
rectifiable curve transverse to L, such that
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• the support of the measure is the intersection of the arc with L,
• if two arcs are homotopic through arc transverse to L, then the homotopy sends the
measure on one segment to the measure on the other one.

A simplicial measured geodesic lamination on B2/Γ is a set of non-intersecting closed
simple geodesics weighted by positive numbers. Note that the action of Γ onto B2 is via
the identification of the disc with the Klein model of the hyperbolic plane, but the notation
B2 stands for reminding the affine nature of measured geodesic lamination on the universal
cover.

LetMLΓ be the set of measured geodesic laminations on the compact hyperbolic surface
H2/Γ. MLΓ is endowed with the following topology. We say that λn converge to λ if, for
any compact segment c transverse to L then
• c is transverse to Ln for n big,
• µn weakly converge to µ on c.
We have the following classical result of Thurston, see e.g. [Bon01] and the references

therein.

Theorem 3.35 (Thurston). For the topology defined above,MLΓ is a manifold of dimension
6g − 6.

Recall from (34) that a vector vl of R
2,1 is assigned to any entire segment l of B2. Let e

be a continuous function such that, for any path c : [0, 1]→ B2 transverse to L, eL(c(t)) = vl
is c(t) ∈ l and l ∈ L̃. Let us fix an arbitrary base point x̃ ∈ B2. Then define, for A ∈ Γ, and
for any path c : [0, 1]→ B2 transverse to L joining x̃ and A · x̃:

τλ(A) =

∫ 1

0

eL(c(t))dµ(t) . (40)

As the measure is transverse, the definition of τλ is independent from the choice of the
path c and the function eL. The following fact is proved formally in the same way as Facts
3.2 and 3.3.

Fact 3.36. We have τλ ∈ Z1(Γ,R2,1). Moreover, if the basepoint is changed, the new cocycle
differ from the preceding one by a coboundary.

Hence we have constructed a well defined map

Mess :MLΓ → H1(Γ,Rd,1) .

Theorem 3.37 ([Mes07]). The map Mess defined above is a homeomorphism.

Proof. The map is clearly injective and continuous. By Theorem 3.35 and Corollary 3.34,
bothMLΓ and H1(Γ,Rd,1) are manifolds of same dimension. Hence Mess is a local home-
omorphism by the invariance of domain theorem. Now for λ ∈ MLΓ and t ≥ 0, let us
define tλ as the measured geodesic lamination obtained from λ by simply multiplying the
transverse measure by t. By (36) we clearly have Mess(tλ) = tMess(λ). As H1(Γ,R2,1) is
a vector space and Mess a local homeomorphism, it follows that Mess is surjective.

Remark 3.38. We could have given a direct proof of Theorem 3.37, by defining a “bending
measure” belonging to MLΓ from the graph of h−

τ , for any cocycle τ . There are at least
three ways to define such a bending measure. The first one is to mimic the construction
of the bending measure given by the upper boundary component of the convex core of a
hyperbolic quasi-Fuchsian manifolds [EM06]. The second one is to define, as in [Mes07], the
induced distance on the spacelike part of the boundary of Ω−

τ , the dual of the epigraph of
h−
τ in Minkowski space. The last one is to consider the mean curvature measure given by

h−
τ .

3.4.3 Length of measured geodesic laminations

We have encountered the length of simplicial measured geodesic laminations in Section 3.3.4.
For d = 2, the length of a measured geodesic lamination is defined as the total mass on the
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surface of the measure which is the product of the hyperbolic measure along the leaves of
the lamination and the measure transverse to the leaves. We refer to [Bon01] for more
details. Actually, the simplicial case suffices, as the following results shows. One may see for
example Lemma 2.4 in [Ker85] for the first one, and Theorem 3.1.3 in [PH92] or Section 3.4.3
in [BB09] for the second one.

Proposition 3.39. The map length :MLΓ → R is continuous.

Proposition 3.40. Simplicial measured geodesic laminations are dense in MLΓ.

So from the above results, Proposition 3.31 generalizes as follows.

Proposition 3.41. Let λ ∈ MLΓ. Then

length(λ) = ‖Mess(λ)‖S1 .

