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Abstract. In a recent work we proposed an algorithm for reachability
analysis in distributed systems modeled as networks of automata. The
main interest of this algorithm is that it performs its analysis in a lazy
way: decision is done by only taking into account the automata poten-
tially involved in a path to the reachability goal. This new work extends
the approach to networks of timed automata, lazily considering the au-
tomata but also lazily adding the clocks to the analysis, which implies
not only to consider clocks tested along the paths to the goal, but also
to deal with the special issues due to urgency and shared clocks. We
have implemented our approach as a tool and provide some interesting
experimental results, in a comparison with the model-checker Uppaal.

1 Introduction

The verification of concurrent timed systems is a crucial and challenging issue.
It is subject to both an explosion of the number of discrete states due to the
number of concurrent components, and an explosion of the clock space due to
the number of clocks.

To model such systems we focus here on networks of timed automata and the
verificaion of reachability properties. Since the seminal article of Alur and Dill
establishing the PSPACE completeness of this problem [1], many techniques have
been developed to improve the practical efficiency of reachability verification.

Efficient symbolic representations of the clock space have been proposed,
implemented using a data structure called Difference Bound Matrix [5, 7], as
well as efficient algorithms to handle them [16]. Different kind of abstractions
have then been devised to further improve them [2, 12].

Better exploration orders [13] have also been proposed and quite a few au-
thors have defined partial-order reductions for timed automata (see e.g. [10, 18,
6] and the references therein). Some decision-diagram-based representations of
the state-space have also been proposed [15, 20]. Several tools are available that
implement part of these techniques, this is in particular the case of Uppaal [17].

In this article, we exploit a technique orthogonal to most of those mentioned
above and build on a recently proposed lazy reachability analysis algorithm in
compound systems modeled as networks of labelled transition systems [14], that



we extend to the timed setting. The resulting algorithm can be implemented
using the successful DBM data structure. It starts separately from each of the
components explicitly mentioned in the reachability property and adds other
components, as well as clocks, on demand, based on the analysis of the successive
overapproximations obtained by ignoring some components or clocks. Since we
start by verifying separately that each component in the property can indeed
reach its goal, the algorithm also performs synchronisations to make sure that
in reaching its goal, one component does not prevent another one to do so.

The timed setting brings a few difficulties of its own, namely: choosing the
clocks to add, handling urgency, and accounting for shared clocks. It can be
proven that our algorithm is sound, complete and that it terminates. We pro-
vide a rather naive prototype implementation that nonetheless produce some
interesting experimental results.

This paper is organized as follows. In Section 2 we recall basic definitions
about timed automata, give some definitions and notations about compound
systems built from timed automata, and we define the reachability problem we
consider. In Section 3 we briefly recall the lazy reachability algorithm of [14]
and we describe the modifications needed to make it cope with timed systems.
In Section 4 we discuss an implementation of this algorithm as a publicly avail-
able tool: LaRA-T and we present an experimental evaluation, comparing its
performances to those of Uppaal on a few classic examples.

2 Definitions

In this section we first recall standard definitions for timed automata and set
the notations we use in the paper. Then, we define the reachability problem on
compound systems built from timed automata that we aim at solving.

2.1 Timed automata

Definition 1 (Clocks, clock constraints). Let X be a set of real-valued vari-
ables called clocks. A clock constraint over X is a constraint of the form x ∼ k
with x ∈ X, k ∈ N, and ∼∈ {<,≤,=,≥, >}. The set of all possible such clock
constraints over X is denoted by B(X). The subset of B(X) where ∼∈ {<,≤} is
denoted by B′(X).

For simplicity, we do not consider clock differences in the above defined con-
straints. The high level algorithm presented in this paper is however independant
of the exact reachability analysis technique used, so our approach is not restricted
to these simple constraints.

Definition 2 (Clock valuations). For a set of clocks X we call clock valu-
ation a function v : X → R≥0 associating a non-negative real number to each
clock in X. We denote by V (X) the set of all such valuations. Given a subset
R of X and a clock valuation v, we denote by v[R] the clock valuation such that
∀x ∈ R, v[R](x) = 0 and ∀x /∈ R, v[R](x) = v(x). Given d ∈ R≥0, we denote by
(v + d) the clock valuation such that ∀x ∈ X, (v + d)(x) = v(x) + d.



Definition 3 (Constraint satisfaction). A clock valuation v satisfies a con-
straint b = x ∼ k, written v |= b, if and only if v(x) ∼ k. A clock valuation v
satisfies a set of constraints g, written v |= g, if and only if it satisfies each of
its elements.

In this article, we consider timed automata with invariants [11]. Finite au-
tomata are extended with clocks that can be tested in guards to allow some
transition to be taken, and can also be reset to 0 when some transition is taken.
Invariants further specify constraints on clocks that must be satisfied to stay or
enter in a given location. They add a notion of urgency to the timed automata
of [1].

Definition 4 (Timed automata: syntax). A Timed automaton (TA) is a
tuple A = (L, `0, Σ,X,E, Inv) where L is a set of locations, `0 ∈ L is an initial
location, Σ is a set of action labels, X is a set of clocks, E ⊆ L× 2B(X) ×Σ ×
2X ×L is a set of transitions, and Inv : L → 2B

′(X) associates invariants to the
locations.

