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A# : a distributed version of A* for factored planning

Loı̈g Jezequel1, Eric Fabre2

Abstract— Factored planning consists in driving a modular
or distributed system to a target state, in an optimal manner,
assuming all actions are controllable. Such problems take the
form of path search in a product of graphs. The state space of
each component is a graph, in which one must find a path to
the local goal of this component. But when all components are
considered jointly, the problem amounts to finding a path in
each of these state graphs, while ensuring their compatibility on
the actions that must be performed jointly by some components
of the system. This paper proposes a solution under the form of
a multi-agent version of A*, assembling several A*, each one
performing a biased depth-first search in the graph of each
component.

I. INTRODUCTION

Planning consists in organizing optimally a limited set
of actions in order to reach some goal. Actions generally
consume and produce resources, have a cost, and the goal
is expressed as a desired value for some of these resources.
From a control perspective, planning can also be regarded
as driving an automaton to a target state, in an optimal
manner, when all transitions are controllable. Each state
then represents a tuple of values, one per resource, and
transitions derive from the possible actions. In these terms,
the problem amounts to finding a shortest path in a possibly
huge weighted oriented graph, from an initial vertex to a
set of possible final ones. Efficient algorithms have been
proposed, as variants of the celebrated A* [1]. The latter
is a search, guided to the goal by some heuristic function,
i.e. a lower-bound on the distance to the goal, available at
each node. In practice, this approach performs much better
than the worst case bound, that requires exploring the whole
graph, provided heuristics are smartly designed [2], [3], [4].

Distributed planning addresses a similar problem, for a
network of automata. This setting appears when resources are
partitioned into N subsets, each one associated to the actions
that modify them. Each such reduced planning problem can
be represented as a smaller automaton (or component), or as
a smaller graph, making it more tractable. But some actions
simultaneously modify the resources of several of these N
subsets, in other words some components may have to agree
on some shared actions. This amounts to finding a path in
a product graph. It was soon recognized that distributed or
factored planning could render manageable some large scale
planning problems that can not be addressed in a centralized
manner.
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Different approaches to distributed planning have been
proposed [5], [6], [7], with the simpler objective to find a
possible plan, not an optimal one. [8] proposed an approach
based on a message passing strategy and handling weighted
automata to perfom computations. This solution actually
provides all possible (distributed) plans, and identifies the
best one(s). The present paper adopts another strategy and
aims at a true distributed version of A*. The idea is to run
modified versions of A* in parallel, one per component, and
to bias the search of each one in order to favor the exploration
of local paths/plans that are likely to be compatible with the
ones explored in neighbouring components. Each such local
A* thus has to inform its neighbors of the shared actions
that are likely to lead to a solution, from its perspective.
Such communicating parallel versions of A* suggested the
name A#.

The paper is organized as follows. The optimal distributed
planning is first formalized (Section II). Then a simplified
version of the problem is examined, in order to clarify the
mechanism of the proposed approach in the simple case
of two components (Section III). These principles are then
generalized (Section IV).

Due to page limitations, proofs are omited in this version
of the paper. The reader can find the missing material in
reference [9].

II. PLANNING FOR DISTRIBUTED SYSTEMS

There exist several manners to set up a planning problem.
For simplicity, this paper presents planning as an optimal
path search problem in a graph.

A. Planning as path search in a graph

Let G = (V,E) be a (finite) directed graph, with V as
set of vertices and E ⊆ V × V as set of edges. A path
in G is a sequence of edges p = e1 . . . en such that, for
any 1 ≤ i < n, one has ei = (vi, vi+1). p is said to be a
path from v1 = p− to vn+1 = p+. A labelling of G is a
function λ : E → Λ, where Λ is a finite set of labels, also
called actions in the sequel. The labelling extends to paths
p = e1 . . . en by λ(p) = λ(e1) . . . λ(en) ∈ Λ∗. This labeling
is deterministic iff for every pair of edges (v, v′) and (v, v′′),
λ(v, v′) = a = λ(v, v′′) entails v′ = v′′. In other words, the
effect of action a at vertex v has a unique outcome. For
simplicity, and to match standard planning problems, this
paper considers deterministic labelings. By abuse of notation,
we sometimes do not distinguish p and λ(p). Similarly to
labels, a cost function on G is defined as c : E → R+,
and associates costs to edges. It also extends to paths by
c(p) =

∑n
i=1 c(ei).