3.4.4 Thurston earthquake norm

From a measured geodesic lamination λ on H2/Γ, one obtains another hyperbolic metric
on S by performing a (left) earthquake along the lamination —we refer to [Ker85] and the
reference therein for more details about earthquakes. Actually for t near 0, earthquakes
along tλ define a path in TeichS starting at H2/Γ. This path has a well defined derivative
at 0, which gives an element in TH2/Γ TeichS , the tangent space of Teichmüller space at the
point H2/Γ. In turn, we have an infinitesimal earthquake map:

InfEarth :MLΓ → TH2/Γ TeichS .

Theorem 3.42 ([Ker85, Proposition 2.6]). The map InfEarth is a homeomorphism.

So the map InfEarth ◦Mess−1 provides a homeomorphism between H1(Γ,R2,1) and
TH2/Γ TeichS . Although there is no natural vector space structure on MLΓ, we have the
following.

Proposition 3.43 ([BS12, Proposition B.3]). We have that InfEarth ◦Mess−1 = ξ. In
particular, InfEarth ◦Mess−1 is a vector space isomorphism.

In other terms, as ξ = Gold ◦C, the following diagram commutes:

MLΓ TH2/Γ TeichS

H1(Γ,R2,1) H1(Γ, o(2, 1))

InfEarth

Mess

C

Gold .

Definition 3.44. Let X ∈ TH2/Γ TeichS. The earthquake norm of X is

‖X‖earth = length(InfEarth−1(X)) .

From Proposition 3.41 and Proposition 3.43, one has in fact

‖X‖earth = ‖ξ−1(X)‖S1

and as ξ is a vector space isomorphism, from Proposition 3.25, one finally obtains the
following result.

Theorem 3.45 ([Thu98, Theorem 5.2]). The earthquake norm is an asymmetric norm on
TH2/Γ TeichS.

Remark 3.46. There is a smooth analogue of Proposition 3.43 proved in [BS16]. Namely,
Proposition 3.17 gives a mapCod from H1(Γ,Rd,1) to CodΓ0 , the space of traceless symmetric
Codazzi tensors on H2/Γ. In dimension 2, there is also an isomorphism InfDef from CodΓ0 to
TH2/Γ TeichS , where a (0, 2)-tensor is seen as an infinitesimal deformations of the hyperbolic
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metric (see [Tro92], where such tensors are called TT, for transverse traceless). Then, if J
is the almost complex structure of TH2/Γ TeichS , the following diagram commutes:

CodΓ0 TH2/Γ TeichS

H1(Γ,R2,1) TH2/Γ TeichS

InfDef

Cod
−1 J

ξ

.

3.4.5 Thurston length norm

Following [Thu98], we note that two successive identifications of the tangent space TH2/Γ TeichS
of Teichm̈uller space with the cotangent space T ∗

H2/Γ TeichS will permit to define another

asymmetric norm on TH2/Γ TeichS , that is actually the Thurston length norm (see the In-
troduction).

A first identification between T ∗
H2/Γ TeichS and TH2/Γ TeichS is given by the Weil–Petersson

form of Teichmüller space, that is a symplectic form on TH2/Γ TeichS . For α ∈ T ∗
H2/Γ TeichS ,

let α♯ be the dual element in TH2/Γ TeichS of α for the symplectic form. Then define naturally

‖α‖∗length := ‖α♯‖earth .

On the other hand, for any vector space E endowed with an asymmetric norm N , then
its dual E∗ is endowed with the asymmetric norm N∗ defined by, for v ∈ E∗,

N∗(v) := sup

{
v(x)

N(x)
|x ∈ E \ {0}

}
.

Applying this to the cotangent space of Teichmüller space endowed with ‖ · ‖∗length, we
obtain a new asymmetric norm on the tangent space of Teichmüller space.

Definition 3.47. Let X ∈ TH2/Γ TeichS. The length norm of X is

‖X‖length = sup

{
α(X)

‖α♯‖earth
|α ∈ T ∗

H2/Γ TeichS \{0}
}

.