In the rest of the paper A will denote the tuple (L, `0, Σ,X,E, Inv). Simi-

larly, A′ will denote the tuple (L′, `0′, Σ′, X ′, E′, Inv′). And, for any i, Ai will
denote the tuple (Li, `0i , Σi, Xi, Ei, Invi). For a transition e = (`, g, σ,R, `′) ∈ E,
we note `(e) = `, g(e) = g, σ(e) = σ, R(e) = R, and `′(e) = `′. Moreover,
Σ(A) = {σ ∈ Σ : ∃e ∈ E, σ(e) = σ} denotes the set of actions actually used by
A. Similarly, X(A) = {x ∈ X : ∃e ∈ E, g(e) ∩ B({x}) 6= ∅ ∨ x ∈ R(e)} ∪ {x ∈
X : ∃` ∈ L, Inv(`) ∩ B({x}) 6= ∅} denotes the set of clocks actually appearing
in A. And finally, Res(A) = {x ∈ X : ∃(`, g, σ,R, `′) ∈ E, x ∈ R} denotes the
set of clocks reset by A.

A state of a timed automaton consists of a location, and a value for each of
its clocks. The state of a timed automaton evolves either by letting time pass,
or by taking a transition. This is formalised in the following definition:

Definition 5 (Timed automata: semantics, timed-paths, timed-runs,
reachable locations, duration). A state of a timed automaton A is a pair
(`, v) ∈ L × V (X) so that v |= Inv(`). A transition relation →A is defined over
the states of A as follows: (`, v)→A (`′, v′) if and only if:

– ` = `′ and ∃d ∈ R≥0 so that v′ = (v + d) (time elapsing of duration d), or
– ∃e ∈ E, such that `(e) = `, `′(e) = `′, v |= g(e), and v′ = v[R(e)] (discrete

transition firing – of duration 0).

A finite timed-path (or simply, path) of A is a sequence (`0, v0) . . . (`n, vn) of
states such that ∀i ∈ {0..n − 1}, (`i, vi) →A (`i+1, vi+1). If, moreover, `0 = `0

(i.e `0 is the initial location of A), we call (`0, v0) . . . (`n, vn) a finite timed-run
(or simply, run) of A. When there exists such a run, we say that `n is reachable
in A. The duration of a timed-path is the sum of the durations of its transitions.

In the rest of the paper we denote by Urg(A) the set of initially urgent
locations of A. These locations are the ones appearing on a timed-run so that



any location in it has a non-empty invariant. Formally, Urg(A) is the smallest
set such that (a) if Inv(`0) 6= ∅ then `0 ∈ Urg(A), and (b) if e ∈ E with
`(e) ∈ Urg(A) and Inv(`′(e)) 6= ∅ then `′(e) ∈ Urg(A).

And we denote by Req(A) the set of actions that could be requested by A
due to urgency: the actions appearing in transitions originating from locations
in Urg(A). Formally, Req(A) = {σ ∈ Σ : ∃e ∈ E, σ(e) = σ ∧ `(e) ∈ Urg(A)}.

2.2 Reachability problem in compound systems

We are interested in systems made of several interacting components. To for-
malise this notion, we define compound systems.

Definition 6 (Compound system). Let A1, . . . ,An be TAs. The compound
system A1|| . . . ||An is the TA A such that:

– L = L1× . . .×Ln, `0 = (`01, . . . , `
0
n), Σ = Σ1∪ . . .∪Σn, X = X1∪ . . .∪Xn,

– ((`1, . . . , `n), g1 ∪ . . . ∪ gn, σ,R1 ∪ . . . ∪ Rn, (`′1, . . . , `′n)) ∈ E if and only if
∀i ∈ [1..n]:
• σ ∈ Σi implies (`i, gi, σ,Ri, `

′
i) ∈ Ei, and

• σ /∈ Σi implies `i = `′i, gi = ∅, and Ri = ∅,
– ∀` = (`1, . . . , `n) ∈ L, Inv(`) = Inv1(`1) ∪ . . . ∪ Invn(`n).

Definition 7 (Time-non blocking timed automaton). A timed automaton
A is time-non blocking if, in any state and for any duration d, there exists a
finite timed-path from that state with duration d.

In all this article, we assume that compound systems are time-non blocking
TA. Else, an invariant of any TA could block the whole system. This would force
to always consider all the TA of a system to perform reachability analysis.

The next definitions allow us to specify reachability objectives related to only
a part of the global system.

Definition 8 (Global locations, partial locations, concretisation). In a
compound system A1|| . . . ||An we call any element from L1 × . . .× Ln a global
location. We call partial location any element from (L1 ∪ {?}) × . . . × (Ln ∪
{?}) \ {(?, . . . , ?)}, where ? is a special symbol not in any Li. We say that a
global location (`′1, . . . , `

′
n) concretises the partial location (`1, . . . , `n) if and only

if ∀i ∈ [1..n], `i 6= ? implies `′i = `i.

Definition 9 (Reachability problem). In a compound system A we say that
a partial location ` is reachable (in A) if and only if there exists a global location
that (1) is reachable in A and (2) concretises `. Given a set R of partial locations,
we call reachability problem the problem of deciding if there exists a reachable
element in R. We denote this problem by RPRA .

