Loïg Jezequel

Eric Fabre

A# : a distributed version of A* for factored planning

Factored planning consists in driving a modular or distributed system to a target state, in an optimal manner, assuming all actions are controllable. Such problems take the form of path search in a product of graphs. The state space of each component is a graph, in which one must find a path to the local goal of this component. But when all components are considered jointly, the problem amounts to finding a path in each of these state graphs, while ensuring their compatibility on the actions that must be performed jointly by some components of the system. This paper proposes a solution under the form of a multi-agent version of A*, assembling several A*, each one performing a biased depth-first search in the graph of each component.

I. INTRODUCTION

Planning consists in organizing optimally a limited set of actions in order to reach some goal. Actions generally consume and produce resources, have a cost, and the goal is expressed as a desired value for some of these resources. From a control perspective, planning can also be regarded as driving an automaton to a target state, in an optimal manner, when all transitions are controllable. Each state then represents a tuple of values, one per resource, and transitions derive from the possible actions. In these terms, the problem amounts to finding a shortest path in a possibly huge weighted oriented graph, from an initial vertex to a set of possible final ones. Efficient algorithms have been proposed, as variants of the celebrated A* [START_REF] Hart | A formal basis for the heuristic determination of minimum cost paths[END_REF]. The latter is a search, guided to the goal by some heuristic function, i.e. a lower-bound on the distance to the goal, available at each node. In practice, this approach performs much better than the worst case bound, that requires exploring the whole graph, provided heuristics are smartly designed [START_REF] Edelkamp | Planning with pattern databases[END_REF], [START_REF] Helmert | Fexible abstraction heuristics for optimal sequential planning[END_REF], [START_REF] Karpas | Cost-optimal planning with landmarks[END_REF].

Distributed planning addresses a similar problem, for a network of automata. This setting appears when resources are partitioned into N subsets, each one associated to the actions that modify them. Each such reduced planning problem can be represented as a smaller automaton (or component), or as a smaller graph, making it more tractable. But some actions simultaneously modify the resources of several of these N subsets, in other words some components may have to agree on some shared actions. This amounts to finding a path in a product graph. It was soon recognized that distributed or factored planning could render manageable some large scale planning problems that can not be addressed in a centralized manner.

1 L. Jezequel is with ENS Cachan Bretagne, Rennes, France loig.jezequel@irisa.fr 2 E. Fabre is with INRIA Rennes Bretagne Atlantique, Rennes, France eric.fabre@irisa.fr Different approaches to distributed planning have been proposed [START_REF] Brafman | Factored planning: How, when, and when not[END_REF], [START_REF] Brafman | From one to many: Planning for loosely coupled multi-agent systems[END_REF], [START_REF] Amir | Factored planning[END_REF], with the simpler objective to find a possible plan, not an optimal one. [START_REF] Fabre | Distributed optimal planning: an approach by weighted automata calculus[END_REF] proposed an approach based on a message passing strategy and handling weighted automata to perfom computations. This solution actually provides all possible (distributed) plans, and identifies the best one(s). The present paper adopts another strategy and aims at a true distributed version of A*. The idea is to run modified versions of A* in parallel, one per component, and to bias the search of each one in order to favor the exploration of local paths/plans that are likely to be compatible with the ones explored in neighbouring components. Each such local A* thus has to inform its neighbors of the shared actions that are likely to lead to a solution, from its perspective. Such communicating parallel versions of A* suggested the name A#.

The paper is organized as follows. The optimal distributed planning is first formalized (Section II). Then a simplified version of the problem is examined, in order to clarify the mechanism of the proposed approach in the simple case of two components (Section III). These principles are then generalized (Section IV).

Due to page limitations, proofs are omited in this version of the paper. The reader can find the missing material in reference [START_REF] Jezequel | A-sharp: A distributed a-star for factored planning[END_REF].

II. PLANNING FOR DISTRIBUTED SYSTEMS

There exist several manners to set up a planning problem. For simplicity, this paper presents planning as an optimal path search problem in a graph.

