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This paper is concerned with stability of a linear system with a time-varying delay. First, an optimal reciprocally convex inequality is proposed. Compared with the extended reciprocally convex inequality recently reported, the optimal reciprocally convex inequality not only provides an optimal bound for the reciprocally convex combination, but also introduces less slack matrix variables. Second, a new Lyapunov-Krasovskii functional is tailored for the use of auxiliary function-based integral inequality. Third, based on the optimal reciprocally convex inequality and the new Lyapunov-Krasovskii functional, a stability criterion is derived for the system under study. Finally, two well-studied numerical examples are given to show that the obtained stability criterion can produce a larger upper bound of the time-varying delay than some existing methods.

Introduction

Consider the system with a time-varying delay described by

     ẋ(t) = Ax(t) + A d x(t -h(t)) x(θ) = ϕ(θ), θ ∈ [-h M , 0], (1) 
where x(t) ∈ R n is the system state; A and A d are real n × n constant matrices; h(t) is the time-varying delay satisfying

0 ≤ h(t) ≤ h M , d m ≤ ḣ(t) ≤ d M < ∞ (2) 
with h M , d m and d M known scalars; and ϕ(θ) is an initial condition. To begin with, for simplicity of presentation, we denote

         ρ 1 (t) := ∫ t-h(t) t-h M x(s) h M -h(t) ds, ρ 2 (t) := ∫ t-h(t) t-h M (t-h(t)-s)x(s) (h M -h(t)) 2 ds ρ 3 (t) := ∫ t t-h(t) x(s) h(t) ds, ρ 4 (t) := ∫ t t-h(t) (t-s)x(s)
h 2 (t) ds.

(3)

The Lyapunov-Krasovskii functional method plus integral inequalities is regarded as a powerful tool for deriving a maximum upper bound h M that the system (1) can tolerate and maintain stability [START_REF] He | Delay-range-dependent stability for systems with time-varying delay[END_REF][START_REF] Gu | Lyapunov-Krasovskii functional for uniform stability of coupled differential-functional equations[END_REF][START_REF] Gu | Complete quadratic Lyapunov-Krasovskii functional: limitations, computational efficiency, and convergence[END_REF][START_REF] Xu | New insight into delay-dependent stability of time-delay systems[END_REF]. This method has gained increasing attention especially since the Jensen integral inequality is improved by the Wirtinger-based integral inequality [START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF], and much effort has been made in seeking less conservative stability criteria for the system (1), e.g. [START_REF] Zhang | Event-based H ∞ filtering for sampled-data systems[END_REF], [START_REF] Zhang | Stability analysis of systems with time-varying delay via relaxed integral inequalities[END_REF], Zeng et al. (2015a), [START_REF] Kim | Further improvement of Jensen inequality and application to stability of time-delayed systems[END_REF].

It should be mentioned that the Wirtinger-based integral inequality is further improved by the auxiliary function-based integral inequality [START_REF] Seuret | Hierarchy of LMI conditions for the stability of time delay systems[END_REF][START_REF] Park | Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems[END_REF]. However, it is found that, if taking some Lyapunov-Krasovskii functional, the stability criterion based on the auxiliary function-based integral inequality may be of the same conservatism as the one based on the Wirtinger-based integral inequality. To make it clear, we take the proof of Theorem 7 in [START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF] for example, where the Lyapunov-Krasovskii functional is chosen as

Ṽ(x t , ẋt ) = xT (t)P x(t) + Ṽ1 (t, x t ) + V 2 (t, ẋt ) (4) 
where x(t) := col{x(t), h(t)ρ 3 (t), (h M -h(t))ρ 1 (t)}, and

Ṽ1 (t, x t ) = ∫ t t-h(t) x T (s)Qx(s)ds + ∫ t t-h m x T (s)S x(s)ds (5) V 2 (t, ẋt ) = ∫ t t-h M ∫ t θ ẋT (s)R ẋ(s)dsdθ (6)
Applying the Wirtinger-based integral inequality, it is proven that [START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF])