If it possible to describe more precisely the length norm, using a famous result of Wolpert.
Let λ be a measured lamination on the surface S. The function length(λ) on the Teichmüller
space of S is defined as follows: for each choice of a hyperbolic metric on S, length(λ) is
the length of the corresponding measured geodesic lamination. Due to a formula of Wolpert
[Wol83, Lemma 4.1], the tangent vector InfEarth(λ) of the Teichmüller space of S at a
point H2/Γ is the symplectic gradient of the function length(λ) at the same point, with
respect to the Weil–Petersson form of Teichmüller space:

dlength(λ)♯ = InfEarth(λ) ,

in particular,
‖dlength(λ)‖∗length = length(λ) .

Theorem 3.42 together with Wolpert result gives an identification between the cotangent
space of Teichmüller space and MLΓ [KS07, Lemma 2.3]. In consequence we obtain the
following.

Theorem 3.48 ([Thu98, Theorem 5.1]). Let α ∈ T ∗
H2/Γ TeichS, and λ such that α =

d length(λ). Then
‖α‖∗length = length(λ)

defines an asymmetric norm on T ∗
H2/Γ TeichS.

And finally, the length norm on TH2/Γ TeichS writes as follows: for X ∈ TH2/Γ TeichS ,

‖X‖length = sup

{
d length(λ)(X)

length(λ)
|λ ∈MLΓ \ {0}

}
. (41)
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4 Anosov representations

In all this section, Γ is a cocompact lattice of O+(d, 1), and τ an element of Z1(Γ,Rd,1). We
will consider the associated group Γτ of isometries of co-Minkowski space. The aim of this
section is to provide an alternative proof (Proposition 4.10) of the existence and uniqueness
of the τ -invariant map bτ already exhibited in Lemma 3.14. This proof involves the Anosov
character of Γτ as a representation of the hyperbolic group Γ into the group of isometries
of the Minkowski space. As a by-product, we will see that the convergence in Lemma 3.27
is not only pointwise, but uniform (Lemma 4.11).

We start by the following fundamental observation: since stabilizer of points are non-
compact, there is no O+(d, 1) ⋉ Rd,1 invariant metric on the boundary of co-Minkowski
space. However, if one fixes an element x0 in Hd, then x 7→ 〈x, x〉d,1 + 2〈x, x0〉2d,1 is a

positive definite form, hence an Euclidean metric on Rd,1, that we denote by 〈·, ·〉x0
.

The choice of x0 also induces a splitting Rd,1 ≈ Rd × R: here, R is the linear subspace
spanned by x0, and Rd is the orthogonal of x0 for the Minkowskian scalar product. Until now,
when writing ∂∗Rd,1 ≈ ∂Bd×R, we were always implicitly doing the choice x0 = (0, . . . , 0, 1),
but in this section we will also consider other choices. What is relevant for us now, is that
the choice of x0 induces a Riemannian metric gx0

on ∂∗Rd,1: the one making ∂Bd and R
orthogonal, and whose restrictions to ∂Bd and R are the ones induced by the Euclidean
metric 〈·, ·〉x0

.
Let us be more precise: we can define ∂∗Rd,1 as the space of lightlike affine hyperplanes

of Minkowski space. Once fixed the unit timelike vector x0, we can parametrize ∂∗Rd,1 by
pairs (w, h) where:

• w is a future lightlike vector in Rd,1 in the affine spacelike hyperplane Hx0
of equation

〈x0, w〉d,1 = −1 (therefore, Hx0
is the hyperplane tangent to Hd at x0),

• h any real number.

The associated lightlike affine hyperplane is then the one given by the equation:

〈w, ·〉d,1 = −h .

The set of future lightlike vectors lying in Hx0
is the unit sphere in this Euclidean space.

The metric gx0
is the product of the usual metric on this unit sphere by the usual metric on

the real line. The distance function we will actually use is not the one induced by gx0
but

the following one:

dx0
((w1, h1), (w2, h2)) =

√
〈w1 − w2, w1 − w2〉d,1 + (h1 − h2)2

=
√
−2〈w1, w2〉d,1 + (h1 − h2)2 .

