
HAL Id: hal-01699321
https://hal.science/hal-01699321v1

Submitted on 2 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Message-Passing Algorithms for the Verification of
Distributed Protocols
Loïg Jezequel, Javier Esparza

To cite this version:
Loïg Jezequel, Javier Esparza. Message-Passing Algorithms for the Verification of Distributed Pro-
tocols. 15th International Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI 2014), Jan 2014, San Diego, United States. �hal-01699321�

https://hal.science/hal-01699321v1
https://hal.archives-ouvertes.fr

Message-Passing Algorithms for the Verification
of Distributed Protocols

Löıg Jezequel and Javier Esparza

Institut für Informatik, Technische Universität München, Germany

Abstract. Message-passing algorithms (MPAs) are an algorithmic para-
digm for the following generic problem: given a system consisting of sev-
eral interacting components, compute a new version of each component
representing its behaviour inside the system. MPAs avoid computing the
full state space by propagating messages along the edges of the system
interaction graph. We present an MPA for verifying local properties of
distributed protocols with a tree communication structure. We report
on an implementation, and validate it by means of two case studies,
including an analysis of the PGM protocol.

Introduction

Message-passing algorithms (MPAs) are an algorithmic paradigm for problems
(called reduction problems) that can be generically described as follows. The
input to the problem is a system consisting of several components communi-
cating in some way. When considered in isolation, each component has a set of
behaviours. However, not all these behaviours are necessarily realizable within
the system, since some actions may need the cooperation of other components.
The problem consists of computing a new version of each component whose
behaviours are those behaviours of the original component that are realizable
within the system.

MPAs work by propagating messages containing information about the be-
haviour of parts of the system along the edges of its interaction graph. Before
sending a message, a component can process it to remove redundant or useless
information. This way MPAs avoid computing the full state space. MPAs can be
applied on any system, however they ensure to solve the reduction problem only
for systems whose interaction graph is a tree. A generic description of MPAs
can be found in [1]. In particular, MPAs for distributed planning of [2, 3] have
been developed in an automata theoretic setting. More precisely, to each compo-
nent of the system is attached a (weighted) automaton, and interaction between
components is modelled by means of automata-theoretic operations. The nice
experimental results obtained with this approach on planning problems suggest
to study the use of MPAs for solving more generic formal verification problems,
and in this paper we explore this idea.

We present an MPA for verifying local properties of distributed protocols
with a tree communication structure. Loosely speaking, “local” means that the

property is defined from the point of view of one of the components of the pro-
tocol. For instance, a local property of a protocol for broadcast communication
is that a receiver gets all messages sent by the source. On the other hand, the
mutual exclusion property for a mutal exclusion protocol with N processes is
an example of a global property (which may sometimes be equivalent to a local
property, but not always).

We model components as labeled transition systems (LTSs) L1, . . . ,Ln, com-
municating à la CSP by rendez-vous. We present a generic MPA parametrized
by an equivalence relation ≡, which is assumed to be a congruence with respect
to parallel composition and hiding. The MPA computes LTSs K1, . . . ,Kn such
that Ki ≡ (L1|| · · · ||Ln) \ Σi, where Σi is the complement of the alphabet of
Li (that is, we hide all actions but those involving the i-th component). We call
Ki the update of Li. For a system with n-components the MPA requires 2n− 2
messages, which we show is optimal. We then present two different instances of
the algorithm, suitable for checking safety and liveness properties, respectively.
The first instance instantiates ≡ with the standard trace semantics. The second
one chooses for ≡ the semantics consisting of the infinite traces of the LTS plus
its set of divergences, i.e., the traces after which an infinite sequence of silent
transitions can occur. For both semantics we report on an implementation of the
MPA, and we describe the technique used to reduce the size of the messages.

We evaluate our two instances on two case studies: a mutual exclusion pro-
tocol for tree networks proposed in [4], and a version of the Pragmatic General
Multicast Protocol (PGM) [5]. For the PGM we show how the result of the
MPA allows us to identify potential problems of the protocol when the different
parameters of the protocol are assigned unsuitable values.

Related work. The connection of our work to other work on MPAs has been
described above.

Several compositional approaches to verification exist, aiming at avoiding the
state-explosion problem in the verification of distributed systems by considering
them component by component. In [6] the authors use an assume-guarantee way
of reasoning in which they show that a component guarantees some property
as soon as it is in a system satisfying some assumption, the hard part being to
choose good assumptions, which is achieved by progressively learning them. In
[7] the authors introduce thread-modular model checking where the states of a
multithreaded software are enumerated thread by thread (a state taking into
account the value of the program counter of a single thread instead of the value
of the program counters of all threads), potentially leading to an exponential re-
duction of the size of the state space considered, at the price of doing incomplete
verification.

Our work is based on the possibility to replace a component of a system
by an equivalent one (with respect to a suitable notion of equivalence or pre-
order), but smaller in some way. This is also the starting point of works such
as [8, 9] for example. This approach has been implemented for trace, failures,
and bisimulation equivalence or related preorders in tools like FDR [10, 11], the
Concurrency Workbench [12], CADP [13] and others, and most model-checkers

using abstraction techniques use it in some way. However, these tools address
the problem of computing an update of the whole system, instead of an update
for each component, and leave the choice of which components to minimize or
reduce with respect to the given congruence, and in which order, to the user.
(In particular, this hinders a direct comparison with these tools, since we would
have to compare a fully automatic and a partially manual procedure. On the
other hand, our algorithm could also be implemented on top of these tools.)
By focusing on this problem we are able to provide a simple algorithm with a
minimal number of exchanged messages.

Protocols with tree communication structure have also been analyzed by
means of regular model checking (see [14] for a recent survey). The goal of
regular model checking is more ambitious than ours, since it aims at proving
the protocol correct for an arbitrary number of processes. On the other hand,
this reduces the range of protocols that can be verified. In particular, we do not
know of any analysis of our two case studies using regular model checking.

The PGM protocol has been analysed in a number of papers [15–17]. This
work is orthogonal to ours. In [15, 16] the focus is on timing aspects and rela-
tions between parameters, which are analysed for small instances of the protocol
(below five processes), while we concentrate on analyzing simpler properties of
larger instances with more than one hundred processes. Finally, the work in [17]
is a manual proof providing cut-off bounds for parametric analysis.