A. Planning as path search in a graph

Let G = (V, E) be a (finite) directed graph, with V as set of vertices and E ⊆ V × V as set of edges. A path in G is a sequence of edges p = e 1 . . . e n such that, for any 1 ≤ i < n, one has e i = (v i , v i+1). p is said to be a path from v 1 = p -to v n+1 = p + . A labelling of G is a function λ : E → Λ, where Λ is a finite set of labels, also called actions in the sequel. The labelling extends to paths p = e 1 . . . e n by λ(p) = λ(e 1) . . . λ(e n) ∈ Λ * . This labeling is deterministic iff for every pair of edges (v, v) and

(v, v), λ(v, v) = a = λ(v, v) entails v = v .
In other words, the effect of action a at vertex v has a unique outcome. For simplicity, and to match standard planning problems, this paper considers deterministic labelings. By abuse of notation, we sometimes do not distinguish p and λ(p). Similarly to labels, a cost function on G is defined as c : E → R + , and associates costs to edges. It also extends to paths by

c(p) = n i=1 c(e i).
A planning problem is now defined as a decorated graph P = (V, E, Λ, λ, c, i, F) where i ∈ V is an initial vertex, and F ⊆ V is a set of possible final (or goal) vertices. The objective is to find a path p such that p -= i, p + ∈ F and c(p) is minimal among such paths. The word λ(p) is called the (action) plan.

B. The A* solution

A* is a search strategy in P [START_REF] Hart | A formal basis for the heuristic determination of minimum cost paths[END_REF]. Therefore it is based on a set of active or open vertices O ⊆ V , initialized to O = {i}, that forms the (inner) boundary of the explored region S ⊆ V , progressively expanded to reach F . To each vertex v in O one associates two values: g(v), which is the cost of the shortest path from i to v within the subgraph P |S (P restricted to S), and h(v), which is a heuristic function, that is a lower bound on the cost to reach

F from v in P. So h(v) = 0 for v ∈ F . Function h is often required to be consistent, i.e. to satisfy h(v) ≤ c(v, v) + h(v) for any edge (v, v) ∈ E.
The heuristic h is used to guide the search towards the target F . Its selection influences greatly the performance of A* [START_REF] Edelkamp | Planning with pattern databases[END_REF], [START_REF] Helmert | Fexible abstraction heuristics for optimal sequential planning[END_REF], [START_REF] Karpas | Cost-optimal planning with landmarks[END_REF].

The algorithm proceeds as follows: it recursively 'expands' the most promising vertex in

O, i.e. the vertex v ∈ O with ranking r(v) g(v) + h(v) ≤ r(v) for any other v ∈ O. Expansion means that every successor v of v in P is examined. Its g value is updated according to g new (v) = min(g old (v), g(v) + c(v, v)) (with g old (v) = +∞ when v ∈ S, i.e. when v has not been visited),. If g new (v) < g old (v), then v is (re)activated, i.e. (re)placed into O.
The expanded vertex v is then removed from O, but it remains in the set of visited nodes S. The algorithm stops when the vertex v chosen for expansion already belongs to F . The best path p from i to v yields an optimal action plan.

C. Distributed planning

Let P 1 , P 2 be two planning problems, with

P k = (V k , E k , Λ k , λ k , c k , i k , F k) for k = 1, 2, and such that Λ 1 ∩ Λ 2 = ∅.
We define a distributed (or factored) optimal planning problem as a pair (P 1 , P 2) of such interacting planning problems. The actions in Λ 1 ∩ Λ 2 are said to be common or synchronized actions between the two problems, while those in Λ 1 \Λ 2 (resp. Λ 2 \Λ 1) are private to P 1 (resp. P 2). This setting is extremely natural in practical planning problems: P 1 and P 2 can represent the state of disjoints subsets of resources, that can be modified jointly by some actions.

A distributed planning problem (P 1 , P 2) can be recast into a standard planning problem P by means of a product operation: P = P 1 × P 2 (similar to the synchronous product of labeled automata). This operation is defined as

V = V 1 × V 2 , i = (i 1 , i 2), F = F 1 × F 2 , Λ = Λ 1 ∪ Λ 2 .
For the edges, one has E = E s E p,1 E p,2 where E s denotes synchronized transitions and E p,k the private transitions of P k . They are given by