In this paper, we propose a lazy backtracking-based algorithm for solving
such reachability problems. We avoid as much as possible to compute the full
compound systems considered, only taking into account the subsets of their
components and clocks that are needed for reachability analysis. In the remaining
of this section we introduce a few more definitions, simplifying the description
of our algorithm.



2.3 Partial compound systems

The following definitions allow us to reason about only parts of the global system,
be they obtained by considering only some of the components, some of the clocks,
or even a partial behaviour of some components.

Definition 10 (Isomorphic timed automata). Let A1 and A2 be two TA.
We say that they are isomorphic if and only if Σ1 = Σ2, X1 = X2, and there
exists a bijection f : L1 → L2 so that: f(`01) = `02, (`, g, σ,R, `′) ∈ E1 if and only
if (f(`), g, σ,R, f(`′)) ∈ E2 and ∀` ∈ L1, Inv1(`) = Inv2(f(`)).

Definition 11 (Neutral element). We denote by Aid the TA such that Lid =
{id}, `0id = id, Σid = ∅, Xid = ∅, Eid = ∅, and Invid(id) = ∅. As, for any TA
A, A||Aid is isomorphic to A, Aid can be considered as the neutral element for
the composition of TAs. For any TA A we denote by id(A) the TA whose only
location is the initial location of A and which is isomorphic to Aid.

Definition 12 (Clock projection). For a TA A and a set of clocks X ′, we
denote by PX′(A) the TA A′ so that: L′ = L, `0′ = `0, Σ′ = Σ, X ′ is the set of
clocks, E′ = {(`, g ∩ B(X ′), σ,R ∩X ′, `′) : (`, g, σ,R, `′) ∈ E}, Inv′ is so that
∀` ∈ L, Inv′(`) = Inv(`) ∩ B(X ′).

Definition 13 (Extensions). A TA A1 extends a TA A′2, noted A1 w A′2,
if and only if A′2 is isomorphic to some TA A2 so that: L2 ⊆ L1, `02 = `01,
Σ2 ⊆ Σ1, X2 = X1, E2 ⊆ E1|L2,Σ2

, Inv2 = Inv1|L2
, with E1|L2,Σ2

= {e ∈
E1 : `(e), `′(e) ∈ L2 ∧ σ(e) ∈ Σ2} and Inv1|L2

the function defined over L2

and so that ∀` ∈ L2, Inv1|L2
(`) = Inv1(`). If moreover at least one of the above

inclusions is strict, we say that A1 strictly extends A′2, which we note A1 A A′2.

Definition 14 (Initialisation). For a TA A and a set of clocks X ′ we denote
by ini(A, X ′) the TA with the same locations, initial location, and transitions as
id(A) but with X ′ as set of clocks, the same set of actions as A, and the same
invariants as A on its initial location. Notice that PX′(A) w ini(A, X ′).

Definition 15 (Partial compound system). A TA A′ is a partial com-
pound system of A = A1|| . . . ||An if there exist m TAs A′k1 , . . . ,A

′
km

with
{k1, . . . , km} ⊆ [1..n], such that A′ = A′k1 || . . . ||A

′
km

and PX′ki
(Aki) w A′ki

for all i in [1..m].

In the rest of this paper, for a compound system A = A1|| . . . ||An, a partial
compound system A′ = A′k1 || . . . ||A

′
km

of A, the set K = {k1, . . . , km}, and a
set R of partial locations of A, we adopt the following notations.

By A′ → R|K we denote that R is (partially) reachable in A′. That is, the
fact that there exists a location from R|K = {(`′k1 , . . . , `

′
km

) : ∃(`1, . . . , `n) ∈
R,∀i ∈ [1..n],∀j ∈ [1..m], i = kj ⇔ `i = `′kj} which is reachable in A′.

By Conf(A′,K) we denote the set of actions in conflict withA′ with respect to
K: the actions fromAK = Ak1 || . . . ||Akm originating from locations in L′ but not
appearing in transitions from E′. Formally Conf(A′,K) = {σ /∈ Σ(A′) : ∃eK ∈
EK , σ(eK) = σ ∧ `(eK) ∈ L′} (assuming not only isomorphism but equality in
Definition 13).



3 From lazy reachability to lazy reachability with time

In this section we give an as generic as possible description of our lazy reachabil-
ity algorithm. This description is strongly based on what we proposed recently
for non-timed systems [14]. We show that it extends naturally to timed-systems.
This however implies non-trivial modifications, in particular to handle invari-
ants and resets of shared clocks. These modifications mostly impact the notion
of completeness, which is the main notion behind the validity of the approach.

3.1 Introductory example

The main goal of our algorithm is to be as lazy as possible when solving a reach-
ability problem in a compound system. That is, trying to involve the smallest
number of automata and the smallest number of clocks of these automata in the
reachability analysis. In order to get an overview of our approach to do so, lets
consider the example of Figure 1.

A1

x ≤ 0

α a, {x}

A2

α y ≥ 2, b

y ≥ 2, b z ≤ 1, b

A3

β

A4

c, {z} t ≤ 4, β

Fig. 1. A compound system involving four timed automata.