1 Definitions and notations

LTS. A labelled transition system with silent transitions (LTS) is a tuple L =
(Σ,S, T, s0) where Σ is a finite set of labels, S is a finite set of states, T =
{Tσ : σ ∈ Σ} ∪ {T τ} is a set of transition relations: ∀σ ∈ Σ ∪ {τ}, Tσ ⊆ S × S
(the elements of Tσ are called σ-transitions), and s0 ∈ S is an initial state. A
finite (resp. infinite) sequence of labels and τ , tr = σ1σ2 . . . is a trace of L if there
exits a finite (resp. infinite) alternating sequence of states and transitions (a path)
π = s0t1s1t2 . . . realizing it, that is, such that s0 = s0, and ti = (si−1, si) ∈ Tσi

for all i > 0. A finite (resp. infinite) sequence of labels tr is an observable trace
of L if there exists a trace tr′ of L such that by removing all τ from tr′ one
gets tr: tr′|Σ = tr. The set of finite observable traces of L is denoted by T ∗L
while its set of infinite observable traces is denoted by T ωL , and the set of all its

observable traces is TL = T ∗L ∪ T ωL . We write s0
τ
 L sn if there exists a path

π = s0t1s1t2 . . . sn such that ∀1 ≤ i ≤ n, ti ∈ T τ . Figure 1 gives some examples
of LTSs, states are represented by circles and labelled transitions by labelled
arrows between states. Initial states are distinguished with small arrows.

Definition 1. The hiding of a set Σ′ in an LTS L = (Σ,S, T, s0) is the LTS
L \Σ′ = (Σ \Σ′, S, T ′, s0) with T ′ such that T ′

σ
= Tσ for any σ ∈ Σ \Σ′ and

T ′
τ

= ∪σ∈Σ′∪{τ}T
σ.

For L = (Σ,S, T, s0) and some set of labels Σ′ we sometimes write L \ Σ′

for L \ (Σ \Σ′).

Definition 2. Let L1 and L2 be LTSs where Li = (Σi, Si, Ti, s
0
i). Their parallel

composition L1||L2 is the LTS L = (Σ,S, T, s0) such that: Σ = Σ1 ∪ Σ2, S =
S1×S2, if σ ∈ Σ1∩Σ2 then Tσ = {((s1, s2), (s′1, s

′
2)) : (s1, s

′
1) ∈ Tσ1 ∧ (s2, s

′
2) ∈

Tσ2 }, if σ ∈ Σ1 \ Σ2 then Tσ = {((s1, s2), (s′1, s2)) : (s1, s
′
1) ∈ Tσ1 ∧ s2 ∈ S2},

if σ ∈ Σ2 \ Σ1 then Tσ = {((s1, s2), (s1, s
′
2)) : s1 ∈ S1 ∧ (s2, s

′
2) ∈ Tσ2 }, and

T τ = {((s1, s2), (s′1, s2)) : (s1, s
′
1) ∈ T τ1 ∧ s2 ∈ S2} ∪ {((s1, s2), (s1, s

′
2)) : s1 ∈

S1 ∧ (s2, s
′
2) ∈ T τ2 }, and finally s0 = (s01, s

0
2).

Notice that this parallel composition is commutative and associative, so one
can safely write L = L1|| . . . ||Ln for the parallel composition of more than two
LTSs. The right LTS in Figure 3 is the parallel composition of the middle LTS
in the same figure and the right LTS in Figure 1.

Definition 3. An equivalence relation between LTSs is called a congruence for
LTSs, denoted by ≡, if for any LTSs L1,L2,L such that L1 ≡ L2 and any set of
labels Σ one has L1||L ≡ L2||L and L1 \Σ ≡ L2 \Σ.

MLTS. A marked labelled transition system (MLTS), or LTS with marked
states, is a tuple ML = (L, F) where L = (Σ,S, T, s0) is an LTS and F ⊆ S is
a set of marked states. According to the set of marked states one can define the
set of marked traces MTML of ML as the set of traces for which there exists
a realization verifying some condition on the marked states (examples are given
below: automata and Büchi automata).

Definition 4. Given MLTSs ML1,ML2 where MLi = (Li, Fi), their parallel
composition ML1||ML2 is the MLTS ML = (L, F) such that L = L1||L2 and
F = F1 × F2.

FSA. A finite state automaton (FSA) is an MLTS A = (L, F) such that a
trace tr of A is a marked trace if and only if it is finite and it has a realization
π = s0t1s1 . . . sk such that sk ∈ F. The set MTA is usually called the language
of A.

NBA. A Büchi automaton (NBA) is an MLTS B = (L, F) such that a trace
tr of B is a marked trace if and only if it is infinite and it has a realization
π = s0t1s1t2 . . . such that there exists an infinite number of i ≥ 0 for which
si ∈ F. As for FSAs, the set MTB is usually called the language of B.

2 Message-passing algorithms

Before presenting a formal description of message-passing algorithms, we illus-
trate them on an example. Consider the three LTSs of Figure 1. They represent
an abstract view of a small distributed system involving three processes: a sender
(S), a capacity one channel (C), and a receiver (R). S has to accomplish some
task. It initially does a choice between doing it alone (right transition) or doing
it together with R (left transition) by exchanging some messages through C.

The behaviour of this system is captured by L = S||C||R, and so – denoting by
ΣS (resp. ΣC , ΣR) the set of labels of S (resp. C, R) – the behaviour of S (resp.
C, R) inside this system is captured by L \ΣS (resp. L \ΣC , L \ΣR).

S

choice

S!R S?R

choice

internal

C

S!R

R!S

R?S

S?R

R

R?SR!S

R?S

Fig. 1. A distributed system constituted of three interacting LTSs.

Definition 5. The interaction graph of a system L1|| · · · ||Ln, where Σi is the
alphabet of Li, has L1, . . . ,Ln as nodes, and an edge {Li,Lj} when Σi∩Σj 6= ∅.

The MPAs can solve the reduction problems for systems whose interaction graph
is a tree. They proceed by sending messages (which have the same type as the
components, i.e. LTSs in our example) along the edges of the tree, i.e. each
component sends a message to each of its neighbours. In the system of Figure 1,
the interaction graph is a line (and so a tree) with C in the middle and S and
R at the extremities (see Figure 2). Indeed S interacts (that is, shares labels)
only with C and R also interacts only with C. So each of S and R will send a
message to C and C will send a message to each of S and R.