A planning problem is now defined as a decorated graph
P = (V,E,Λ, λ, c, i, F ) where i ∈ V is an initial vertex,
and F ⊆ V is a set of possible final (or goal) vertices. The
objective is to find a path p such that p− = i, p+ ∈ F and
c(p) is minimal among such paths. The word λ(p) is called
the (action) plan.

B. The A* solution

A* is a search strategy in P [1]. Therefore it is based
on a set of active or open vertices O ⊆ V , initialized to
O = {i}, that forms the (inner) boundary of the explored
region S ⊆ V , progressively expanded to reach F . To each
vertex v in O one associates two values: g(v), which is the
cost of the shortest path from i to v within the subgraph P|S
(P restricted to S), and h(v), which is a heuristic function,
that is a lower bound on the cost to reach F from v in
P . So h(v) = 0 for v ∈ F . Function h is often required
to be consistent, i.e. to satisfy h(v) ≤ c(v, v′) + h(v′) for
any edge (v, v′) ∈ E. The heuristic h is used to guide the
search towards the target F . Its selection influences greatly
the performance of A* [2], [3], [4].

The algorithm proceeds as follows: it recursively ‘ex-
pands’ the most promising vertex in O, i.e. the vertex v ∈ O
with ranking r(v) , g(v) + h(v) ≤ r(v′) for any other
v′ ∈ O. Expansion means that every successor v′ of v in P
is examined. Its g value is updated according to gnew(v′) =
min(gold(v′), g(v) + c(v, v′)) (with gold(v′) = +∞ when
v′ 6∈ S, i.e. when v′ has not been visited),. If gnew(v′) <
gold(v′), then v′ is (re)activated, i.e. (re)placed into O. The
expanded vertex v is then removed from O, but it remains
in the set of visited nodes S. The algorithm stops when the
vertex v chosen for expansion already belongs to F . The
best path p from i to v yields an optimal action plan.

C. Distributed planning

Let P1,P2 be two planning problems, with Pk =
(Vk, Ek,Λk, λk, ck, ik, Fk) for k = 1, 2, and such that
Λ1 ∩ Λ2 6= ∅. We define a distributed (or factored) optimal
planning problem as a pair (P1,P2) of such interacting
planning problems. The actions in Λ1 ∩ Λ2 are said to be
common or synchronized actions between the two problems,
while those in Λ1\Λ2 (resp. Λ2\Λ1) are private to P1 (resp.
P2). This setting is extremely natural in practical planning
problems: P1 and P2 can represent the state of disjoints
subsets of resources, that can be modified jointly by some
actions.

A distributed planning problem (P1,P2) can be recast
into a standard planning problem P by means of a product
operation: P = P1×P2 (similar to the synchronous product
of labeled automata). This operation is defined as V =
V1 × V2, i = (i1, i2), F = F1 × F2, Λ = Λ1 ∪ Λ2. For
the edges, one has E = Es ]Ep,1 ]Ep,2 where Es denotes
synchronized transitions and Ep,k the private transitions of
Pk. They are given by Es = {((v1, v2), (v′1, v

′
2)) : (vk, v′k) ∈

Ek, λ1(v1, v
′
1) = λ2(v2, v

′
2)}, while private moves of

P1 assume P2 remains idle Ep,1 = {(v1, v2), (v′1, v2)) :
(v1, v

′
1) ∈ E1, v2 ∈ V2, λ1(v1, v

′
1) 6∈ Λ2} and symmetrically

for Ep,2. Labels follow accordingly: λ((v1, v2), (v′1, v
′
2)) =

λ1(v1, v
′
1) = λ2(v2, v

′
2) for Es, and λ((v1, v2), (v′1, v2)) =

λ1(v1, v
′
1) for Ep,1 (sym. for Ep,2). In the same way, costs

are additive: c((v1, v2), (v′1, v
′
2)) = c1(v1, v

′
1) + c2(v2, v

′
2)

for Es, and c((v1, v2), (v′1, v2)) = c1(v1, v
′
1) for Ep,1 (sym.