We will also consider the closed hyperbolic manifold N = Γ\Hd, and the geodesic flow
φt on the unitary tangent bundle M = T 1N . Recall that, for any element v of M , the image
φt(v) is the unique vector tangent to the geodesic starting from v and at distance t along
this geodesic.

Actually, M is the quotient of the unitary tangent bundle T 1Hd by the natural action
of Γ. The unitary tangent bundle T 1Hd is also naturally identified with pairs (x, v), where
the base point x is an element of Hd, and v a unit spacelike vector in Minkowski space
orthogonal to x. The geodesic flow φ̃t on T 1Hd is then:

φ̃t(x, v) = (cosh(t)x+ sinh(t)v, sinh(t)x + cosh(t)v) .

Definition 4.1 (Foliated bundle over M). Let Eτ be the quotient of the product T 1Hd ×
∂∗Rd,1 by the diagonal action of Γτ —where Γτ acts on Hd through its linear part. Let
πτ : Eτ → M be the map induced by the projection on the first factor. This map is a
fibration, of fiber ∂∗Rd,1/Γτ . It is called the foliated bundle of holonomy group Γτ over M .
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Definition 4.2 (Lifted geodesic flow). Let φ̃t
τ be the flow on T 1Hd × ∂∗Rd,1 defined by:

φ̃t((x, v), ξ) = (φ̃t(x, v), ξ) .

This flow commutes with the Γτ action, and induces a flow on Eτ , denoted by φt
τ .

We clearly have:
∀t ∈ R φt

τ ◦ πτ = πτ ◦ φ̃t .

We also can distinguish two subbundles ∆±
τ of πτ : Eτ →M . More precisely:

Lemma 4.3. Let (x, v) in T 1Hd. Let (w, h) be an element of ∂∗Rd,1 parametrized by the
pair (w, h) under the identification defined above associated to x. Then:

−1 ≤ 〈w, v〉d,1 ≤ 1 .

Moreover, the equality 〈w, v〉d,1 = 1 holds if and only if w = x+v, and the equality 〈w, v〉d,1 =
−1 holds if and only if w = x− v.

Proof. For every (x, v) in T 1Hd, and every lightlike element w of Hx, v, −v and w − x are
unit elements in the Euclidean hyperplane x⊥. The Lemma follows easily since 〈w, v〉d,1 =
〈w − x, v〉d,1.

Definition 4.4. We denote by ∆̃+ (respectively ∆̃−) the closed subset of T 1Hd × ∂∗Rd,1

comprising elements (x, v, ξ) such that the orthogonal of the lightlike hyperplane ξ is x + v
(respectively x− v).

The complement T 1Hd × ∂∗Rd,1 \ ∆̃± is an open subset that we denote by ℵ̃±.

It is straightforward to check that ∆̃± and ℵ̃± are Γτ -invariant and define closed subsets
∆±

τ and open subsets ℵ±τ of Eτ . Moreover:

Lemma 4.5. ∆̃± and ℵ̃± are φ̃t-invariant.

Proof. We just have to prove that ∆̃± is φ̃t-invariant. We just treat the case of ∆̃+, the
case of ∆̃− is similar.

Let (x, v, ξ) be an element of ∆̃+: it means that, for the parametrization defined by x,
the lightlike hyperplane ξ is parametrized by (w, h), where w = x + v —or, equivalently,

〈w, v〉d,1 = 1 (see Lemma 4.3). Denote by (xt, vt) the iterate φ̃t(x, v). Let (wt, ht) be the
pair parameterizing ξ for the identification defined by xt. Then, wt = λt(x + v) for some
positive real number λt. We must have:

−1 = 〈wt, xt〉d,1
= 〈λt(x+ v), cosh(t)x+ sinh(t)v〉d,1
= −λt cosh(t) + λt sinh(t)

= −λt exp(−t) .

Therefore λt = exp(t), and:

wt = exp(t)(x + v)

= (cosh(t) + sinh(t))x + (cosh(t) + sinh(t))v

= (cosh(t)x+ sinh(t)v) + (sinh(t)x + cosh(t)v)〉d,1
= xt + vt .

The Lemma follows.