S C R
{S!R, S?R} {R!S,R?S}

MS,C MC,R

Fig. 2. The interaction graph of the system of Figure 1. Over each edge (plain line)
the corresponding set of shared labels is indicated. Dashed lines represent the messages
propagated from S to R.

The idea behind these messages is the following. In a tree shaped interaction
graph, each edge separates the graph into two subtrees whose roots are the
extremities of the edge (in our example, the edge (C,R) separates the graph into
a tree containing only R and a tree with C as root and S as leaf). Using this
fact each component at the extremity of the removed edge will send a message
to the other component. This message describes the possible behaviours of the
subtree from which its sender is the root as they can be seen by its receiver (for

example C sends a message to R describing the behaviour of S||C as R sees it,
that is using only labels shared between C and R). This message is computed
from the messages received from the neighbours of its sender in the subtree from
which this sender is the root.

In the system of Figure 1 the message from S to C is then MS,C ≡ S \
ΣS ∩ΣC (see Figure 3, left for an example preserving observable traces) and it
is then used to build the message from C to R: MC,R ≡ (MS,C ||C) \ΣC ∩ΣR
(see Figure 3, middle). Similarly the remaining messages can be built: MR,C ≡
R \ ΣR ∩ΣC and MC,S ≡ (MR,C ||C) \ ΣC ∩ΣS . It can then be proved (it is
a consequence of Theorem 1 below) using the separation property of the edges
of a tree shaped interaction graph described above, that the composition of
each component with all the messages it received describes the behaviour of this
component in the full system. For example (see Figure 3, right) R′ = R||MC,R

has the same set of observable traces than L \ΣR. Similarly S′ = S||MC,S and
C ′ = C||MR,C ||MS,C have the same set of observable traces than L \ ΣS and
L \ΣC respectively.

MS,C

S!R

S!R S?R

MC,R

R?S

R!S

R!S

R?S

R!S

R′

R?S

R?S R!S

Fig. 3. Messages from S to R, updated component R′.

2.1 Formal description of an MPA for LTSs

Algorithm 1 below presents a formal description of an MPA for a system L =
L1|| . . . ||Ln whose interaction graph G = (V,E) is a tree. Any LTS Ki obtained
at the end of Algorithm 1 is called the update of Li (in G).

For the presentation it is convenient to model an undirected edge {Li,Lj}
as two directed edges (Li,Lj) and (Lj ,Li). So the input to Algorithm 1 is a
directed graph G derived from a tree in this way.

We denote by x :≡ L that the variable x is assigned some LTS L′ such
that L′ ≡ L. Notice that this is a nondeterministic assignment, and so Algo-
rithm 1 is nondeterministic. In the next section we present several instances of
the algorithm, and for each one we explain how the nondeterminism is resolved.

In order to formulate and prove the correctness of the algorithm we introduce
some notations.

Algorithm 1 An MPA for LTSs

Input: an interaction graph G = (V,E) with V = {L1, . . . ,Ln}
1: M← E
2: while M 6= ∅ do
3: choose (Li,Lj) ∈ M such that (Lk,Li) /∈ M for every k 6= j
4: Mi,j :≡ (Li || (|| k 6= j,

(Lk,Li) ∈ E

Mk,i)) \Σj

5: remove (Li,Lj) from M
6: end while
7: for all i ∈ V do
8: Ki :≡ Li || (||(Lj ,Li)∈EMj,i)
9: end for

Definition 6. Given G = (V,E) with V = {L1, . . . ,Ln}, we denote the parallel

composition (L1|| · · · ||Ln) by Ĝ.
Given a tree G = (V,E) and (Li,Lj) ∈ E, we denote by Gij the maximal subtree
of G containing Lj but not Li.

Lemma 1. Let G = (V,E) be a tree and (Li,Lj) ∈ E. LetMGj,i be the content of

variableMj,i after termination of Algorithm 1 on input G. ThenMGj,i = Ĝij\Σi.

Proof. The proof is by induction on the depth of Gij . If Gij has depth 1, then Gij
contains the vertex Lj and no arcs. By line 4 we get MGj,i ≡ Li \Σi = Ĝij \Σj

(recall that, since we represent undirected trees as directed graphs, we have
(Lj ,Li) ∈ E).

Assume now that Gij has depth larger than 1. Let Lj1 , . . . ,Ljm be the neigh-
bours of Lj in Gij . Then the trees Gjj1, . . .Gjjm are proper subtrees of Gij, and
in particular have smaller depth. By induction hypothesis we have

MGijj1,j
≡ Ĝjj1 \Σj . . . MGijjm,j

≡ Ĝjjm \Σj (1)

By line 4 of the algorithm, and since ≡ is a congruence, we get

MGj,i ≡ (Lj || (|| k 6= i,
(Lk,Lj) ∈ E

MGk,j)) \Σi (2)

≡ (Lj || MGj1,j || · · · || M
G
jm,j

) \Σi (3)

≡ (Lj || M
Gij
j1,j
|| · · · || MGijjm,j

) \Σi (4)

≡ (Lj || (Ĝjj1 \Σj) || · · · || (Ĝjjm \Σj)) \Σi (5)

where (4) follows from (3) because Lk is a node of Gij for every Mk,j .

Since G is a tree, the sets of labels of Ĝjj1 , . . . , Ĝjjm are pairwise disjoint, and
so

Lj || (Ĝjj1 \Σj)|| · · · ||(Ĝjjm \Σj) ≡ (Lj || Ĝjj1 || · · · ||Ĝjjm) \Σj (6)

Moreover, for the same reason, there are no edges between any of Lj1 , . . . ,Ljm
and Li. So Σi ∩ (Σj1 ∪ · · · ∪Σjm) = ∅, which implies

(Lj || Ĝjj1 || · · · ||Ĝjjm) \Σj \Σi ≡ (Lj || Ĝjj1 || · · · ||Ĝjjm) \Σi (7)

Putting together (4)-(7), we obtain

Mj,i ≡ (Lj || Ĝjj1 || · · · || Ĝjjm) \Σi (8)

By definition of Ĝij , we have

Ĝij ≡ Lj || Ĝjj1 || · · · || Ĝjjm (9)

which together with (8) yields

MGj,i ≡ Ĝij \Σi (10)

as desired.