This figure shows a compound system made of four TAs: A1, A2, A3, and
A4. Locations are depicted as circles and transitions as arrows with labels indi-
cating guards, actions, and clocks resets (in this order, with empty guards and
empty sets of resets omitted). Initial locations are the ones with input arrows
coming from no other location. Invariants are depicted in rectangles near the
corresponding locations (there is only one invariant, in A1, in this figure). There
are three interactions in this system: A1 interacts with A2 because they share
the α action, A2 interacts with A4 because they share the z clock, and A3 in-
teracts with A4 because they share the β action. The objective here is to reach
the double circled location in A2.

One can start from a partial compound system P∅(A2), and look for a path
to the objective. A possibility is bb. The clock constraints have to be added,
moving to a partial compound system A2. The constraint y ≥ 2 for the first b



can be satisfied by waiting for (at least) 2 time units. After that, the constraint
z ≤ 1 for the second b cannot be fulfilled. However, z is a clock that can be reset
by A4. One thus adds P{z}(A4) to the partial compound system. It appears that
bcb allows to reach the objective, fulfilling all the timing constraints.

However, in A2, the first b is in conflict with α. And α is shared with A1,
where it has to be used with no delay, due to the invariant x ≤ 0. This im-
mediately discards bcb as a possible path to the reachability objective in the
global compound system. One thus, looks for another path to the objective in
A2||P{z}(A4).

A possibility is αbcb. This immediately implies to add A1 to the partial
compound system because of the shared action α. In the partial compound
system A1||A2||P{z}(A4), αbb is clearly a timed-run. It can be verified that this
run is also a run of the global compound system.

Using this incremental process, one has found a way to satisfy the reachability
objective. This has been done without considering the automaton A3, nor the
clock t. This is why we call our algorithm lazy. The remainder of this section
formalizes the approach we just exemplified.

3.2 General scheme of the algorithm

Algorithm 1 presents the general scheme of our algorithm3. This algorithm starts
from a partition of the TAs involved in the reachability objective. The idea is to
verify this objective separately on each involved component, with the hope to
find a solution involving no interaction between these components. The current
state of the search is stored in the list Ls which has initially one element per part
of the initial partition. Each such element is a list of tuples (A,C, I, J,K,L,M)
– described in details in the next subsection – that represent more and more
concrete partial compound systems: they include more and more automata and
take into account more and more clocks. The more concrete partial compound
system is at the head of the list.

First note that the initial partition of the TAs has to be well-formed (line 1),
by that we mean that it should contain only one element I1 = Lg if any TA has
an invariant on a reachability objective (that is ∃i ∈ Lg, ∃(`1, . . . , `n) ∈ R, so
that `i 6= ? and Invi(`i) 6= ∅).

Each element in the initial partition has to be completed with all automata
resetting some clocks of the automata in that element (lines 3,4). Resetting a
clock may indeed add some behaviours, which could be overlooked otherwise.

After initialising Ls, we proceed to the main loop, which consists of two oper-
ations: concretisation, ensuring completeness, and merging, ensuring consistency.
These notions and functions are described in the following subsections.

3 Notice that the algorithms presented in this paper make use of the classic abstract
list data-structure. The usual operations hd(), tl(), and len() give respectively the
head, tail, and length (number of elements) of a list. The list constructor (prepend)
is denoted by : and the list concatenation is denoted by ++ . The rev() operator
reverses a list. The empty list is denoted by [ ]. Finally, L[i] denotes the ith element
of list L.



Algorithm 1 Algorithm solving RPRA (Lg: indices of TAs involved in R)

1 choose any well-formed partition {I1, . . . , Ip} of Lg

2 for all k in [1..p] {
3 let I ′k = Ik
4 until stability let I ′k = I ′k ∪ {i /∈ I ′k : ∃j ∈ I ′k,Res(Ai) ∩X(Aj) 6= ∅}
5 let IDk = ||i∈I′

k
id(Ai)

6 let INI k = ||i∈I′
k
ini(Ai, ∅)

7 }
8 let Ls = [[(ID1, INI 1, I1, ∅, I ′1, ∅, ∅)], . . . , [(IDp, INI p, Ip, ∅, I ′p, ∅, ∅)]]
9 let Complete = false

10 let Consistent = false
11 while not Complete or not Consistent {
12 let Complete = IsComplete(Ls)
13 if not Complete {
14 optional unless Consistent {
15 if not Concretise(Ls) { return false }
16 }
17 }
18 let Consistent = IsConsistent(Ls)
19 if not Consistent {
20 optional unless Complete { Merge(Ls) }
21 }
22 }
23 return true

3.3 Completeness, concretisation and the Concretise function

The main loop of Algorithm 1 iterates as long as the current state Ls of the
search is not complete. We say that Ls is complete (noted IsComplete(Ls))
if and only if, for any indice k, Ls[k] is complete. Intuitively, this means that
the partial compound system represented by hd(Ls[k]) contains a path to reach
the corresponding local goal. Moreover, this path has to (1) use no action of
any automaton not participating in this partial compound system, (2) have no
conflict with actions that could be externally forced by an invariant (this was the
case of action α in the above example), (3) avoid relying on the satisfaction of
a clock constraint involving a clock that is reset by an automaton not from this
partial compound system (this was the case of clock z in the above example),
and (4) take into account all clock constraints on any transition involved. In
other words: a partial compound system is complete if it can reach a local goal
alone.