Therefore, ∆±
τ are φt

τ -invariant. The restriction of πτ to ∆±
τ is a fibration, with 1-

dimensional fibers. The restriction π±
τ to ℵ±τ is a fibration with contractible fibers. Indeed,

every fiber is the complement in ∂∗Rd,1 of a degenerate vertical line removed, i.e. the product
of a 1-punctured sphere by the real line.
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Definition 4.6. Let ̥τ be the space of continuous sections of the fibration πτ : Eτ → M .
We equip ̥τ with the following metric:

D(σ1, σ2) = sup
(x,v)∈T 1Hd

dx(σ1(x, v), σ2(x, v)) .

We denote by ̥±
τ the open subset comprising sections of πτ : ℵ±τ →M , and by ̥(∆±)τ the

space of sections of π±
τ : ∆±

τ →M .

Since M is compact, this upper bound is always attained. Observe that the metric space
(̥τ , D) is complete.

Let σ be an element of ̥τ . It lifts to a Γτ -equivariant section of the fibration T 1Hd ×
∂∗Rd,1 → T 1Hd and therefore provides a Γτ -equivariant maps F : T 1Hd → ∂∗Rd,1. Actually,
̥τ is in 1-1 correspondence with the space of Γτ -equivariant maps from T 1Hd into ∂∗Rd,1.

The flow φτ induces a 1-parameter group of transformations on (̥τ , D): for every t in
R, and any σ in ̥τ , define:

Φt
τ (σ)(x, v) = φt

τ (σ(φ
−t(x, v))) .

According to Lemma 4.5, the subbundles ̥±
τ are Φt

τ -invariant.
We can now prove the fundamental fact:

Lemma 4.7. The flow Φt
τ on ̥+

τ is exponentially contracting: there exist positive real
numbers T , a and 0 < C < 1 such that, for every t > T and for every σ1, σ2 in ̥+

τ we have:

D(Φt
τ (σ1),Φ

t
τ (σ2)) < Ce−atD(σ1, σ2) .

Proof. Let F : T 1Hd → ∂∗Rd,1 be a Γτ -equivariant map corresponding to elements of ̥+
τ .

We denote by Ft the iterate Φt
τ (F ). Let (x, v) be an element of T 1Hd. Let ξ be the image

F (x, v). It is an affine lightlike hyperplane. By definition of Φt
τ , ξ is the image under Ft

of φ̃t(x, v) = (xt, vt) = (cosh(t)x + sinh(t)v, sinh(t)x + cosh(t)v). Let (wt, ht) be the pair
corresponding to ξ satisfying 〈xt, wt〉d,1 = −1 and such that ξ is the hyperplane of equation:

〈wt, .〉d,1 = −ht .

In particular, we see that −hx belongs to ξ, and therefore, for every t we have:

ht = −h〈wt, x〉d,1 . (42)

Since the lightlike vectors wt are all orthogonal to ξ, they are proportional: for every t,
there is a real number λt > 0 such that wt = λtw0. From equation (42) we see:

ht = hλt .

A straightforward computation shows:

λt =
1

cosh(t)− sinh(t)〈v, w0〉d,1
.

Let now F1, F2 be two Γτ -equivariant maps from T 1Hd into ∂∗Rd,1 corresponding to
sections of πτ : ℵ+τ → M . The distance in ̥τ between the corresponding sections is then
the supremum of dx(F1(x, v), F2(x, v)) where (x, v) describes T 1Hd. Applying Φt

τ simply

means that we replace F1 and F2 by F1 ◦ φ̃−t
τ and F2 ◦ φ̃−t

τ . It follows that the distance
after applying Φτ is the supremum of dxt

(F1(x, v), F2(x, v)) where (x, v) describes T 1Hd

and where xt denotes as above the x component of φ̃t(x, v), i.e. cosh(t)x + sinh(t)v.
The computation above shows that, for i = 1, 2, the pair (wi

t, h
i
t) representing Fi(x, v)

satisfy:

wi
t =

wi
0

cosh(t)− sinh(t)〈v, w0〉d,1
,

hi
t =

hi
0

cosh(t)− sinh(t)〈v, w0〉d,1
.
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Therefore, dxt
(F1(x, v), F2(x, v)) =

dx0
(F1(x,v),F2(x,v))

cosh(t)−sinh(t)〈v,w0〉d,1
. Since the F1 and F2 corre-

spond to sections in ̥+
τ , we have:

−1 ≤ 〈v, w0〉d,1 < 1 .