V(x t , ẋt ) ≤ ξ T 1 (t)Φ(h(t), ḣ(t))ξ 1 (t), (7) 
where ξ 1 (t) = col{x(t), x(th(t)), x(th M ), ρ 3 (t), ρ 1 (t)} with ρ 1 (t) and ρ 3 (t) defined in (3), and Φ(h(t), ḣ(t)) is defined in [START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF]. However, use the auxiliary function-based integral inequality (i.e. Lemma 1 on the next page) and the reciprocally convex approach [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF] to get

V(x t , ẋt ) ≤ ξ T 1 (t)Φ(h(t), ḣ(t))ξ 1 (t) -ξ T 2 (t)Ψ ξ 2 (t) (8)
where

ξ 2 (t) := col{x(t -h(t)) -x(t -h M ) -6ρ 1 (t) + 12ρ 2 (t), x(t) - x(t -h(t)) -6ρ 3 (t) + 12ρ 4 (t)
} with ρ 2 (t) and ρ 4 (t) defined in (3), and

Ψ := 1 h M [ 5R S S T 5R ] ≥ 0. Denote ζ 1 (t) = col{ξ 1 (t), 0, 0}, ζ 2 (t) = col{ξ 1 (t), ρ 4 (t), ρ 2 (t)} and Γ = [ 0 I -I 0 -6I 0 12I I -I 0 -6I 0 12I 0 ]. Then (8) can be rewritten as V(x t , ẋt ) ≤ ζ T 1 (t)diag{Φ(h(t), ḣ(t)), -I}ζ 1 (t)-ζ T 2 (t)Γ T ΨΓζ 2 (t) (9) 
Notice that ζ 1 (t) and ζ 2 (t) are linearly independent since ζ 1 (t) does not include the vectors ρ 2 (t) and ρ 4 (t). Thus, the stability criteria derived from ( 7) and ( 9) both can be given by the same form as Φ(h(t), ḣ(t)) < 0 due to Ψ ≥ 0. Therefore, the use of the auxiliary function-based integral inequality may not reduce the conservatism of the obtained stability criterion.

From the above analysis, it is clear to see that, in order to derive less conservative stability criteria, one should construct a proper Lyapunov-Krasovskii functional such that the corresponding vector ζ 1 (t) is linearly dependent on the vector ζ 2 (t) in (9). To construct such a Lyapunov-Krasovskii functional is the first motivation of the study.

On the other hand, the reciprocally convex approach is widely used in the stability analysis of linear systems with timevarying delay. It is because, as stated in [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF], the reciprocally convex approach can produce stability criteria with less decision variables while the conservatism will not be increased. Recently, the reciprocally convex inequality in [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF] is extended in [START_REF] Seuret | Delay-dependent reciprocally convex combination lemma[END_REF] by introducing four slack matrix variables. Although the extended reciprocally convex inequality is helpful for deriving a less conservative stability condition, the introduction of four slack matrix variables undoubtedly increases the computation complexity of the obtained stability criterion. How to reduce the slack matrix variables of the extended reciprocally convex inequality is a significant issue, which is the second motivation of the study.

In this paper, we focus on the stability analysis of linear systems with time-varying delay described by (1). First, an optimal reciprocally convex inequality is proposed, which provides an optimal bound for the reciprocally convex combination, while less slack matrix variables are introduced if compared with the extended reciprocally convex inequality [START_REF] Seuret | Delay-dependent reciprocally convex combination lemma[END_REF]. Second, a new Lyapunov-Krasovskii functional is tailored for the use of the auxiliary function-based integral inequality. On the one hand, the terms ρ 2 (t) and ρ 4 (t) appear in the derivative of the Lyapunov-Krasovskii functional, which means that the auxiliary function-based integral inequality can be used to formulate less conservative stability criteria; and on the other hand, the quadratic xT (t)P x(t) in ( 4) is deleted. Instead, Ṽ1 (t, x t ) in ( 5) is augmented so that the relationship between ρ j (t) ( j = 1, • • • , 4) and the other vectors is enhanced in the derivative of the Lyapunov-Krasovskii functional. Third, the optimal reciprocally convex inequality and the new Lyapunov-Krasovskii functional are employed to derive a new stability criterion for the system (1), whose effectiveness is demonstrated through two well-used numerical examples.