In any tuple (A,C, I, J,K,L,M), in particular in hd(Ls[k]), C is the TA
representation of the partial compound system considered, and J ∪K contains
the indices of the TAs (from the global compound system) involved in this partial
compound system. The above notion of completeness can be formalized from only
C, J , and K. The other elements of the tuple are instrumental for building our



algorithm and are described later. In the following definition of completeness,
points (1-4) correspond to intuitions (1-4) above.

Definition 16 (Completeness). The list Ls[k] so that hd(Ls[k]) = (A,C, I, J,
K,L,M) is complete if ∃C∗ so that: C w C∗, C∗ → R|J∪K , and (1) ∀i /∈
J∪K,Σi∩Σ(C∗) = ∅, (2) ∀i /∈ J∪K,Conf(C∗, J∪K)∩Req(Ai) = ∅ (3) ∀i /∈ J∪
K,Res(Ai)∩X(C∗) = ∅ (4) {x /∈ X(C∗) : ∃A∗, ||i∈J∪KAi w A∗, PX(C∗)(A

∗) =
C∗, x ∈ X(A∗)} = ∅.

In order to achieve completeness, we use the Concretise function defined
in Algorithm 2. This is basically a standard backtracking algorithm, specialized
for incrementally building more and more concrete partial compound systems:
partial compound systems containing (1) more and more states and transitions,
for a fixed set of TAs and clocks, and (2) more and more TAs and clocks.

Algorithm 2 Auxiliary function Concretise(Ls) for Algorithm 1

1 choose any k in [0..len(Ls)− 1] such that not IsComplete(Ls[k])
2 let (A,C, I, J,K,L,M) = hd(Ls[k])
3 let Back = tl(Ls[k])
4 if ∃C∗ s.t. (||i∈KPL∪M (Ai))||A w C∗ A C and C∗ →R|J∪K {
5 choose any such C∗

6 let NA = {i /∈ J ∪K : Σi ∩Σ(C∗) 6= ∅}
7 let A′ be such that ||i∈J∪KAi w A′ and P∅(A

′) = P∅(C
∗)

8 let NX = {x /∈ L ∪M : x ∈ X(A′)}
9 case NA ∪NX 6= ∅

10 choose any K′,M ′ such that K′ ⊆ NA and M ′ ⊆ NX and K′ ∪M ′ 6= ∅
11 let Back′ = (A,C∗, I, J,K,L,M) : Back
12 let J ′ = J ∪K
13 let L′ = L ∪M
14 let K′′ = K′

15 until stability let K′′ = {i /∈ J ′ ∪K′′ : ∃j ∈ K′′,Res(Ai) ∩X(Aj) 6= ∅}
16 let A∗ be such that ||i∈J∪KPL′∪M′(Ai) w A∗ and P∅(A

∗) = P∅(C
∗)

17 let Ls[k] = (A∗, ||i∈J′∪K′′ ini(Ai, L
′ ∪M ′), I, J ′,K′′, L′,M ′) : Back′

18 case N = ∅
19 let Ls[k] = (A,C∗, I, J,K,L,M) : Back
20 } else {
21 if Back = [ ] { return false }
22 else { let Ls[k] = Back }
23 }
24 return true

The list Ls[k] contains the search history: backtracking means replacing this
list by its tail (else part of the conditional at line 4). Notice that, when back-
tracking, it could be possible to allow to remember the unsuccessful searches
(this can be used for speeding up the future searches). This has been described
in [14] for un-timed systems.



Any element of Ls[k], and in particular the one reflecting the current state
of the search (the head of Ls[k]), is a tuple (A,C, I, J,K,L,M) where: A is the
partial compound system computed at the previous call to Concretise, C is
the current partial compound system we consider, I gives the initial partition of
TAs involved in the objective, J gives the TAs involved in A, K gives the TAs
that can be used to build C from A, L gives the clocks involved in A, and M
gives the clocks that are used to build C from A.

The main idea of the function consists in first choosing a partial compound
system C∗ bigger than what we already had, and that can reach the goal. Set
NA then corresponds to the automata sharing some action with C∗, but not
added, and NX to the clocks tested, but not present, in C∗. From these sets, we
can choose automata or clocks to add to our partial compound system in order
to try to make it complete (line 10). The next lines create the new tuple that
will be put at the head of Ls as the new current level of concretisation (line 17),
to reflect these choices. Line 15 forces the addition of automata that reset some
clocks we have chosen to add. This is important because resetting a clock may
add some new behaviours. Finally, A∗ (line 16) is a version of C∗ with the whole
set of clocks we have up to now (those we already had and those we have just
chosen to add). It will serve as an upper bound (wrt. w) for the choice of C∗

at the next level of concretisation. Note that at this next level we start with a
partial compound system reduced to the initial states of the chosen automata
(and with all the chosen clocks). If we have no clocks or automata to add from
NX ,NA, then we simply update the current partial compound with C∗ (line 19)
and back in the main algorithm we will check if this has allowed us to achieve
completeness (line 11 of Algorithm 1). If we could not find C∗ at all, then it
is not possible to reach the goal with the current upper bound an we need to
backtrack to extend this upper bound at a lower level of concretisation, i.e., with
fewer clocks or automata (line 22).