It follows that for big t, the quantity cosh(t) − sinh(t)〈v, w0〉d,1 is equivalent to et(1 −
〈v, w0〉d,1)/2. The Lemma follows.

Corollary 4.8. There exists one and only one Φt
τ -invariant section σ+

τ of πτ : ℵ+τ → M .
This invariant section actually takes value in ∆−

τ .

Proof. Let T > 0 be a real number big enough so that ΦT
τ is contracting. Since ∆−

τ is a
subbundle of ℵ+τ , ̥(∆−)τ is a closed subset of ̥+

τ . The restriction D to ̥(∆−)τ is therefore
complete. Hence, as any contracting map acting on a complete metric space, ΦT

τ admits
a unique fixed point σ+

τ in ̥(∆−)τ . Since its action on ̥+
τ is contracting too, σ+

τ is the
unique fixed point in ̥+

τ . Since ΦT
τ commutes with Φt

τ for every real number t, σ+
τ is fixed

by every Φt
τ .

Let Fτ : T 1Hd → ∂∗Rd,1 be the Γτ -equivariant lifting of the Φt
τ -invariant section σ+

τ

exhibited in Corollary 4.8. The Φt
τ -invariance means that Fτ is constant along the orbits of

the geodesic flow φ̃t of T 1Hd. The following Lemma shows that we have much more:

Lemma 4.9. The map Fτ is constant along the leaves of the weak unstable foliation of the
geodesic flow φt.

Proof. Let θ1, θ2 be two orbits of φ̃t in the same unstable leaf, i.e. such that for every (x1, v1)
in θ1 and every (x2, v2) in θ2 the isotropic vectors x1 − v1 and x2 − v2 are proportional, i.e.
represent the same element of ∂Hd. On the other hand, since the invariant section takes
value in ∆−

τ , we have that Fτ (x1, v1) and Fτ (x2, v2) are lightlike hyperplanes orthogonal to
respectively x1 − v1 and x2 − v2. Therefore, they are parallel.

Let p1, p2 be the projections of (x1, v1) and (x2, v2) in M . Then, by replacing p2 by
another element of its φt-orbit, one can assume that p1 and p2 lies in the same strong unstable
leaf, i.e. that the hyperbolic distance between φt(p1) and φt(p2) converge exponentially to
0 when t goes to −∞.

It follows that the hyperbolic distance between φ̃t(x1, v1) and φ̃t(x2, v2) converges to 0
when t is going to −∞. Let ξ1 = Fτ (x1, v1) and ξ2 = Fτ (x2, v2). Since Fτ is (uniformly)
continuous, it follows that dt(ξ1, ξ2) converges to 0, where dt is the distance on ∂∗Rd,1

defined by φ̃t(x1, v1). But this is almost a contradiction with Lemma 4.7, that shows that
this distance should be exponentially increasing when t is going to −∞. The only possibility
is that this distance is actually vanishing, i.e. ξ1 = ξ2. The Lemma is proved.

In the sequel, we use the cylindrical affine model of the co-Minkowski space, i.e. write
elements of ∂∗Rd,1 as pairs (w, h) where w is a lightlike vector satisfying 〈x0, w〉d,1 = −1,
where x0 denotes the element (0, . . . , 0, 1) of Rd,1.

Proposition 4.10. There is a continuous map bτ : ∂Bd → R such that the Γτ -equivariant
map Fτ : T 1Hd → ∂∗Rd,1 is given by:

(x, v) 7→
(
− x− v

〈x0, x− v〉d,1
, bτ

(
− x− v

〈x0, x− v〉d,1

))
.

Proof. We still parameterize the unit tangent bundle of the hyperbolic space by pairs (x, v)
where x is a unit timelike vector and v a unit spacelike vector orthogonal to x.