for Ep,2).
The resulting product problem P = P1×P2 may however

be very large compared to the Pk alone (see Figure 1). This
is the usual state explosion problem, which is doubled by
the emergence of so-called concurrency diamonds on edges,
i.e. the interleaving of private actions of P1 and P2.
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Fig. 1. Two planning problems (left) and their product (right).

Distributed planning aims at avoiding this double explo-
sion of problem P . The idea is to look for a pair of paths
(p1, p2), such that

1) pk defines a valid plan in Pk, not necessarily optimal,
for k = 1, 2

2) the two paths p1 and p2 are compatible, i.e. they
coincinde on shared actions, which we translate by
πΛ2(λ1(p1)) = πΛ1(λ2(p2)) (see below),

3) the pair (p1, p2) is jointly optimal, i.e. c(p1) + c2(p2)
is minimal.

The natural projection πΛ′(w) of a word w ∈ Λ∗ on the
subalphabet Λ′ ⊆ Λ is defined by πΛ′(ε) = ε for the
empty word, and by πΛ′(aw) = aπΛ′(w) if a ∈ Λ′, and
πΛ′(aw) = πΛ′(w) otherwise. The compatibility of p1 and
p2 thus induces that there exists a global path p for problem
P such that πΛk

(λ(p)) = λk(pk), k = 1, 2. Such a path
p corresponds to an interleaving of the actions in p1 and
p2. It is generally not unique: for example in Fig. 1 the
distributed plan (ad, cd) corresponds to two global plans acd
and cad This reveals that distributed planning actually aims
at building partially ordered plans, which is a way to avoid
the explosion due to concurrency: one saves the exploration
of meaningless interleavings.

D. Coordinated parallel path searches

The approach proposed in this paper consists in associating
an agent ϕk to each problem Pk. Each agent performs an
A*-like search in its local graph, and takes into account
the constraints and costs of the other agent through an
appropriate communication mechanism. Communications are
asynchronous and can take place at any time. Nevertheless,
it is proved that the algorithm converges to a distributed
optimal plan (p1, p2).

For a matter of clarity, the next section first addresses a
simpler problem called compatible final states (CFS). P1 and



P2 have no common actions, so Λ1∩Λ2 = ∅. However, their
final states are ‘colored’ by functions γk : Fk → Γ where
Γ is a finite color set. The CFS problem amounts to finding
an optimal distributed plan (p1, p2) where the compatibility
condition (2) above is replaced by a compatibility of their
final states: γ1(p+

1 ) = γ2(p+
2 ). We shall assume that there

is a unique optimal (common) final color, if ever the CFS
problem has a solution. Indeed, selecting one optimal final
color among several is an independent agreement problem.

The standard distributed planning problem can be reduced
to the CFS as follows. First Λ1 ∩ Λ2 6= ∅ is ignored. Then,
instead of assuming that the colors of final states are given
beforehand, one computes them as functions of the current
explored paths to reach any vertex of graph Pk. Specifically,
a path pk in Pk with p+

k ∈ Fk will have πΛ1∩Λ2(λk(pk))
as final ‘color.’ Compatibility of final colors thus entails
the compatibility of p1, p2 in terms of shared actions. The
main difference with CFS is thus that the color set becomes
infinite: Γ = (Λ1 ∩ Λ2)∗.