We can now prove correctness of Algorithm 1.

Theorem 1. Let G = (V,E) with V = {L1, . . . ,Ln} be a tree-shaped interaction
graph. The result of running Algorithm 1 on G are LTSs K1, . . . ,Kn such that
Ki ≡ Ĝ \Σi for every Li ∈ V .

Proof. We have

Ki ≡ Li || (||(Lj ,Li)∈E M
G
i,j) (11)

≡ Li || (||(Lj ,Li)∈E (Ĝij \Σi)) (12)

≡ Li || (||(Lj ,Li)∈E Ĝij) \Σi (13)

≡ Ĝ \Σi (14)

Here, (11) follows from line 8 of the algorithm; (12) follows from Lemma 1;
(13) follows from the fact that no two neighbours of Li are connected by an edge,
and so their sets of labels are disjoint. Finally, (14) follows from the definitions

of Ĝ and Ĝij .

If the messages of Algorithm 1 are large in the worst case (in theory they
can have the size of the full system) their number is optimal. More precisely,
no MPA using fewer messages can be correct, where the only assumption we
make about MPAs is that the output Ki is a function of Li and the messages Li
receives from its neighbours.

Theorem 2. For every correct MPA algorithm and every n ≥ 1 there is a graph
Gn such that the algorithm requires at least 2n− 2 messages on Gn.

Proof. Assume there is a correct MPA A which always requires less than 2n− 2
messages on graphs with n nodes. Consider the system S1 = L1|| · · · ||Ln where
for every 1 ≤ i ≤ n the only maximal trace of Li is aiai+1bi+1bi (its interaction
graph is a line). Since the algorithm needs fewer than 2n− 2 messages, there is
an index i such that either Li sends no message to Li−1, or sends no message to
Li+1.

In the first case, consider the system S2 which is identical to S1, except that
the only maximal trace of Li is aibi+1ai+1bi. For S1 the only maximal trace
of Kn is anan+1bn+1bn, while for S2 the only maximal trace of Kn is anan+1.
Since, by our assumption on MPAs, Li−1 does not receive any message from Li,
it returns the same result Kn in both cases, and so the algorithm is incorrect.

In the second case, consider the system S2 which is identical to S1, except
that the only maximal trace of Li+1 is aibi+1ai+1bi, and proceed analogously
with K1 instead of Kn.

Observations The restriction to tree-shaped interaction graphs can be weak-
ened in several ways.

Communication graphs. We can replace the interaction graph by a potentially
smaller communication graph, thus reducing the number of messages.

Definition 7. Let G be any subgraph of an interaction graph. An edge (Li,Lj) ∈
E is redundant if there exists a sequence (Li,Lk1)(Lk1 ,Lk2) . . . (Lk` ,Lj) of edges
such that i 6= km 6= j and ΣLkm

⊇ ΣLi ∩ΣLj for every 1 ≤ km 6= j.
A communication graph of a system is any subgraph of the interaction graph

obtained by iteratively removing redundant edges.

If some communication graph of a system is a tree then all its communication
graphs are trees [1]. We then say that the system lives on a tree. The following
proposition shows that the MPA can be applied to any system that lives on a
tree, even if its interaction graph is not a tree.

Proposition 1. Let G = (V,E) with V = {L1, . . . ,Ln} be a tree-shaped com-
munication graph of L = L1|| . . . ||Ln. The result of running Algorithm 1 on G
are LTSs K1, . . . ,Kn such that Ki ≡ Ĝ \Σi for every Li ∈ V .

Proof. The proof follows the lines of Theorem 2. We just have to adjust the
arguments justifying Equations (6) and (7) in Lemma 1, and Equation (13) in
Theorem 2. For (6) and (13) observe that, if the communication graph is a
tree, then there are no edges between the neighbours of Lj . Therefore, by the
definition of communication graph, every common label of any two processes in
(5) belongs to Σj which suffices to derive (6) and (13).

For (7) we observe that the communication graph also contains no edges
between any of Lj1 , . . . ,Ljm and Li. So we have (Σj1 ∪ . . . ∪ Σjm) ∩ Li ⊆ Lj ,
and so

(Lj || Ĝjj1 || · · · ||Ĝjjm) \Σj \Σi ≡ (Lj || Ĝjj1 || · · · ||Ĝjjm) \Σi

Tree decompositions. Any system L = L1|| . . . ||Ln can be transformed into an
equivalent one that lives on a tree. This is in itself trivial, since we can always
choose this system as one single LTS equivalent to L. However, this destroys
the concurrency of the system. In order to preserve as much concurrency as
possible we can compute a tree decomposition of a communication graph [18].
Every set {Li1 , . . . ,Lik} of the decomposition is then replaced by any single LTS
equivalent to the subsystem Li1 || . . . ||Lik . For instance, if the interaction graph
of L1|| . . . ||Ln is a ring with an even number of components, we can take the
system L′1|| . . . ||L′n/2, where L′i ≡ Li||Ln−i+1 (Figure 4).

L1

L2 L3

L4

L5L6 L1||L6

L2||L5

L3||L4

Fig. 4. A possible tree decomposition (right) of a ring-shaped interaction graph (left).

Computing one summary. Finally, we observe that computing one single update
of component only requires to exchange n− 1 messages instead of 2n− 2.

Proposition 2. Let L1, . . . ,Ln be LTSs such that the system L = L1|| . . . ||Ln
lives on a tree, and let 1 ≤ i ≤ n. The update Ki of Li can be computed by an
MPA that uses only n− 1 messages.

Proof. Consider a communication graph G = (V,E) of L = L1, . . . ,Ln that
is a tree. If n = 1 then i = 1 and L1 = K1 is computed using n − 1 = 0
messages. Assume the proposition is true up to n = k. Consider n = k + 1
and take 1 ≤ i ≤ n. Remark that Ki is computed exactly from the messages
of the form MLj ,Li

for (Lj ,Li) ∈ E (denote by Ei the set containing these
edges). Given such a Lj , consider the largest subtree of G rooted in Lj which
does not contains Li. This subtree has nj < k + 1 nodes, so the update of
Lj in this subtree can be computed from nj − 1 messages. Remark that the
hiding of Σi in this update is exactly MLj ,Li

. From that Ki is computed using∑
(Lj ,Li)∈Ei

(nj − 1) + |Ei| = n− 1 messages.