E s = {((v 1 , v 2), (v 1 , v 2)) : (v k , v k) ∈ E k , λ 1 (v 1 , v 1) = λ 2 (v 2 , v 2)}, while private moves of P 1 assume P 2 remains idle E p,1 = {(v 1 , v 2), (v 1 , v 2)) : (v 1 , v 1) ∈ E 1 , v 2 ∈ V 2 , λ 1 (v 1 , v 1) ∈ Λ 2 } and symmetrically for E p,2 . Labels follow accordingly: λ((v 1 , v 2), (v 1 , v 2)) = λ 1 (v 1 , v 1) = λ 2 (v 2 , v 2) for E s , and λ((v 1 , v 2), (v 1 , v 2)) = λ 1 (v 1 , v 1) for E p,1 (sym. for E p,2
). In the same way, costs are additive:

c((v 1 , v 2), (v 1 , v 2)) = c 1 (v 1 , v 1) + c 2 (v 2 , v 2) for E s , and c((v 1 , v 2), (v 1 , v 2)) = c 1 (v 1 , v 1) for E p,1 (sym. for E p,2).
The resulting product problem P = P 1 ×P 2 may however be very large compared to the P k alone (see Figure 1). This is the usual state explosion problem, which is doubled by the emergence of so-called concurrency diamonds on edges, i.e. the interleaving of private actions of P 1 and P 2 .

i 1 v 1 v 1 v 1 a, 0 b, 7 d, 1 i 2 v 2 v 2
Fig. 1. Two planning problems (left) and their product (right).

Distributed planning aims at avoiding this double explosion of problem P. The idea is to look for a pair of paths (p 1 , p 2), such that 1) p k defines a valid plan in P k , not necessarily optimal, for k = 1, 2 2) the two paths p 1 and p 2 are compatible, i.e. they coincinde on shared actions, which we translate by π Λ2 (λ 1 (p 1)) = π Λ1 (λ 2 (p 2)) (see below), 3) the pair (p 1 , p 2) is jointly optimal, i.e. c(p 1) + c 2 (p 2) is minimal. The natural projection π Λ (w) of a word w ∈ Λ * on the subalphabet Λ ⊆ Λ is defined by π Λ () = for the empty word, and by π Λ (aw) = aπ Λ (w) if a ∈ Λ , and π Λ (aw) = π Λ (w) otherwise. The compatibility of p 1 and p 2 thus induces that there exists a global path p for problem P such that π Λ k (λ(p)) = λ k (p k), k = 1, 2. Such a path p corresponds to an interleaving of the actions in p 1 and p 2 . It is generally not unique: for example in Fig. 1 the distributed plan (ad, cd) corresponds to two global plans acd and cad This reveals that distributed planning actually aims at building partially ordered plans, which is a way to avoid the explosion due to concurrency: one saves the exploration of meaningless interleavings.

D. Coordinated parallel path searches

The approach proposed in this paper consists in associating an agent ϕ k to each problem P k . Each agent performs an A*-like search in its local graph, and takes into account the constraints and costs of the other agent through an appropriate communication mechanism. Communications are asynchronous and can take place at any time. Nevertheless, it is proved that the algorithm converges to a distributed optimal plan (p 1 , p 2).

For a matter of clarity, the next section first addresses a simpler problem called compatible final states (CFS). P 1 and P 2 have no common actions, so Λ 1 ∩Λ 2 = ∅. However, their final states are 'colored' by functions γ k : F k → Γ where Γ is a finite color set. The CFS problem amounts to finding an optimal distributed plan (p 1 , p 2) where the compatibility condition (2) above is replaced by a compatibility of their final states: γ 1 (p + 1) = γ 2 (p + 2). We shall assume that there is a unique optimal (common) final color, if ever the CFS problem has a solution. Indeed, selecting one optimal final color among several is an independent agreement problem.

The standard distributed planning problem can be reduced to the CFS as follows. First Λ 1 ∩ Λ 2 = ∅ is ignored. Then, instead of assuming that the colors of final states are given beforehand, one computes them as functions of the current explored paths to reach any vertex of graph P k . Specifically, a path p k in P k with p + k ∈ F k will have π Λ1∩Λ2 (λ k (p k)) as final 'color.' Compatibility of final colors thus entails the compatibility of p 1 , p 2 in terms of shared actions. The main difference with CFS is thus that the color set becomes infinite: Γ = (Λ 1 ∩ Λ 2) * .