Notations: λ max (Q) (λ min (Q)) stands for the maximum (minimum) eigenvalue of the matrix Q; Sym{A} = A + A T .

To end this section, we introduce some lemmas, which are useful in the stability analysis.

Lemma 1. [START_REF] Seuret | Hierarchy of LMI conditions for the stability of time delay systems[END_REF][START_REF] Park | Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems[END_REF]. For any n × n constant real matrix R > 0, two scalars r 1 and r 2 with r 2 > r 1 , and a vector-valued function ω : [r 1 , r 2 ] → R n such that the integrations below are well defined, then

∫ r 2 r 1 ωT (s)R ω(s)ds ≥ 1 r 2 -r 1 ζ T (r 1 , r 2 ) Rζ(r 1 , r 2 ) ( 10 
)
where R := diag{R, 3R, 5R} andζ(r 1 , r 2 

) := col{υ 0 , υ 1 , υ 2 } with υ 0 := ω(r 2 ) -ω(r 1 ) and          υ 1 := ω(r 2 ) + ω(r 1 ) -2 r 2 -r 1 ∫ r 2 r 1 ω(s)ds υ 2 := υ 0 -6 r 2 -r 1 ∫ r 2 r 1 ω(s)ds+ 12 (r 2 -r 1 ) 2 ∫ r 2 r 1 (r 2 -s)ω(s)ds (11)
Lemma 2. [START_REF] Kim | Further improvement of Jensen inequality and application to stability of time-delayed systems[END_REF]. For a given quadratic function

ℓ(s) = a 2 s 2 + a 1 s + a 0 , where a i ∈ R (i = 0, 1, 2), if the following inequalities hold (i). ℓ(0) < 0; (ii). ℓ(h) < 0; (iii). -h 2 a 2 + ℓ(0) < 0 (12) one has ℓ(s) < 0 for ∀s ∈ [0, h].
Lemma 3. [START_REF] Fridman | Introduction to time-delay systems: analysis and control[END_REF]. The system ( 1) is asymptotically stable if the exists a quadratic Lyapunov-Krasovskii functional V(t, ϕ, φ) such that for some ε i > 0 (i = 1, 2, 3)

ε 1 ∥ϕ(0)∥ 2 ≤ V(t, ϕ, φ) ≤ ε 2 ∥ϕ∥ 2 W V(t, ϕ, φ) ≤ -ε 3 ∥ϕ(0)∥ 2 where ∥ϕ∥ 2 W = ∥ϕ(0)∥ 2 + ∫ 0 -h M ∥ϕ(s)∥ 2 ds + ∫ 0 -h M ∥ φ(θ)∥ 2 dθ.

Main results

In this section, we will present our main results. An optimal reciprocally convex inequality and a new Lyapunov-Krasovskii functional are introduced, based on which a novel stability criterion is derived for the system (1).

An optimal reciprocally convex inequality

Recently, the reciprocally convex inequality proposed in [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF] is extended by introducing some slack matrix variables, which is given as follows.

Lemma 4. [START_REF] Seuret | Delay-dependent reciprocally convex combination lemma[END_REF]. Let R 1 , R 2 ∈ R m×m be real symmetric positive definite matrices and ϖ 1 , ϖ 2 ∈ R m and a scalar α ∈ (0, 1). If there exist real symmetric matrices

X 1 , X 2 ∈ R m×m and real matrices Y 1 , Y 2 ∈ R m×m such that [ R 1 -X 1 Y 1 Y T 1 R 2 ] ≥ 0, [ R 1 Y 2 Y T 2 R 2 -X 2 ] ≥ 0 (13)
the following inequality holds