3 Local verification of distributed protocols on trees

In this section we describe our implementations of Algorithm 1, tailored for
checking local linear-time safety and liveness properties, respectively. Each im-
plementation requires to

– Choose a congruence ≡ that preserves the properties of interest.
– Resolve the nondeterminism introduced by :≡ in lines 4 and 8

Furthermore, L′ :≡ L′ should be implemented so that L′ is as small as possible.

3.1 Safety

A local safety property of a component Li within a system (L1|| . . . ||Ln) is a
property of the (observable) finite traces of Ki, the update of Li. In order to
preserve local safety properties we choose ≡ as (observable) finite trace equiv-
alence, i.e., L ≡ L′ if and only if T ∗L = T ∗L′ . This equivalence is well known to
be a congruence, and in the following we denote it by ≡T . By Theorem 1, local
safety properties of Li can be decided by examining the traces of its update Ki
returned by Algorithm 1.

We implement L′ :≡T L as follows: L′ is the unique τ -free, minimal deter-
ministic LTS equivalent to L. More precisely,

L′ := MIN(DET (RED(L))),

where RED,DET,MIN are algorithms for removing τ -transitions, determiniz-
ing, and minimizing LTSs, respectively. These algorithms are implemented using
standard automata operations (see e.g. [19]).

This particular instantiation of Algorithm 1 closely corresponds to the MPA
at the basis of the work presented in [2, 3].

3.2 Liveness

It is well known that defining a local liveness property of Li as a property of the
(observable) infinite traces of Ki is inadequate [20]. Consider two systems with
sets of infinite traces {abω} and {abω, acω}, respectively. If Σi = {a, b}, then in
both cases the only infinite trace of Ki is abω. However, in the first system Li
satisfies “after a eventually b”, while in the second it does not. To solve this
problem we keep information about the divergences of Li.

Definition 8. Given L = (Σ,S, T, s0) with transitions labelled by τ , a diver-
gence of L is a finite observable trace tr of L such that there exists an infinite
trace tr′ of L verifying tr′|Σ = tr. The set of divergences of L is denoted by DL .

Given (L1|| . . . ||Ln) without τ -transitions, a divergence of Li in L is a finite
observable trace tri ∈ T ∗Li

such that there exists an infinite observable trace
tr ∈ T ωL satisfying tr|Σi

= tri.

The hiding operation links these two definitions: Given L = L1|| . . . ||Ln without
τ -transitions, the set of divergences of Li in L is equal to the set DL\Σi

of

divergences of L \Σi.

We define a local liveness property of Li as a property of TKi and DL\Σi
, and

so we choose: L ≡ L′ if and only if TL = TL′ and DL = DL′ . This equivalence is
known to be a congruence for LTSs (see [21] for example). In the following we
denote it by ≡D .

By Theorem 1, local liveness properties of Li can be decided by examining
the traces of the updated version Ki obtained by Algorithm 1.

In order to implement L′ :≡D L, we profit from the following fact: for finite
LTSs, TL = TL′ iff T ∗L = T ∗L′ , and so L ≡D L iff T ∗L = T ∗L and DL = DL′ . This
allows us to replace the nondeterministic assignment by a five-step procedure:

L′ := HID(MIN(DET (RED(DIV (L))))),

where MIN , DET , and RED are defined as above. For L = (Σ,S, T, s0),
DIV (L) is the LTS (Σd, Sd, Td, s

0
d) such that: Σd = Σ ∪ {τ ′} with τ ′ /∈ Σ,

Sd = S, Td = T ∪ T τ ′

d with T τ
′

d = {(s, s) : ∃s′, s τ
 L s′

τ
 L s′}, and s0d = s0.

Finally, HID(L) is defined as L \ {τ ′}, where τ ′ has to be the same as used in
DIV . We have:

Theorem 3. L ≡D HID(MIN(DET (RED(DIV (L))))) for any LTS L.

Proof. Denote by Σ the set of labels of L. First remark that a finite sequence tr
of labels from Σ is a divergence of L if and only if trτ ′ω is an infinite observable
trace of DIV (L). This is because (1) tr is a divergence of L if and only if there
exists a path realizing tr in L and reaching a state from which there exists an
infinite path using only τ -transitions, and (2) DIV (L) is an exact copy of L
with the addition of τ ′-transitions, all of the form (s, s) for s ∈ Sd = S, and
there is a τ ′-transition from a state s to itself if and only if there exists in L an
infinite path using only τ -transitions and starting from s.

From this, and because MIN , DET , and RED preserve observable traces,
one gets that a finite sequence tr of labels from Σ is a divergence of L if and
only if trτ ′ω is an infinite observable trace ofMIN(DET (RED(DIV (L)))). Also
remark that MIN(DET (RED(DIV (L)))) does not contain any τ -transition.

The remark that HID only replaces τ ′-transitions by τ -transitions then al-
lows to conclude that a finite sequence tr of labels from Σ is a divergence of L
if and only if trτω is an infinite trace of HID(MIN(DET (RED(DIV (L))))) if
and only if tr is a divergence of HID(MIN(DET (RED(DIV (L))))).

4 Experimental evaluation

The approaches described in the previous section have been implemented as an
extension of the planner Distoplan [3]. In this section we report on an experi-
mental evaluation of the performances of this implementation on two protocols:
a mutual exclusion algorithm on trees [4] and the pragmatic general multicast
protocol [5]. All experiments were performed using the same computer with an
Intel Core i5 processor and a memory limit set to 4GB.

4.1 Raymond’s mutual exclusion protocol.

In [4], Raymond presents a distributed protocol ensuring mutual exclusion for
n processes organized as a tree. Processes communicate by rendez-vous, which
allows us to model the protocol as a parallel composition of LTSs, one for each
process. The unique communication graph is given by the tree. The scaling

parameter is the number of processes, which fits well with our approach as the
difference between two instances of the protocol is due to the number of LTSs
needed to model them, rather than to their sizes.