III. COMPATIBLE FINAL STATES

A. Intuition on the approach

Let {k, k̄} = {1, 2}. The agent ϕk attached to problem Pk
relies on four functions. Two relate to the standard shape of a
local A*: gk : Vk → R yields the (current) best known cost
to reach any v ∈ Vk and hk : Vk×Γ→ R is a set of heuristic
functions towards Fk, one per terminal color. Equivalently,
one has a heuristic function towards any Fk ∩ γ−1(c) for
c ∈ Γ. Besides, two other functions inform ϕk on the state
of the search in Pk̄, where {k, k̄} = {1, 2}. Namely, one has
Hk̄ : Γ → R, and Gk̄ : Γ → R. Hk̄ is a (generally) time
varying heuristic that measures how much color c ∈ Γ is
promising at the current point of resolution of problem Pk̄.
Similarly, Gk̄(c) eventually gives the best cost for reaching
color c in Pk̄.

We now formalize these features and explain how these
four functions are updated by each agent, how termination
is detected, and how an optimal distributed plan is extracted.

B. Proposed algorithm

Let us consider first a non-varying distant heuristic Hk̄:
Hk̄(c) = hk̄(ik̄, c) for all c ∈ Γ. To the distant cost
function on final colors Gk̄ one associates an oracle Θk̄ :
Γ→ {null, optimal, useless}, with the following meaning.
Θk̄(c) = optimal means that a best plan towards final
vertices of color c is known in Pk̄, and in that case Gk̄(c)
represents the optimal cost to reach color c in Pk̄. Θk̄(c) =
useless means that ϕk̄ can guarantee that for sure no optimal
distributed plan (pk, pk̄) exists which terminates in color c,
and null is the remaining default (and initial) value of Θk̄.
This oracle satisfies the following property: for every color
c ∈ Γ, there exists a finite time at which Θk̄(c) jumps from
null to either optimal or useless, and keeps this value
forever.

Each agent ϕk executes Algorithm 1. Vertices can be
marked as open, closed, or candidate. A candidate vertex
v belongs to Fk, and thus represents a local plan in Pk that

can be proposed to ϕk̄ as a possible local component of a
distributed plan. Initially all vertices v in Vk\{ik} are closed
and satisfy gk(v) = +∞. To progressively open them and
explore graph Pk, one relies on the ranking function Rk
defined as follows. If v ∈ Vk is not candidate

Rk(v) = gk(v) + min
c∈Γ

(hk(v, c) +Hk̄(c))

which integrates the cost of color c for agent ϕk̄, and then
optimizes on the possible final color. For a candidate vertex
v, one takes

Rk(v) = gk(v) +Gk̄(γk(v)) if Θk̄(γk(v)) = optimal

= gk(v) +Hk̄(γk(v)) otherwise

which associates to the possible final vertex v the cost of its
color γk(v) for agent ϕk̄.

The recursive (local) search then proceeds as follows. At
each iteration ϕk selects the most promising non-closed (i.e.
open or candidate) vertex v, i.e. the one that minimizes
the ranking function Rk. According to the nature of v,
agent ϕk either a) progresses in the exploration of Pk using
an expansion function (Algorithm 2), this is the case in
particular when v is open, or b) checks whether it can draw
some conclusion using the information provided by the other
agent ϕk̄. These conclusions can be (1) that v is the goal
vertex reached by a path part of a globally optimal plan
(line 8), (2) that v will never be the goal vertex reached by a
path part of a globally optimal plan (line 13), or (3) nothing
for the moment (line 15). The reader familiar with A* may
thus immediately identify its shape within Algorithm 1. The
main difference lies in the stopping condition, due to the
necessity to take into account constraints transmitted by the
other agent.

Algorithm 1 executed by ϕk
1: mark ik open; gk(ik)← 0; calculate Rk(ik)
2: while there exists non-closed vertices do
3: let v be the non-closed vertex with minimal Rk(v)
4: if v is open then
5: expand(v)
6: else
7: case: Θk̄(γk(v)) = optimal
8: if Rk(v) = gk(v) +Gk̄(γk(v)) then
9: return v and terminate

10: else
11: calculate Rk(v)
12: end if
13: case: Θk̄(γk(v)) = useless
14: mark v closed
15: case: Θk̄(γk(v)) = null
16: if there exists open vertices then
17: let v′ be the open vertex with minimal Rk(v′)
18: expand(v′)
19: end if
20: end if
21: end while