F (α) := 1 α ϖ T 1 R 1 ϖ 1 + 1 1-α ϖ T 2 R 2 ϖ 2 ≥ G (X 1 , X 2 ) (14) G (X 1 , X 2 ) := ϖ T 1 [R 1 +(1-α)X 1 ]ϖ 1 +ϖ T 2 (R 2 +αX 2 )ϖ 2 + 2ϖ T 1 [αY 1 + (1 -α)Y 2 ]ϖ 2 (15)
Lemma 4 presents a general lower bound G (X 1 , X 2 ) for the reciprocally convex combination F (α) by introducing four slack matrix variables, which bring additional degree of freedom if compared with the one in [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF]. However, more slack matrix variables usually lead to high computation complexity. The following analysis gives an optimal lower bound for F (α) from the set {G (X 1 , X 2 )|(X 1 , X 2 ) satisfies (13)}.

Theorem 1. Let R 1 , R 2 ∈ R m×m be real symmetric positive definite matrices and ϖ 1 , ϖ 2 ∈ R m and a scalar α ∈ (0, 1). Then for any Y 1 , Y 2 ∈ R m×m , the following inequality holds

F (α) ≥ ϖ T 1 [R 1 +(1-α)(R 1 -Y 1 R -1 2 Y T 1 )]ϖ 1 + ϖ T 2 [R 2 +α(R 2 -Y T 2 R -1 1 Y 2 )]ϖ 2 + 2ϖ T 1 [αY 1 + (1 -α)Y 2 ]ϖ 2 (16) 
Proof. Since R 1 > 0 and R 2 > 0, the matrix inequalities in ( 13) are equivalent to, respectively,

R 1 -X 1 -Y 1 R -1 2 Y T 1 ≥ 0, R 2 -X 2 -Y T 2 R -1 1 Y 2 ≥ 0 (17) Denote X 10 = R 1 -Y 1 R -1 2 Y T 1 and X 20 = R 2 -Y T 2 R -1 1 Y 2 . Then it follows from (17) that X 10 ≥ X 1 and X 20 ≥ X 2 , which leads to G (X 10 , X 20 ) ≥ G (X 1 , X 2 ), where G (X 1 , X 2 ) is defined in (15).
Since (X 10 , X 20 ) satisfies ( 13), by Lemma 4, one obtains

F (α) ≥ G (X 10 , X 20 ) ≥ G (X 1 , X 2 ) ( 18 
)
which completes the proof.

Remark 1. Compared with Lemma 4, Theorem 1 provides an optimal lower bound G (X 10 , X 20 ) for the reciprocally convex combination F (α). It is worth pointing out that the slack matrix variables X 1 and X 2 in (13) are removed from Theorem 1. Moreover, if one sets [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF].

Y 1 = Y 2 = S , it is easy to show that G (X 10 , X 20 ) is greater than ϖ T 1 R 1 ϖ 1 + 2ϖ T 1 S ϖ 2 + ϖ T 2 R 2 ϖ 2 , which is originally proposed in
Remark 2. In [START_REF] Seuret | Delay-dependent reciprocally convex combination lemma[END_REF], it is suggested to reduce the number of decision variables in Lemma 4 by imposing a constraint X 1 = X 2 on X 1 and X 2 . However, in the case where the dimensions of R 1 and R 2 are not compatible, one cannot set X 1 = X 2 ; and in the case where R 1 = R 2 , the constraint X 1 = X 2 only makes the lower bound G (X 1 , X 1 ) deviate away from the optimal one G (X 10 , X 20 ) due to that, in most cases, X 10 is not equal to X 20 even though one sets Y 1 = Y 2 .