The protocol can be roughly described as follows. A single token is passed
between the processes, a process being allowed to access its critical section only
if it owns the token. At any time, each process Pi not holding the token knows
which of its neighbours in the tree is closest to the token. In other words Pi knows
in which maximal subtree containing exactly one of its neighbours, but not Pi
itself, the token currently is. Its requests for the token (and all requests by other
processes that it may have to transmit) are sent to this particular neighbour.
A more precise description of this protocol is given in Algorithm 2. It describes
in a Promela-like manner an agent called x. N denotes the set of neighbours
of x in the tree of agents on which the protocol is executed. We consider that
x ∈ N . Q(N) denotes the set of queues of elements from N . Notice that the
same element never appears twice in the queue requestQ. At each step one of
three mutually exclusive guarded atomic instruction sequences is executed: (1)
re-assignation of the token when x holds it, (2) request for the token, (3) non-
deterministic choice between: asking for entering the critical section, receiving a
request message from a neighbour, receiving the token from a neighbour, deciding
to exit the critical section.

Algorithm 2 An agent for Raymond’s mutual exclusion protocol

Agent x (holder: N , using: {true, false}, requestQ: Q(N), asked: {true, false})
holder=x ∧ using=false

∧ isnotempty(requestQ) → holder:=dequeue(requestQ)
asked:=false
holder=x → using:=true
holder6=x → !token to holder

holder6=x ∧ asked=false
∧ isnotempty(requestQ) → !request(x) to holder

asked:=true
else → isnotin(x,requestQ) → enqueue(x,requestQ)

?request(n) → enqueue(n,requestQ)
?token → holder:=x
using=true → using:=false

We consider instances of this protocol in which processes form a complete
binary tree. The results obtained are presented in Table 1. The leftmost columns
give the depth of the binary tree considered (Depth) and the corresponding
number of processes (Processes). For each depth the column Traces reports the
time (in seconds) needed for the following tasks: (1) run Algorithm 1 to obtain
the updated versions of all the processes with respect to trace equivalence ≡T
(subcolumn MPA); (2) same but computing only n − 1 messages in order to
obtain the updated version of the root only (subcolumn OneWay); (3) verify a
simple local property from the updated root (subcolumn Verification). Column

Divergences gives the times required by analogous tasks, but with respect to
divergence equivalence ≡D .

Table 1. Results for the analysis of Raymond’s mutual exclusion protocol on complete
binary trees. Times are in seconds.

Depth Processes
Traces Divergences

MPA OneWay Verification MPA OneWay Verification

2 3 0.12 0.15 <0.01 0.14 0.13 <0.01

3 7 1.41 1.23 <0.01 2.07 1.88 <0.01

4 15 2.36 2.20 <0.01 4.58 4.36 <0.01

5 31 5.29 4.67 <0.01 10.44 9.67 <0.01

6 63 10.62 9.63 <0.01 21.81 20.27 <0.01

7 127 21.94 19.70 <0.01 44.86 41.55 <0.01

We check a safety (in the case of ≡T) and a liveness (in the case of ≡D)
property in order to compare our MPA with an algorithm that constructs the
state space, for which we use Spin. The local safety property verified for the root
processes is: “It is not possible to request the token twice without receiving it in
between”. Remark that, it is also expressible as the following global property: “It
is not possible for the root process to request the token twice without receiving
it in between”. We verify this property by checking emptiness of the product
of the automaton ϕ on the left of Figure 5 (representing the negation of the
property) and the (projection onto the labels of ϕ of the) updated version of
the root process obtained by Algorithm 1 (in which all states are considered
accepting). The local liveness property verified for the root processes is: “The
token is received in finite time after any request”. Similarly, the property is
verified by checking emptiness of the product of the Büchi automaton ϕ′ on the
right of Figure 5 (representing the negation of the property) with the (projection
on the labels of ϕ′ of the) updated version of the root process obtained by
Algorithm 1 (in which all states are considered accepting).

ϕ

!request

?token

!request !request
ϕ′

!request

ττ

!request ?token

Fig. 5. Two properties to be checked on Raymond’s mutual exclusion protocol. !request
is a general token request action and ?token is a general token reception action.

Analysis of the results. As expected, the approach scales very well with the
number of components: at each depth the number of components almost doubles
while the time spent for computing the updates of the components is slightly

more than doubling. We compare it with a verification of the same properties
using Spin [22]. Since the system is highly concurrent, we use Spin with the
partial order reduction optimization. Spin outperforms our approach for the
complete binary tree of depth 2 (it needs less than 0.01 seconds to verify the
properties). For trees of depth 3 or greater, however, Spin runs out of memory
(memory limit being 4GB). Notice that, since the properties we check are true,
Spin needs a full state-space exploration to verify them, while our MPA prevents
this. We also remark that the time needed by our MPA is almost entirely spent
in computing the updates of the components, and so the additional cost of veri-
fying other properties after the first one is small, since the previously computed
updates can be re-used. Finally, observe that, in this example, the difference
in time spent between the standard application of Algorithm 1 (computing all
updates) and the case where only the update of the root is computed (so only
half of the messages are constructed) is not significant. This can be explained
by the fact that – being the initial owner of the token – the root imposes more
constraints to the system than the other components. So the messages from the
root are potentially much simpler to compute than the messages to the root.

4.2 The pragmatic general multicast protocol.

[5] describes the pragmatic general multicast protocol (PGM), a reliable dis-
tributed protocol for distributing information from multiple senders to multiple
receivers in a network, designed to minimize the load of the network due to
acknowledgement messages and retransmissions of lost messages. We consider
the specific version of this very generic protocol given in Algorithm 3 (which is
almost the one described in [17]): a unique source sends information to multi-
ple receivers in a network organized as a tree. Each process is described in a
Promela-like manner and consists of a single loop in which a non-deterministic
choice is done at each step between several guarded atomic instruction sequences.

The source can receive a negative acknowledgement nak(nr) for some data,
in this case it sends back a confirmation ncf(nr) and, if the data nr is still
within range of its window it adds it to the set recNak of data to be re-sent.
If some data nr is in the set recNak and still within range of the window this
data can be re-sent as a message rdata(nr, txWTr). And, if no data needs to be
re-sent, a new data can be sent as a message odata(nr, txWTr) and the window
may be moved. Any network element can receive negative acknowledgements and
propagate them above itself in the tree. It can also transmit data below itself
in the tree. Finally, it may generate new negative acknowledgements while no
confirmation have been received for them. A receiver can receive data, and, when
it allows it to deduce that some data are missing (by looking at the previously
received data and because of the fact that the data are consecutive integers) it
can send negative acknowledgements for these data.