Since the invariant section takes value in the subbundle ∆−, the map Fτ is such that
Fτ (x, v) = (w(x, v), h(x, v)) where w(x, v) is proportional to x − v, hence is equal to
− x−v

〈x0,x−v〉d,1
. Moreover, according to Lemma 4.9, h(x, v) depends only on x − v, hence,

only on − x−v
〈x0,x−v〉d,1

. Therefore, Fτ is given by:

(x, v) 7→
(
− x− v

〈x0, x− v〉d,1
, bτ

(
− x− v

〈x0, x− v〉d,1

))
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for some map bτ : ∂Bd → R.

As a corollary, we get the following amelioration of Lemma 3.27:

Lemma 4.11. Let τn → τ . Then bτn (resp. h±
τn , h

mean
τn ) converge uniformly to bτ (resp.

h±
τ , h

mean
τ ).

Proof. We just give a sketch of proof. First, we observe that we just have to prove the
statement for bτn , since the uniform convergence of h±

τn (resp. hmean
τ ) follows then from

Lemma 2.43 (resp. Lemma 2.38). The key point is that when n is big enough, the fibration
πτn : Eτn →M is isomorphic to the fibration πτ : Eτ →M . More precisely, (the inverse of)
this isomorphism of fibrations send the graph of the section στ to the graph of some section
which is already a nearly fixed point for Φt

τn . The bigger n is, the closer (for the metric D)
is this nearly fixed point to the eventual fixed point σ+

τn . In other words, the bigger is n, the
closer to σ+

τ is σ+
τn for the compact-open topology. The Lemma clearly follows, due to the

form of the lifts Fτ and Fτn given by Proposition 4.10.

Remark 4.12. Mutandi mutandis, one can show that there is also a unique fixed point for
Φt

τ in ̥−
τ , which is this time an exponential repeller, and which is actually a section of the

subbundle ∆+. It provides, as in Proposition 4.10 a map from ∂Bd into R, which is actually
the map bτ . Details are left to the reader.

Remark 4.13. Instead of considering the fiber bundle ℵ±τ , one might have restricted the
study to the subbundles ∆±, which are simpler since with one-dimensional fibers. However,
the most efficient way to deal with these bundles is to consider them as subbundles of Eτ .

We conclude this section by an interpretation of its content in term of Anosov represen-
tations. Let G be a general Lie group acting on some space X , and let ρ : Γ → G be a
representation. Consider as in Definition 4.1 the foliated bundle πρ : Eρ(X) → M where
Eρ(X) is the quotient of the product T 1Hd × X by the diagonal action of Γ —where the
action of Γ on X is given by ρ. As in Definition 4.2, the geodesic flow φt lifts to some
horizontal flow φt

ρ on Eρ(X) so that the bundle map πρ is equivariant.
The representation ρ is said (G,X)-Anosov if the following holds: there is a section

σ : M → Eρ(X) which is equivariant for the flows, and such that the graph Λ of σ is a
closed hyperbolic subset for the lifted flow φt

ρ: it means that the restriction TΛEρ(X) of the
tangent bundle of Eρ(X) to Λ splits as a Whitney sum of subbundles E+ ⊕E− ⊕Φ, where:

• Φ is the one dimensional bundle tangent to the flow φt
ρ,

• E+ is exponentially contracted by the flow,

• E− is exponentially expanded by the flow.

For more details, see [Lab06] or [Bar10, Bar15].
In our case, the inclusion Γ ≈ Γτ ⊂ SO+(d, 1) ⋉ Rd,1 is (G,X)-Anosov where X is

the space of oriented (d − 1)-dimensional spacelike affine subspaces of Rd,1. Indeed, X
identifies with the open domain in ∂∗Rd,1 × ∂∗Rd,1 made of pairs (ξ1, ξ2), where ξ1 and
ξ2 are non parallel affine lightlike hyperplanes. Therefore, the two equivariant sections σ±

τ

define altogether a section σ of πρ : Eρ(X)→M . Moreover, it follows from Lemma 4.7 and
Remark 4.12 that the graph of σ is a closed hyperbolic subset for φt

ρ.
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