Algorithm 2 expand function
1: if v ∈ Fk then
2: mark v candidate
3: calculate Rk(v)
4: else
5: mark v closed
6: end if
7: for all v′ such that (v, v′) ∈ Ek do
8: gk(v′)← min(gk(v′), gk(v) + ck((v, v′)))
9: if gk(v′) strictly decreased then

10: mark v′ open
11: pred(v′)← v
12: end if
13: calculate Rk(v′)
14: end for

Notice that the call to the expand function at line 18
of Algorithm 1 is not required for termination nor validity,
however it will allow agent ϕk̄ to maintain Gk̄ and Θk̄ using
its own instance of Algorithm 1. Otherwise ϕk̄ should run a
standard A∗ algorithm in parallel with Algorithm 1.

Theorem 1: In this context, any execution of Algorithm 1
by ϕk on Pk terminates. Moreover, if the CFS problem
(P1,P2) has a solution, the output of Algorithm 1 for agent
ϕk is a goal vertex vk ∈ Fk, reached by a local plan pk. The
assembling of p1 and p2 provided by agents ϕ1 and ϕ2 resp.
yields an optimal distributed plan (p1, p2) solving (P1,P2).

C. Implementation of Gk̄
The remaining of this section gives a feasible construction

of the distant (color) cost function Gk̄ and of the oracle Θk̄,
showing that Algorithm 1 is usable in practice. These two
functions have to be computed by agent ϕk̄ independently
of problem Pk, and in particular, independently of Gk and
Θk. The expand function is considered atomic: no update
of Θk̄ or Gk̄ will occur during the execution of this function
by ϕk.

A possible implementation follows, where Θk̄ and Gk̄ are
computed within Algorithm 1 by ϕk̄:
• initialization: ∀c ∈ Γ, Gk̄(c) = +∞, and if Fk̄ ∩
γ−1
k̄

(c) = ∅ then Θk̄(c) = useless otherwise Θk̄(c) =
null,

• update: as soon as some final vertex v ∈ Fk̄ is open
or candidate, if no other open vertex v′ ∈ Vk̄ satisfies
gk̄(v′) + hk̄(v′, γk̄(v)) < gk̄(v), then color γk̄(v) can
not be reached with a lower cost in Pk̄, so Θk̄(γk̄(v))
is set to optimal and

Gk̄(γk̄(v)) = min
v′∈Fk̄,γk̄(v′)=γk̄(v)

gk̄(v′)

• final update: when Algorithm 1 stops, for all c ∈ Γ
such that Θk̄(c) = null, set Θk̄(c) = useless, and
Gk̄(c) = +∞.

D. Running example

Consider the graph of Figure 2. Heuristics h1 should have
the following properties: h1(i1, r) ≤ 1, h1(v1, r) ≤ 0, and

h1(v, b) ≤ +∞ for any v. In the same way the values of H2

(provided to ϕ1 by ϕ2) should always be such that: H2(r) ≤
2, and H2(b) ≤ 2 + 0 = 2.

P1 : i1 v1, r
β, 1

α, 0

P2 : i2 v2, r v′2, b
α, 2 β, 0

β, 1

Fig. 2. A CFS problem. Goal vertices are represented with their color (ex.
v1 is a goal with color r). Costs and labels are written above edges.

Assume ϕ1 is running Algorithm 1 on P1. Initially,
i1 is open, g1(i1) = 0, and R1(i1) = g1(i1) +
minc∈{r,b}(h1(i1, c) +H2(c)). All other vertices are closed
and such that g1 is infinite. Moreover, Θ1(b) = useless, as
no goal vertex with color b exists in P1. The first execution
of the while loop will directly call the expand function, as
i1 is not candidate. It will be marked as closed (as i1 is not
a goal vertex). As g1(i1) = 0 ≤ 0 = g1(i1) + 0, i1 will
not be re-opened. As g1(v1) = +∞ > 1 = g1(i1) + 1, v1