As before we represent each process by an LTS. However, communications are
no longer by rendez-vous but use messages sent through bidirectional channels
(which can lose messages). Each channel is thus also modelled as an LTS. The
unique communication graph of such a system is a tree.

Algorithm 3 PGM: source, network elements, and receivers

Source (data: N, winSize: N, txWTr: N, recNak: 2N)
?nak(nr) → !ncf(nr)

txWTr < nr → recNak := add(recNak,nr)
isin(nr,recNak) → nr > txWTr → !rdata(nr,txWTr)

recNak := remove(recNak,nr)
lenght(recNak) = 0 → !odata(data,txWTr)

data := data + 1
odata > winSize + txWTr → txWTr := txWTr + winSize

Network element (setRepair: 2N)
?nak(nr) → setRepair := add(setRepair,nr)

isnotin(setRepair,nr) → !nak(nr) upwards
!ncf(nr) downwards

?rdata(nr,txWTr) → setRepair := remove(setRepair,nr)
!rdata(nr,txWTr) downwards

?ncf(nr) → setRepair := remove(setRepair,nr)
?odata(nr,txWTr) → !odata(nr,txWTr) downwards
isin(nr,setRepair) → !nak(nr) upwards

Receiver (rxWTr: N, setNr: 2N, setMissing: 2N)
?odata(nr,txWTr) ∧ rxWTr < nr → rxWTr < txWTr → rxWTr := txWTr

setNr := add(setNr,nr)
for all (rxWTr < i < nr ∧ isnotin(i,setNr))

setMissing := add(setMissing,i)
setMissing := remove(setMissing,nr)

?rdata(nr,txWTr) ∧ rxWTr < nr → rxWTr < txWTr → rxWTr := txWTr
setNr := add(setNr,nr)
setMissing := remove(setMissing,nr)

isin(nr,setMissing) → nr > rxWTr → !nak(nr)
nr ≤ rxWTr setMissing := remove(setMissing,nr)

In our experiments we considered two possible topologies for the systems:
lines and complete binary trees. In each of these cases we considered instances
of the protocol with increasing numbers of processes. We also made other pa-
rameters vary: the number of different data to be sent by the source (two or
three) and the capacity of the channels (one or two messages). The initial value
of data for the source is set to 1 and the value of winSize is set to anything
higher than the number of different data to be sent. All other integer parameters
are initialized to 0 and all sets are initially empty.

Figure 6 presents the update of a leaf as obtained by Algorithm 1 (using
≡T as congruence) when ran on a complete binary tree of depth five with two
data to be sent and channels of capacity one. It is interesting to notice that
just by looking at this LTS, a behaviour (corresponding to the path with larger
labels in the figure) that may not be directly anticipated from the description
of the protocol can be remarked: it is possible for the leaf to deduce that the

second (and last) data will never be received. This can in fact be explained by
the possible losses of messages. For sure ncf(1) has been sent (by the source
after reception of nak(1) from another leaf) after odata(2, 0). So, each channel
between the source and the leaf represented in Figure 6 has contained ncf(1) at
some time, and if it has contained odata(2, 0) at some time it was before ncf(1).
The only explanation for receiving ncf(1) before odata(2, 0) is thus a loss of
odata(2, 0) at some channel.

?ncf(1)

!nak(1)

?ncf(1) !nak(1)

?rdata(1 ,0)

!nak(1)

?rda ta (1 ,0)

?ncf(1) ?rda ta (1 ,0)

!nak(1)?ncf(1)

?rda ta (1 ,0)

?rda ta (1 ,0)

?odata(2 ,0)

?ncf(1)

?odata(2 ,0)

?odata(1 ,0)

Fig. 6. PGM protocol: update of a leaf in a complete binary tree of depth five when
the number of different data to be sent is two and the channels capacity is one.

Table 2 gives the results obtained for the PGM protocols on lines, in the
case where the source can only send two different data and the channels are
of capacity one. Results are organized as before. The only difference are in the
Basic and MPA columns. The Basic column presents the times obtained by run-
ning Algorithm 1 while the MPA columns present the times obtained by running
Algorithm 4. This algorithm is a variation of Algorithm 1 where messages that
“cross” at some edge of the communication graph are not completely indepen-
dent: the constraints imposed by the first to be computed are used to compute
the second.

Algorithm 4 Variation of Algorithm 1

Input: an interaction graph G = (V,E) with V = {L1, . . . ,Ln}
1: M← E
2: while M 6= ∅ do
3: choose (Li,Lj) ∈ M such that (Lk,Li) /∈ M for every k 6= j
4: Li :≡ Li || (|| k 6= j,

(Lk,Li) ∈ E

Mk,i)

5: Mi,j :≡ Li \Σj

6: remove (Li,Lj) from M
7: end while
8: for all i ∈ V do
9: Ki :≡ Li || (||(Lj ,Li)∈EMj,i)

10: end for

The local safety and liveness properties we check at the source are the fol-
lowing: “The last data can only be sent once” (its negation is represented by

the FSA ϕ on the left of Figure 7) and “The first data is always sent at least
once” (its negation is represented by the NBA ϕ′ on the right of Figure 7). The
verification process is the same as above.

ϕ !maxdata !maxdata
ϕ′

!mindata

τ

Fig. 7. Two properties to be checked on PGM. !maxdata (respectively !mindata) rep-
resents any sending of the last data (respectively the first data) using an odata or an
rdata message.

Table 3 gives the other results obtained for the PGM protocols on lines.
Table 4 gives the results obtained for the PGM protocols on complete binary
trees. They only report the running times of Algorithm 4 as the verification of
the properties considered still always requires less than 0.01 seconds.

Analysis of the results. Spin can deal with lines of length 5 within 20 seconds
but cannot handle larger lines nor binary trees without running out of the 4GB
of memory allowed to it. In addition to what has been noticed in the case of
Raymond’s mutual exclusion protocol, it appears that using Algorithm 4 instead
of Algorithm 1 can significantly reduce running times. This is due to the fact
that some constraints are taken into account earlier, and so some messages can
be simplified. Using this version of our approach is not always that efficient
however. In the case of Raymond’s mutual exclusion protocol, for example, it
almost does not reduce running times. The comparison of the different numbers
of data and capacities of channels also shows that, if our approach scales well
with the number of components of the system to analyse, it is more sensitive to
increases of the sizes of these components.