III. COMPATIBLE FINAL STATES

A. Intuition on the approach

Let {k, k} = {1, 2}. The agent ϕ k attached to problem P k relies on four functions. Two relate to the standard shape of a local A*: g k : V k → R yields the (current) best known cost to reach any v ∈ V k and h k : V k ×Γ → R is a set of heuristic functions towards F k , one per terminal color. Equivalently, one has a heuristic function towards any F k ∩ γ -1 (c) for c ∈ Γ. Besides, two other functions inform ϕ k on the state of the search in Pk, where {k, k} = {1, 2}. Namely, one has Hk : Γ → R, and Gk : Γ → R. Hk is a (generally) time varying heuristic that measures how much color c ∈ Γ is promising at the current point of resolution of problem Pk. Similarly, Gk(c) eventually gives the best cost for reaching color c in Pk.

We now formalize these features and explain how these four functions are updated by each agent, how termination is detected, and how an optimal distributed plan is extracted.

B. Proposed algorithm

Let us consider first a non-varying distant heuristic Hk: Hk(c) = hk(ik, c) for all c ∈ Γ. To the distant cost function on final colors Gk one associates an oracle Θk : Γ → {null, optimal, useless}, with the following meaning. Θk(c) = optimal means that a best plan towards final vertices of color c is known in Pk, and in that case Gk(c) represents the optimal cost to reach color c in Pk. Θk(c) = useless means that ϕk can guarantee that for sure no optimal distributed plan (p k , pk) exists which terminates in color c, and null is the remaining default (and initial) value of Θk. This oracle satisfies the following property: for every color c ∈ Γ, there exists a finite time at which Θk(c) jumps from null to either optimal or useless, and keeps this value forever.

Each agent ϕ k executes Algorithm 1. Vertices can be marked as open, closed, or candidate. A candidate vertex v belongs to F k , and thus represents a local plan in P k that can be proposed to ϕk as a possible local component of a distributed plan. Initially all vertices v in V k \{i k } are closed and satisfy g k (v) = +∞. To progressively open them and explore graph P k , one relies on the ranking function R k defined as follows.

If v ∈ V k is not candidate R k (v) = g k (v) + min c∈Γ (h k (v, c) + Hk(c))
which integrates the cost of color c for agent ϕk, and then optimizes on the possible final color. For a candidate vertex v, one takes

R k (v) = g k (v) + Gk(γ k (v)) if Θk(γ k (v)) = optimal = g k (v) + Hk(γ k (v)) otherwise
which associates to the possible final vertex v the cost of its color γ k (v) for agent ϕk.

The recursive (local) search then proceeds as follows. At each iteration ϕ k selects the most promising non-closed (i.e. open or candidate) vertex v, i.e. the one that minimizes the ranking function R k . According to the nature of v, agent ϕ k either a) progresses in the exploration of P k using an expansion function (Algorithm 2), this is the case in particular when v is open, or b) checks whether it can draw some conclusion using the information provided by the other agent ϕk. These conclusions can be (1) that v is the goal vertex reached by a path part of a globally optimal plan (line 8), (2) that v will never be the goal vertex reached by a path part of a globally optimal plan (line 13), or (3) nothing for the moment (line 15). The reader familiar with A* may thus immediately identify its shape within Algorithm 1. The main difference lies in the stopping condition, due to the necessity to take into account constraints transmitted by the other agent.

Algorithm 1 executed by ϕ k 1: mark i k open; g k (i k) ← 0; calculate R k (i k) 2:
while there exists non-closed vertices do

3: let v be the non-closed vertex with minimal R k (v) 4: if v is open then 5: expand(v) 6: else 7: case: Θk(γ k (v)) = optimal 8: if R k (v) = g k (v) + Gk(γ k (v))
g k (v) ← min(g k (v), g k (v) + c k ((v, v))) 9:
if g k (v) strictly decreased then calculate R k (v) 14: end for Notice that the call to the expand function at line 18 of Algorithm 1 is not required for termination nor validity, however it will allow agent ϕk to maintain Gk and Θk using its own instance of Algorithm 1. Otherwise ϕk should run a standard A * algorithm in parallel with Algorithm 1.