will be opened, with g1(v1) = 1, and R1(v1) = g1(v1) +
minc∈{r,b}(h1(v1, c) + H2(c)), and pred(v1) = i1. After
that, the expand function terminates. Immediately, Θ1(r) =
optimal as v1 is a goal state with color r and no other
open vertex exists, G1(r) = g1(v1) = 1. As there is open
vertices, a second execution of the while loop starts. The
open or candidate vertex with minimal value of Rk is v1. As
v1 is not candidate, a call to expand occurs immediately. As
v1 ∈ F1, it is now candidate, and R1(v1) = g1(v1) +G2(r)
if Θ2(r) = optimal or R1(v1) = g1(v1)+H2(r) else. As v1

has no neighbors, no new vertices are opened. From that, a
new execution of the while loop occurs. As v1 is candidate it
is checked if it allows to conclude. No more calls to expand
function occur as there no longer exists open vertices. As
soon as Θ2(r) = optimal, with G2(r) = 2 it is possible to
conclude. The only possible local solution is to go from i1
to v1 in one step. Its cost is 1 locally, but 1+2 = 3 globally,
as the part of the solution in P2 is to go from i2 to v2 in
one step.

IV. DISTRIBUTED PLANNING WITH TWO COMPONENTS

This section extends the algorithm proposed to solve
CFS problems to the more general framework of distributed
planning (DP) problems, still in the limited case of two
components. Compared to CFS, DP problems introduce two
difficulties. First, colors are assigned dynamically to vertices:
the color of vertex v is not given in advance by some coloring
function γ, but is set as a function of the path p leading to
this vertex v = p+. Secondly, rather than a finite set Γ of
colors, one potentially has an infinite set, since the idea is the
‘color’ of vertex v = p+ is the sequence of shared actions
met along path p leading to v. And there is generally no
bound (efficiently computable in a distributed way) on the



number of shared actions in a globally optimal distributed
plan

Let us recast a DP problem (P1,P2) as a CFS problem
(P ′1,P ′2) with color set Γ = (Λ1∩Λ2)∗, the set of sequences
of shared actions. One has P ′k = (V ′k, E

′
k,Λ

′
k, λ
′
k, c
′
k, i
′
k, F

′
k)

with V ′k = Vk × Γ, E′k = {((v, w), (v′, w′)) : (v, v′) ∈
Ek ∧w′ = w πΛ1∩Λ2(γk((v, v′)))}, i′k = (ik, ε), F ′k = Fk ×
Γ, γ′k : F ′k → Γ is such that γ′k((v, w)) = w, and c′k is
such that c′k(((v, w), (v′, w′))) = ck((v, v′)). (P ′1,P ′2) has
however a major difference with CFS problems considered
in Section III: V ′1 , E

′
1, V

′
2 , and E′2 may be infinite.

The remaining of this section is dedicated to extending
the results of Section III to the case of the particular infinite
graphs considered here. It will allow to use Algorithm 1
along with expand function given in Algorithm 3 for solv-
ing DP problems. This new expand function is in fact
responsible for computing parts of P ′k from Pk (only when
needed). Three points have to be addressed: (1) computation
of Rk((v, w)) sometimes implies to take a minimum over an
infinite number of elements, (2) termination of the algorithm
relies on finiteness of the graphs, (3) computation of Gk̄
and Θk̄ are not directly possible on infinite graphs as non-
accessible colors can not be determined at initialization.

Algorithm 3 expand function
{called with an argument v of the form (v′, w)}
if v′ ∈ Fk then

mark v = (v′, w) candidate
calculate Rk(v)

else
mark v = (v′, w) closed

end if
for all v′′ such that (v′, v′′) ∈ Ek do
w′ ← wπΓ(γk((v′, v′′)))
gk((v′′, w′)) ← min(gk((v′′, w′)), gk((v′, w)) +
ck((v′, v′′)))
if gk((v′′, w′)) strictly decreased then

mark (v′′, w′) open
pred((v′′, w′))← (v′, w)