Conclusion

We have presented message-passing algorithms for the verification of local prop-
erties of distributed protocols. The components of the protocol must have a
tree-shaped communication structure. The MPAs compute for each component
Li an LTS equivalent to the result of hiding in the full LTS (the LTS of the full
protocol) all actions not appearing in Li. We have shown that the MPAs can be
instantiated with different equivalence notions, in particular trace equivalence
and divergence equivalence. We have evaluated the algorithms on two well-known
protocols, and shown that for several important properties they scale very well,
in particular much better than a generic search-based model-checker like Spin.

The properties we have used for our comparison with Spin were true proper-
ties, i.e., properties that hold for the protocol. In fact, for false properties Spin
often outperforms our approach, possibly due to the existence of a relatively

Table 2. Analysis of PGM (with two different data and channels of capacity one) on
lines. Times are in seconds.

Processes
Traces Divergences

Basic MPA OneWay Verification MPA OneWay Verification

5 7.79 0.08 0.03 <0.01 0.11 0.08 <0.01

10 20.27 0.13 0.08 <0.01 0.16 0.13 <0.01

15 32.76 0.19 0.15 <0.01 0.22 0.20 <0.01

20 41.99 0.23 0.16 <0.01 0.26 0.20 <0.01

25 53.14 0.26 0.21 <0.01 0.31 0.24 <0.01

30 67.50 0.30 0.25 <0.01 0.37 0.27 <0.01

35 77.32 0.35 0.29 <0.01 0.43 0.34 <0.01

40 89.95 0.40 0.32 <0.01 0.49 0.36 <0.01

45 101.25 0.46 0.36 <0.01 0.57 0.40 <0.01

50 113.60 0.50 0.40 <0.01 0.60 0.44 <0.01

Table 3. Analysis of PGM on lines using Algorithm 4. Different numbers of data to
be sent (d) and different sizes of channels (c) are considered. Times are in seconds.

Processes
Traces Divergences

d=2, c=2 d=3, c=1 d=2, c=2 d=3, c=1

5 10.71 10.63 15.37 13.26

10 19.19 12.60 28.94 18.00

15 27.24 14.56 41.77 22.21

20 35.53 16.46 55.77 26.80

25 43.66 18.24 68.40 30.95

30 52.14 20.66 81.43 35.36

35 60.16 22.64 95.39 39.82

40 68.78 24.80 109.17 44.49

45 77.00 26.66 122.57 48.56

50 85.12 29.01 136.60 53.27

Table 4. Analysis of PGM on complete binary trees using Algorithm 4. Different
numbers of data to be sent (d) and different sizes of channels (c) are considered. Times
are in seconds.

Depth Proc.
Traces Divergences

d=2, c=1 d=2, c=2 d=3, c=1 d=2, c=1 d=2, c=2 d=3, c=1

3 7 0.85 26.26 59.30 1.41 33.96 93.02

4 15 1.58 56.10 114.05 1.60 72.89 156.93

5 31 2.48 113.82 235.32 2.93 153.47 316.63

6 63 5.06 231.27 472.19 5.73 310.28 641.13

7 127 10.24 474.57 979.85 12.10 625.61 1582.23

large number of counterexamples, which allows Spin to quickly find one. This
suggests to run Spin and a suitable MPA in parallel.

Future work will explore how to instantiate the MPAs with equivalence re-
lations sensitive to deadlocks or partial deadlocks.

References

1. E. Fabre. Bayesian Networks of Dynamic Systems. Habilitation à diriger des
recherches, Université de Rennes1, 2007.

2. E. Fabre and L. Jezequel. Distributed optimal planning: an approach by weighted
automata calculus. In CDC, pages 211–216, 2009.

3. E. Fabre, L. Jezequel, P. Haslum, and S. Thiébaux. Cost-optimal factored planning:
Promises and pitfalls. In ICAPS, pages 65–72, 2010.

4. K. Raymond. A tree-based algorithm for distributed mutual exclusion. TCS,
7(1):61–77, 1989.

5. T. Speakman et al. PGM reliable transport protocol specification. RFC 3208
(Experimental) of the IETF, 2001.

6. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions
for compositional verification. In TACAS, pages 331–346, 2003.

7. C. Flanagan and S. Qadeer. Thread-modular model checking. In SPIN, pages
213–224, 2003.

8. S. Graf and B. Steffen. Compositional minimization of finite state systems. In
CAV, pages 186–196, 1990.

9. O. Grumberg and D. E. Long. Model checking and modular verification. TOPLAS,
16(3):843–871, 1994.

10. A. W. Roscoe, P. H. B. Gardiner, M. H. Goldsmith, J. R. Hullance, D. M. Jackson,
and J. B. Scattergood. Hierarchical compression for model-checking CSP or how
to check 1020 dining philosophers for deadlock. In TACAS, pages 133–152, 1995.

11. FRD2 user manual, 2009.
12. R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A

semantics-based tool for the verification of concurrent systems. TOPLAS, 15(1):36–
72, 1993.

13. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: a toolbox for the
construction and analysis of distributed processes. STTT, 15(2):89–107, 2013.

14. P. A. Abdulla. Regular model checking. STTT, 14(2):109–118, 2012.
15. B. Bérard, P. Bouyer, and A. Petit. Analysing the PGM protocol with UPPAAL.

International journal of production research, 42(14):2773–2791, 2004.
16. M. Boyer and M. Sighireanu. Synthesis and verification of constraints in the PGM

protocol. In FME, pages 264–281. Springer, 2003.
17. J. Esparza and M. Maidl. Simple representative instantiations for multicast pro-

tocols. In TACAS, pages 128–143, 2003.
18. H. Bodlaender. A linear time algorithm for finding tree-decompositions of small

treewidth. In STC, pages 226–234, 1993.
19. J. Sakarovitch. Éléments de théorie des automates. Vuibert, 2003.
20. S. D. Brookes and A. W. Roscoe. An improved failures model for communicating

processes. In Seminar on Concurrency, pages 281–305, 1984.
21. A. Valmari. All linear-time congruences for finite LTSs and familiar operators. In

ACSD, 2012.
22. G. Holzmann. The SPIN model checker: primer and reference manual. Addison-

Wesley Professional, 2003.