Theorem 1: In this context, any execution of Algorithm 1 by ϕ k on P k terminates. Moreover, if the CFS problem (P 1 , P 2) has a solution, the output of Algorithm 1 for agent ϕ k is a goal vertex v k ∈ F k , reached by a local plan p k . The assembling of p 1 and p 2 provided by agents ϕ 1 and ϕ 2 resp. yields an optimal distributed plan (p 1 , p 2) solving (P 1 , P 2).

C. Implementation of Gk

The remaining of this section gives a feasible construction of the distant (color) cost function Gk and of the oracle Θk, showing that Algorithm 1 is usable in practice. These two functions have to be computed by agent ϕk independently of problem P k , and in particular, independently of G k and Θ k . The expand function is considered atomic: no update of Θk or Gk will occur during the execution of this function by ϕ k .

A possible implementation follows, where Θk and Gk are computed within Algorithm 1 by ϕk: gk(v)

• initialization: ∀c ∈ Γ, Gk(c) = +∞, and if Fk ∩ γ -1 k (c) = ∅ then Θk(c) =
• final update: when Algorithm 1 stops, for all c ∈ Γ such that Θk(c) = null, set Θk(c) = useless, and Gk(c) = +∞.

D. Running example

Consider the graph of Figure 2. Heuristics h 1 should have the following properties: h 1 (i 1 , r) ≤ 1, h 1 (v 1 , r) ≤ 0, and h 1 (v, b) ≤ +∞ for any v. In the same way the values of H 2 (provided to ϕ 1 by ϕ 2) should always be such that: H 2 (r) ≤ 2, and H 2 (b) ≤ 2 + 0 = 2.

P 1 : i 1 v 1 , r β, 1 α, 0 P 2 : i 2 v 2 , r v 2 , b α, 2 β, 0 β, 1
Fig. 2. A CFS problem. Goal vertices are represented with their color (ex. v 1 is a goal with color r). Costs and labels are written above edges.

Assume ϕ 1 is running Algorithm 1 on P 1 . Initially, i 1 is open, g 1 (i 1) = 0, and R 1 (i 1) = g 1 (i 1) + min c∈{r,b} (h 1 (i 1 , c) + H 2 (c)). All other vertices are closed and such that g 1 is infinite. Moreover, Θ 1 (b) = useless, as no goal vertex with color b exists in P 1 . The first execution of the while loop will directly call the expand function, as i 1 is not candidate. It will be marked as closed (as i 1 is not a goal vertex). As g 1 (i 1) = 0 ≤ 0 = g 1 (i 1) + 0, i 1 will not be re-opened. As g 1 (v 1) = +∞ > 1 = g 1 (i 1) + 1, v 1 will be opened, with g 1 (v 1) = 1, and R 1 (v 1) = g 1 (v 1) + min c∈{r,b} (h 1 (v 1 , c) + H 2 (c)), and pred(v 1) = i 1 . After that, the expand function terminates. Immediately, Θ 1 (r) = optimal as v 1 is a goal state with color r and no other open vertex exists, G 1 (r) = g 1 (v 1) = 1. As there is open vertices, a second execution of the while loop starts. The open or candidate vertex with minimal value of R k is v 1 . As v 1 is not candidate, a call to expand occurs immediately. As v 1 ∈ F 1 , it is now candidate, and R 1 (v 1) = g 1 (v 1) + G 2 (r) if Θ 2 (r) = optimal or R 1 (v 1) = g 1 (v 1)+H 2 (r) else. As v 1 has no neighbors, no new vertices are opened. From that, a new execution of the while loop occurs. As v 1 is candidate it is checked if it allows to conclude. No more calls to expand function occur as there no longer exists open vertices. As soon as Θ 2 (r) = optimal, with G 2 (r) = 2 it is possible to conclude. The only possible local solution is to go from i 1 to v 1 in one step. Its cost is 1 locally, but 1 + 2 = 3 globally, as the part of the solution in P 2 is to go from i 2 to v 2 in one step.