end if
calculate Rk((v′′, w′))

end for

A. Computation of Rk and Hk̄

For any color w (which may correspond to an optimal
distributed plan), Hk̄(w) should give a lower bound on the
cost of reaching this color in Pk̄. Clearly, taking Hk̄(w) =
0 for any w gives such a lower bound. However, it is
usually better to get a tight bound in order to avoid as
much exploration of the graphs as possible. For practical
use of our algorithm, using a more accurate Hk̄ would be
recommended. An example of such an Hk̄ is the following,
where w′ < w is notation for w′ is a prefix of w (recall that
Hk̄ is computed by ϕk̄):

Hk̄(w) = min(Ho
k̄(w), Hc

k̄(w))

with:

Ho
k̄(w) = min

(vk̄,w
′) open

w′<w

(gk̄((vk̄, w
′)), hk̄((vk̄, w

′))),

Hc
k̄(w) = min

(vk̄,w
′) candidate
w′<w

(gk̄((vk̄, w
′))).

Notice that for any w it is possible to compute Hk̄(w), as
the set of open and candidate (v, w) is always finite. Notice
also that all Hk̄(w) can be computed by ϕk from a finite
number of them given by ϕk̄: the one which are such that
(vk̄, w) is open or candidate. We denote them by Ĥk̄. One
then has: Hk̄(w) = minw′<w Ĥk̄(w′).

When (v, w) is candidate, the computation of Rk is not an
issue, it can be done exactly as in the simpler cases. Notice
that, when (v, w) is candidate, v is necessarily in Fk. Hence,
when Θk̄(w) = optimal one has:

Rk((v, w)) = gk((v, w)) +Gk̄(w),

and in other cases:

Rk((v, w)) = gk((v, w)) +Hk̄(w).

However, when (v, w) is open it is not possible to directly
use the previous definition of Rk((v, w)) as it may involve
the computation of a minimum over an infinite number of
elements. First of all, computing Rk as before would require
the computation of hk((v, w), w′) for any color w′. We
consider instead hk((v, w)) = minw′ hk((v, w), w′), which
is computable as a lower bound on the cost of a path in Pk
from v to a goal vertex.

From that, when (v, w) is open, we suggest to compute
Rk((v, w)) as follows:

Rk((v, w)) = gk((v, w)) + hk((v, w)) + min
w′>w

Hk̄(w′).

The second difficulty is that there may be an infi-
nite number of colors w to consider when computing
minw′ Hk̄(w′) = minw′>wHk̄(w′). This suggest to add a
constraint on Hk̄: it should be such that minw′>wHk̄(w′) is
computable for any w. Fortunately, using the implementation
of Hk̄ proposed above it is possible. One just has to remark
that:

min
w′>w

Hk̄(w′) = min(Hk̄(w), min
w′>w

Ĥk̄(w′)),

as the number of w such that Ĥk̄(w) is defined is always
finite, this minimum can be computed.

B. Termination of the algorithm

The main difference here with the case of CFS problems
is that the termination of the algorithm is not ensured when
there is no solution. This is due to the fact that the graph
to explore is in general infinite. In fact, it is possible to
ensure termination, as there is a bound on the length of
the color corresponding to a possible solution. This bound
can be computed by considering the number of vertices in
the product of P1 and P2: if a solution exists, one is such



that it passes at most one time in each vertex of this graph.
However, it is not straightforward to tightly and modularly
compute this bound. We focus on the case with a solution.

Theorem 2: In this context, if the considered planning
problem (P1,P2) has a solution, then: any execution of
Algorithm 1 by ϕk on Pk terminates. Moreover, the output of
Algorithm 1 for agent ϕk is a goal vertex vk ∈ Fk, reached
by a local plan pk. The assembling of p1 and p2 provided
by agents ϕ1 and ϕ2 resp. yields an optimal distributed plan
(p1, p2) solving (P1,P2).