3.4 Consistency, merging and the Merge function

Achieving completeness for each element of Ls is not sufficient however to solve
our reachability problem. Indeed, it may be the case that some automata ap-
pear in several different elements of Ls: we start from a partition but the same
automata may be added to elements of Ls during concretisation steps. In this
case, it is likely that some paths in different partial compound systems interfere:
they use the same actions but not in the same order or they need incompatible
valuations of the clocks for satisfying clock constraints. The main loop of Algo-
rithm 1 reflects this by iterating as long as the current state Ls of the search is
not complete, as explained above, or not consistent.

Definition 17 (Consistency). Ls = [(A1, C1, I1, J1,K1, L1,M1) : Back1, . . . ,
(An, Cn, In, Jn,Kn, Ln,Mn) : Backn] is consistent if ∀i 6= j ∈ [1..n], (Ji ∪Ki) ∩
(Jj ∪Kj) = ∅.

In order to achieve consistency we use a Merge function to replace two
elements of Ls: Ls[i] (with hd(Ls[i]) = (Ai, Ci, Ii, Ji,Ki, Li,Mi) and tl(Ls[i]) =



Backi) and Ls[j] (with hd(Ls[j]) = (Aj , Cj , Ij , Jj ,Kj , Lj ,Mj) and tl(Ls[j]) =
Backj) by a single one h : Back obtained by merging them, thus reducing
the length of Ls by one. The simplest such new element would be such that:
Back = [ ] and h = (ID i||IDj , INI i||INI j , Ii ∪ Ij , ∅, I ′i ∪ I ′j , ∅, ∅). However, it
may be of interest to use the current state of the search in both Ls[i] and
Ls[j], taking instead: Back = [(ID i||IDj , INI i||INI j , Ii ∪ Ij , ∅, I ′i ∪ I ′j , ∅, ∅)], and
h = (PLj (Ai)||PLi(Aj), PLj∪Mj (Ci)||PLi∪Mi(Cj), Ii ∪ Ij , Ji ∪ Jj ,Ki ∪Kj).

In fact, it is even possible to replace Ls[i] and Ls[j] by any history that
could have been produced by a sequence of call to Concretise starting from
(ID i||IDj , INI i||INI j , Ii ∪ Ij , ∅, I ′i ∪ I ′j , ∅, ∅) (of which the two above examples
are particular cases). This avoids to un-merge when backtracking, has been for-
malized as a notion of good Merge in our previous work [14], and remains
essentially the same for timed systems.

3.5 Termination, soundness, completeness

Theorem 1 explicits the fact that Algorithm 1 always terminates, and is sound
and complete. Due to space limitations, its proof is omitted.

Theorem 1. Algorithm 1 always terminates. It returns true if and only if the
goal is reachable.

3.6 Example

We get back to the introductory example and see how our algorithm may find
the result we intuitively outlined.

First we choose an initial partition of the automata directly involved in the
objective. Here there is only A2 so Ls = [(id(A2)||id(A4), ini(A2, ∅)||ini(A4, ∅),
{2}, ∅, {2, 4}, ∅, ∅)]. Note in particular that I ′1 = {2, 4} because clock z is present
in A2 and reset by A4. Also, since we have only one element in our partition,
we will always stay consistent in this example.

Now we can call Concretise and choose k = 0 (the only possibility). We
choose for instance C∗ as the compound system C24 made of the path bb in
A2 and the path c in A4, which permits to reach the goal. Then NA = ∅
and NX = {y, z}. We can now choose K ′ = ∅ and M ′ = {y, z} for instance.
Then K ′′ = ∅. Finally, A∗ is C∗ = C24 augmented by the clocks y and z,
slightly abusing notations we denote it by P{y,z}(C24). The function returns true,
and Ls[0] = [Ls1, Ls

′
0] with Ls′0 = (id(A2)||id(A2), C24, {2}, ∅, {2, 4}, ∅, ∅)], and

Ls1 = (P{y,z}(C24), ini(A2, {y, z})||ini(A4, {y, z}), {2}, {2, 4}, ∅, ∅, {y, z}).
Back in the main algorithm, starting from ini(A2, {y, z})||ini(A4, {y, z})

we obviously do not have completeness. So we call Concretise again. We
choose, for instance C∗ as the full P{y,z}(C24), in which the goal can be reached.
Both NA and NX are empty, so we proceed to line 19 and Ls[0] becomes
[(P{y,z}(C24), P{y,z}(C24), {2}, {2, 4}, ∅, ∅, {y, z}), Ls′0]. We return true.

Back in the main algorithm, P{y,z}(C24) is not complete because α is in
conflict with the first b in A2 and α is urgent due to the invariant in A1 ((2) of



Definition 16) so we need to call Concretise again. There, we have to choose
something strictly bigger than the C, i.e P{y,z}(C24), which is not possible with
K being empty. We reach line 22 (backtracking) and Ls[0] becomes [Ls′0].