IV. DISTRIBUTED PLANNING WITH TWO COMPONENTS

This section extends the algorithm proposed to solve CFS problems to the more general framework of distributed planning (DP) problems, still in the limited case of two components. Compared to CFS, DP problems introduce two difficulties. First, colors are assigned dynamically to vertices: the color of vertex v is not given in advance by some coloring function γ, but is set as a function of the path p leading to this vertex v = p + . Secondly, rather than a finite set Γ of colors, one potentially has an infinite set, since the idea is the 'color' of vertex v = p + is the sequence of shared actions met along path p leading to v. And there is generally no bound (efficiently computable in a distributed way) on the

 then

 Θk(γ k (v)) = null 16: if there exists open vertices then 17: let v be the open vertex with minimal R k (v)

 useless otherwise Θk(c) = null, • update: as soon as some final vertex v ∈ Fk is open or candidate, if no other open vertex v ∈ Vk satisfies

	gk(v) + hk(v , γk(v)) < gk(v), then color γk(v) can
	not be reached with a lower cost in Pk, so Θk(γk(v))
	is set to optimal and	
	Gk(γk(v)) =	min
		v ∈Fk,γk(v)=γk(v)

c, 2 d, 3(i 1 , i 2) (v 1 , i 2) (i 1 , v 2) (v 1 , i 2) (v 1 , v 2) (v 1 , v 2) (v 1 , v 2) a, 0 b, 7 c, 2 c, 2 c, 2 a, 0 b, 7 d, 4

number of shared actions in a globally optimal distributed plan Let us recast a DP problem (P 1 , P 2) as a CFS problem (P 1 , P 2) with color set Γ = (Λ 1 ∩ Λ 2) * , the set of sequences of shared actions. One has andc k is such that c k (((v, w), (v , w))) = c k ((v, v)). (P 1 , P 2) has however a major difference with CFS problems considered in Section III: V 1 , E 1 , V 2 , and E 2 may be infinite.

The remaining of this section is dedicated to extending the results of Section III to the case of the particular infinite graphs considered here. It will allow to use Algorithm 1 along with expand function given in Algorithm 3 for solving DP problems. This new expand function is in fact responsible for computing parts of P k from P k (only when needed). Three points have to be addressed: (1) computation of R k ((v, w)) sometimes implies to take a minimum over an infinite number of elements, (2) termination of the algorithm relies on finiteness of the graphs, (3) computation of Gk and Θk are not directly possible on infinite graphs as nonaccessible colors can not be determined at initialization.

Algorithm 3 expand function

{called with an argument v of the form

A. Computation of R k and Hk

For any color w (which may correspond to an optimal distributed plan), Hk(w) should give a lower bound on the cost of reaching this color in Pk. Clearly, taking Hk(w) = 0 for any w gives such a lower bound. However, it is usually better to get a tight bound in order to avoid as much exploration of the graphs as possible. For practical use of our algorithm, using a more accurate Hk would be recommended. An example of such an Hk is the following, where w < w is notation for w is a prefix of w (recall that Hk is computed by ϕk):

with:

(gk((vk, w)), hk((vk, w))),

(gk((vk, w))).

Notice that for any w it is possible to compute Hk(w), as the set of open and candidate (v, w) is always finite. Notice also that all Hk(w) can be computed by ϕ k from a finite number of them given by ϕk: the one which are such that (vk, w) is open or candidate. We denote them by Ĥk. One then has: Hk(w) = min w <w Ĥk(w).

When (v, w) is candidate, the computation of R k is not an issue, it can be done exactly as in the simpler cases. Notice that, when (v, w) is candidate, v is necessarily in F k . Hence, when Θk(w) = optimal one has:

and in other cases:

However, when (v, w) is open it is not possible to directly use the previous definition of R k ((v, w)) as it may involve the computation of a minimum over an infinite number of elements. First of all, computing R k as before would require the computation of h k ((v, w), w) for any color w . We consider instead h k ((v, w)) = min w h k ((v, w), w), which is computable as a lower bound on the cost of a path in P k from v to a goal vertex.

From that, when (v, w) is open, we suggest to compute R k ((v, w)) as follows:

Hk(w).

The second difficulty is that there may be an infinite number of colors w to consider when computing min w Hk(w) = min w >w Hk(w). This suggest to add a constraint on Hk: it should be such that min w >w Hk(w) is computable for any w. Fortunately, using the implementation of Hk proposed above it is possible. One just has to remark that:

Hk(w) = min(Hk(w), min

as the number of w such that Ĥk(w) is defined is always finite, this minimum can be computed.