C. Computation of Gk̄ and Θk̄

As before, these two functions have to be computed by
agent ϕk̄ independently of Pk, and in particular, indepen-
dently of Gk and Θk. A possible implementation, where Θk̄

and Gk̄ are computed along execution of Algorithm 1 by ϕk̄,
is the following:
• initialization: ∀w ∈ Γ, Θk̄(w) is considered as null

and Gk̄(w) = +∞ (but only the Θk̄(w) 6= null and
the corresponding values of Gk̄ are stored).

• update (1): as soon as there exists v ∈ Fk̄ such that
(v, w) is open or candidate, and there is no open
couple (v′, w′) such that gk̄((v′, w′)) + hk̄((v′, w′)) <
gk̄((v, w)) and w′ < w, Θk̄(γk̄(v)) = optimal and

Gk̄(w) = min
v′∈Fk̄

gk̄((v′, w)).

• update (2): as soon as for a given w there exists no w′ <
w and v such that (v, w′) is open or (v, w) is candidate,
if Θk̄(w) = null, then Θk̄(w) is set to useless.

• final update: when Algorithm 1 stops, for all w ∈ Γ
such that Θk̄(w) = null, set Θk̄(w) = useless, and
Gk̄(w) = +∞.

D. Running example

Consider the graphs of Figure 2 as a DP problem (for that
ignore final colors and focus on the labels on the edges).

An execution of Algorithm 1 by ϕ1 on P1 starts with
(i1, ε) open. Then a call to expand function closes (i1, ε)
and opens (i1, α) and (v1, β). After that depending on the
values of the different heuristics, a call to expand function
will occur on either (i1, α) or (v1, β). Assume it is called on
(i1, α). Then (i1, α) is closed and (i1, αα) and (v1, αβ) are
opened. After that expand will be called on either (v1, β),
(i1, αα) or (v1, αβ). Which will either mark (v1, β) or
(v1, αβ) candidate, or close (i1, αα) and open (i1, ααα) and
(v1, ααβ). After each time an element (v1, wβ) is opened
with w ∈ {α}∗, Θ1(wβ) = optimal and G1(wβ) =
|w|.0+1. As all costs of edges are positive, any open element
of the form (v1, wβ) with w ∈ {α}∗ becomes candidate
after a finite time. After some time Θ2(β) = useless (it
is not possible to reach a goal state in G2 using only
one edge with color β), and Θ2(αβ) = optimal with
G2(αβ) < min(H2(wβ), G2(wβ)) for all w ∈ {α}∗ such
that Θ2(wβ) 6= optimal and G2(αβ) < G2(wβ) for all
w ∈ {α}∗ such that Θ2(wβ) = optimal. It allows ϕ1 to
conclude that its part of the optimal solution (which has a

global cost of 3) reaches v1 with color αβ. Moreover, the
values of pred allow to conclude that the path in P1 should
be to loop on i1 one time and then go to v1.

V. CONCLUSION

A* is a celebrated search algorithm to find a shortest
path in oriented graphs. Its variants are extremely used to
solve optimal planning problems, which are weak versions
of optimal control problems. This paper has presented A#,
a multi-agent version of A*, dedicated to quickly find an
optimal strategy to drive a distributed system to a target
state. Its convergence and its consistency have been proved.
Compared to other approaches to distributed planning, this is
the first distributed algorithm that provides a globally optimal
plan. Moreover, it is not hierarchical: all components run
the same algorithm simultaneously, and bias each other’s
searches by their own guesses. It is more a ‘consensus’
approach than a master-slave approach.

The practical interest of A# will be soon tested. In terms
of theoretical complexity, however, the worst case bounds
of planning problems remain unchanged, and one may have
to explore the whole global graph. However, compared to
running A* on the equivalent product problem, one may
be faster when components are loosely coupled. This is
the standard key advantage of distributed planning, which
explores possible plans as partial orders of actions rather
than sequences, and thus saves the exploration of different
interleavings of concurrent actions.

While the paper is limited to two components, A# extends
to graphs of interacting components in a usual manner (these
graphs are obtained by placing an edge between components
that share actions). In particular, A# may become very
efficient when the interaction graph between components is
a tree.
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