In the main algorithm again, Ls is not complete because C24 (the C value
of Ls′0) is not complete (for the same conflict with α as above). We choose to
add the rest of A2 and choose therefore C∗ as the compound system C ′24 made
of A2 and the path c of A4. Then NA = {1} because α is shared with A1 and
NX = {y, z}. We choose K ′ = {1}, M ′ = ∅ and since we have no further shared
clock, we have K ′′ = K ′. Since we have not added clocks, A∗ = C ′24 and finally
Ls[0] becomes [Ls′1, Ls

′′
0 ] with Ls′′0 = (id(A2)||id(A4), C ′24, {2}, ∅, {2, 4}, ∅, ∅),

and Ls′1 = (C ′24, ini(A1, ∅)||ini(A2, ∅)||ini(A4, ∅), {2}, {2, 4}, {1}, ∅, ∅). We re-
turn true.

Back in the main algorithm we are not complete since we do not reach the
goal in ini(A1, ∅)||ini(A2, ∅)||ini(A4, ∅) so we call Concretise. We choose for
instance C∗ as the compound system C124 made of the path α in A1, the whole
of A2 and the path c in A4. Then NA = ∅ but NX = {x, y, z} because clock x
is tested in the invariant of A1. So we have to choose K ′ = ∅ and decide to take
M ′ = {x, y, z}. We have K ′′ = K ′. Hence, A∗ is C124 augmented by the clocks
x, y and z, slightly abusing notations we denote it by P{x,y,z}(C124). And Ls[0]
becomes [Ls2, Ls

′′
1 , Ls

′′
0 ], with Ls′′1 = (C ′24, C124, {2}, {2, 4}, {1}, ∅, ∅) and Ls2 =

(P{x,y,z}(C124), ini(A1, {x, y, z}) || ini(A2, {x, y, z}) || ini(A4, {x, y, z}), {2},
{1, 2, 4}, ∅, ∅, {x, y, z}). We return true.

Again in the main algorithm we are not complete because we do not reach the
goal in the C value of Ls2, so we call Concretise. We choose C∗ as the com-
pound system C ′124 made of the path α in A1 (but with x this time), the whole of
A2 (with y and z this time ) and the path c in A4 (with z this time). Now taking
into account the clocks C ′124 does allow to reach the goal, but only through the
path αbcb. Furthermore, NX = NA = ∅ so we proceed to line 19 and Ls[0] is now
[Ls′2, Ls

′′
1 , Ls

′′
0 ], with Ls′2 = (P{x,y,z}(C124), C ′124, {2}, {1, 2, 4}, ∅, ∅, {x, y, z}). We

return true. Finally, the main algorithm concludes that C ′124 is complete and ter-
minate, by concluding that the goal is indeed reachable.

4 Experimental analysis

We implemented an instance of the above algorithm as a tool called LaRA-T.
The LaRA-T tool represents around 2000 lines of code written in the func-
tional language Haskell4. It is built over the previous LaRA tool for reachabil-
ity analysis in networks of (untimed) automata [14]. Both tools are available for
download5.

The algorithm we have presented is very general and the current implemen-
tation results from some important choices. First, each time we add automata
or clocks, we compute the resulting partial compound system completely. This

4 https://www.haskell.org/
5 http://lara.rts-software.org/



eliminates the need for backtracking, since if we cannot find the goal in this par-
tial compound system then it is for sure not reachable at all. In that respect, this
choice also heuristically favors the unreachable case. Second, we only compute
the reachable parts of the compound systems, using a classic DBM-based sym-
bolic state exploration [16], with DBM inclusion checking and maximal constant
per clock extrapolation. Finally, when we have computed a whole partial com-
pound system, we look at the paths we have followed to reach all goal states. If
some automata or clocks are required for completeness with respect to all those
paths, then we add them all at the next level. Otherwise, we add one arbitrary
required automaton or clock with the following priority: first automata ((1) of
Definition 16), then clocks actually used on some path to the goal (4), and fi-
nally clocks coming from urgent conflicts due to invariants (2). We have not yet
implemented the support for shared clocks (hence (3) of Def. 16 not appearing
in the previous priority order).

We compared LaRA-T to Uppaal [4] on several examples from the literature
on analysis and verification of timed systems6:

CritReg is a modeling of a critical region protocol from PAT [19] benchmarks.
We check the reachability of an error location in one of the automata. This
is a true property.

Fddi is a modeling of a communication protocol based on a token ring network
presented in [9] and adapted to our setting in [13]. We check the reachability
of a couple of mutually exclusive locations. This is a false property.

Fischer is a modeling of Fischer’s mutual exclusion protocol [3]. We check
the reachability of a couple of mutually exclusive locations. This is a false
property.

Fischer2 is a variation of Fischer’s mutual exclusion protocol where a time
constant has been changed, breaking the mutual exclusion guarantee. In this
example, the property is true.

Trains1 is the Train model of Uppaal [3]. A controller is responsible for a
queue of trains and has to prevent more than one of them to access a bridge
together. We check the reachability of a state in which the two first trains
are crossing the bridge at the same time. This is a false property.

Trains2 is a variation of the Trains1 benchmark where the controller manages
a set of trains rather than a queue of trains.