B. Termination of the algorithm

The main difference here with the case of CFS problems is that the termination of the algorithm is not ensured when there is no solution. This is due to the fact that the graph to explore is in general infinite. In fact, it is possible to ensure termination, as there is a bound on the length of the color corresponding to a possible solution. This bound can be computed by considering the number of vertices in the product of P 1 and P 2 : if a solution exists, one is such that it passes at most one time in each vertex of this graph. However, it is not straightforward to tightly and modularly compute this bound. We focus on the case with a solution.

Theorem 2: In this context, if the considered planning problem (P 1 , P 2) has a solution, then: any execution of Algorithm 1 by ϕ k on P k terminates. Moreover, the output of Algorithm 1 for agent ϕ k is a goal vertex v k ∈ F k , reached by a local plan p k . The assembling of p 1 and p 2 provided by agents ϕ 1 and ϕ 2 resp. yields an optimal distributed plan (p 1 , p 2) solving (P 1 , P 2).

C. Computation of Gk and Θk

As before, these two functions have to be computed by agent ϕk independently of P k , and in particular, independently of G k and Θ k . A possible implementation, where Θk and Gk are computed along execution of Algorithm 1 by ϕk, is the following: gk((v , w)).

• update (2): as soon as for a given w there exists no w < w and v such that (v, w) is open or (v, w) is candidate, if Θk(w) = null, then Θk(w) is set to useless. • final update: when Algorithm 1 stops, for all w ∈ Γ such that Θk(w) = null, set Θk(w) = useless, and Gk(w) = +∞.

D. Running example

Consider the graphs of Figure 2 as a DP problem (for that ignore final colors and focus on the labels on the edges).

An execution of Algorithm 1 by ϕ 1 on P 1 starts with (i 1 , ε) open. Then a call to expand function closes (i 1 , ε) and opens (i 1 , α) and (v 1 , β). After that depending on the values of the different heuristics, a call to expand function will occur on either (i 1 , α) or (v 1 , β). Assume it is called on (i 1 , α). Then (i 1 , α) is closed and (i 1 , αα) and (v 1 , αβ) are opened. After that expand will be called on either (v 1 , β), (i 1 , αα) or (v 1 , αβ). Which will either mark (v 1 , β) or (v 1 , αβ) candidate, or close (i 1 , αα) and open (i 1 , ααα) and (v 1 , ααβ). After each time an element (v 1 , wβ) is opened with w ∈ {α} * , Θ 1 (wβ) = optimal and G 1 (wβ) = |w|.0+1. As all costs of edges are positive, any open element of the form (v 1 , wβ) with w ∈ {α} * becomes candidate after a finite time. After some time Θ 2 (β) = useless (it is not possible to reach a goal state in G 2 using only one edge with color β), and Θ 2 (αβ) = optimal with G 2 (αβ) < min(H 2 (wβ), G 2 (wβ)) for all w ∈ {α} * such that Θ 2 (wβ) = optimal and G 2 (αβ) < G 2 (wβ) for all w ∈ {α} * such that Θ 2 (wβ) = optimal. It allows ϕ 1 to conclude that its part of the optimal solution (which has a global cost of 3) reaches v 1 with color αβ. Moreover, the values of pred allow to conclude that the path in P 1 should be to loop on i 1 one time and then go to v 1 .

V. CONCLUSION

A* is a celebrated search algorithm to find a shortest path in oriented graphs. Its variants are extremely used to solve optimal planning problems, which are weak versions of optimal control problems. This paper has presented A#, a multi-agent version of A*, dedicated to quickly find an optimal strategy to drive a distributed system to a target state. Its convergence and its consistency have been proved. Compared to other approaches to distributed planning, this is the first distributed algorithm that provides a globally optimal plan. Moreover, it is not hierarchical: all components run the same algorithm simultaneously, and bias each other's searches by their own guesses. It is more a 'consensus' approach than a master-slave approach.

The practical interest of A# will be soon tested. In terms of theoretical complexity, however, the worst case bounds of planning problems remain unchanged, and one may have to explore the whole global graph. However, compared to running A* on the equivalent product problem, one may be faster when components are loosely coupled. This is the standard key advantage of distributed planning, which explores possible plans as partial orders of actions rather than sequences, and thus saves the exploration of different interleavings of concurrent actions.

While the paper is limited to two components, A# extends to graphs of interacting components in a usual manner (these graphs are obtained by placing an edge between components that share actions). In particular, A# may become very efficient when the interaction graph between components is a tree.