Trains3 is a model where a railway crosses a road [8]. A controller has to
ensure that the gate is closed (cars cannot crosse the railway) as soon as a
train crosses the road. We check the reachability of a state in which a train
crosses the road while the gate is open. This is a false property.

4.1 Experimental results

For each example we ran Uppaal and LaRA-T on instances of growing size
(the size is, roughly, the number of timed-automata, see Table 2 for precise

6 Uppaal templates and inputs for LaRA-T: http://lara.rts-software.org/



information), with a time-limit of 20 minutes at each size. In order to better
evaluate the performances of the laziness mechanism (independently of our im-
plementation of the DMB-based computation of the state-space of a TA) we
also ran LaRA-T with all components and clocks in a single element of the
initial partition (LaRA-T Full). All the experiments were run on the same ma-
chine with four IntelR© XeonR© E5-2620 processors (six cores each) with 128GB
of memory. Though this machine has some potential for parallel computing, all
the experiments presented here are actually monothreaded.

Table 1 gives the largest instance of each example solved by each tool within
the time-limit.

Table 1. Size of last instances solved within 20 minutes by Uppaal and LaRA-T

CritReg Fddi Fischer Fischer2 Trains1 Trains2 Trains3

LaRA-T ≥ 1500 ≥ 5000 7 ≥ 500 8 13 7
LaRA-T Full 4 15 6 5 8 13 5

Uppaal 46 13 13 65 10 16 6

For each example, we also evaluated the number of automata and clocks
that LaRA-T takes into account to decide its result in an instance of size n. In
Table 2, we compare it to the total number of automata and clocks in the same
instance. Our goal was to evaluate to which extent our algorithm is actually lazy.

Table 2. Number of automata (A) and clocks (C) used by LaRA-T for solving in-
stances of size n, and total number of automata and clocks in such instances.

CritReg Fddi Fischer Fischer2 Trains1 Trains2 Trains3
A C A C A C A C A C A C A C

LaRA-T 3 1 4 5 n+ 1 n 3 2 3 3 3 3 n+ 2 3
total 2n+ 1 n n+ 1 3n+ 1 n+ 1 n n+ 1 n n+ 1 n n+ 1 n n+ 2 n+ 2

4.2 Analysis of the results

We first remark that LaRA-T clearly outperforms Uppaal on three of our
seven examples: CritReg, Fddi, and Fischer2. This is because the number of
automata and clocks considered by LaRA-T in these examples does not increase
with the size of the instances considered. This is particularly striking in the case
of Fddi where the property we consider is false: Uppaal needs to completely
explore a quickly growing state-space.

On three other examples, namely Trains1, Trains2, and Trains3, LaRA-
T copes with Uppaal. It is surprising that, while the number of automata and
clocks does not increase with the size of the instances considered, LaRA-T
solves a bit less instances of Trains1 and Trains2 than Uppaal. This can be



explained by the fact that one of the automata considered by LaRA-T repre-
sents the centralized data-structure (either a queue or a set) involved in these
examples. The size of this automaton increases exponentially with the size of
the instances considered. LaRA-T does not implement efficient search in large
automata (this is orthogonal to our work). On the Trains3 example, LaRA-T
always uses all the automata. However, it needs only a subset (of size indepen-
dent from the size of the instance considered) of the clocks to conclude. So, the
timed reachability analysis is made easier, explaining the fact that LaRA-T
solves a bit more instances than Uppaal.

Finally, LaRA-T is clearly outperformed by Uppaal on the Fischer exam-
ple. This can be explained by the fact that LaRA-T needs to consider all the
automata and all the clocks, that is, to perform the full reachability analysis.
On such a task it is illusory to be as efficient as Uppaal.

5 Conclusion

We have proposed a new algorithm for the verification of concurrent timed sys-
tems, modelled as products of timed automata. This algorithm extends our pre-
vious proposition for untimed systems [14] by considering not only the different
automata components, but also clocks, in a lazy manner. By examining closely
which actions and clocks are needed to reach some goal locations, and how they
interact with urgency, in successive over-approximations of the whole system,
we are, in many cases, able to conclude on the reachability property by consid-
ering only a subset of the components and clocks. And we can do it regardless
of the actual truth value of the property. We have implemented a version of
the algorithm in a freely available tool, named LaRA-T and we report on its
efficiency in comparison to Uppaal, a state-of-the-art model-checker for timed
automata. These experimental results, obtained on classic benchmarks from the
timed systems community, are very encouraging, with LaRA-T outperforming
Uppaal, sometimes by several magnitude orders, on a few of the benchmarks,
and being never too far behind even in the worst cases where all components
and clocks have to be considered to decide the property.

The proposed algorithm provides a quite general framework open for many
heuristic improvements, and part of future work naturally consists in finding
good heuristics for better choosing the components and clocks to add. The com-
puted over-approximations also contain a lot of information on the system and, in
practice, we currently only use them to prune actions leading to non-coreachable
states. It would be interesting to make a better use of that information, and, for
instance in the case of timed systems, to use it to cheaply find good exploration
orders minimizing the number of “mistakes” when a bigger DBM is reached af-
ter a smaller one for a given location, and all the successors have to be explored
again (see [13] for precise account of the problem). Further work also includes
extending to properties beyond reachability, and taking discrete variables into
account to improve the conciseness of the models.
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