An augmented Lyapunov-Krasovskii functional

In this section, we introduce a Lyapunov-Krasovskii functional candidate as

V(t, x t , ẋt ) = V 1 (t, x t ) + h M V 2 (t, ẋt ) (19) 
where

x t := x(t + θ), θ ∈ [-h M , 0]; V 2 (t, ẋt ) is defined in (6); and V 1 (t, x t ) := ∫ t t-h(t) η T 1 (t, s)Q 1 η 1 (t, s)ds + ∫ t-h(t) t-h M η T 2 (t, s)Q 2 η 2 (t, s)ds (20)
where Q 1 > 0, Q 2 > 0 and R > 0 are to be determined, and

η 1 (t, s) := col { ẋ(s), x(s), η 0 (t), ∫ s t-h(t) x(θ)dθ } η 2 (t, s) := col { ẋ(s), x(s), η 0 (t), ∫ s t-h M x(θ)dθ } η 0 (t) := col {x(t), x(t -h(t)), x(t -h M )}
It is not difficult to verify that there exist two constants c 1 > 0 and c 2 > 0 such that

c 1 ∥x t (0)∥ 2 2 ≤ V(t, x t , ẋt ) ≤ c 2 ∥x t ∥ 2 W . (21) 
In fact, denote

ϵ 0 = min{λ min (Q 1 ), λ min (Q 2 )}. Then V 1 (t, x t ) ≥ ∫ t t-h(t) ϵ 0 x T (t)x(t)ds + ∫ t-h(t) t-h M ϵ 0 x T (t)x(t)ds = h M ϵ 0 x T (t)x(t) c 1 x T (t)x(t) (22) 
On the other hand, denote

ϵ 1 = max{λ max (Q 1 ), λ max (Q 2 )}. Then V 1 (t, x t ) ≤ ϵ 1 ∫ t t-h M [ ∥ ẋ(s)∥ 2 2 +∥x(s)∥ 2 2 +∥η 0 (t)∥ 2 2 ] ds + ϵ 1 ∫ t t-h(t) ∫ s t-h(t) ∥x T (θ)∥ 2 dθ ∫ s t-h(t) ∥x(θ)∥ 2 dθds + ϵ 1 ∫ t-h(t) t-h M ∫ s t-h M ∥x T (θ)∥ 2 dθ ∫ s t-h M ∥x(θ)∥ 2 dθds ≤ ϵ 1 ∫ t t-h M [ ∥ ẋ(s)∥ 2 2 +3∥x(s)∥ 2 2 ] ds + ϵ 1 h M ∥x t (0)∥ 2 2 + ϵ 1 ∫ t t-h(t) h M ∫ t t-h M ∥x(θ)∥ 2 2 dθds + ϵ 1 ∫ t-h(t) t-h M h M ∫ t t-h M ∥x(θ)∥ 2 2 dθds ≤ ϵ 1 h M ∥x t (0)∥ 2 2 +ϵ 1 ∫ t t-h M [ ∥ ẋ(s)∥ 2 2 +(h 2 M +3)∥x(s)∥ 2 2 ] ds V 2 (t, ẋt ) ≤ h M λ max (R) ∫ t t-h M ∥ ẋ(s)∥ 2 2 ds which follows that V(t, x t , ẋt ) ≤ ϵ 1 h M ∥x t (0)∥ 2 2 +(h 2 M +3)ϵ 1 ∫ t t-h M ∥x(s)∥ 2 2 ds + [h 2 M λ max (R)+ϵ 1 ] ∫ t t-h M ∥ ẋ(s)∥ 2 2 ds
Thus, there exists a constant

c 2 := max{ϵ 1 h M , h 2 M λ max (R) + ϵ 1 , (h 2 M + 3)ϵ 1 }, such that V(t, x t ) ≤ c 2 ∥x t ∥ 2 W .
Compared with some existing Lyapunov-Krasovskii functionals, e.g. ( 4) and [START_REF] He | Augmented Lyapunov functional and delay-dependent stability criteria for neutral systems[END_REF], [START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF], [START_REF] Kim | Further improvement of Jensen inequality and application to stability of time-delayed systems[END_REF], V(t, x t ) in ( 19) has the following characteristics:

i) The quadratic term, say x T (t)Px(t) or xT (t)P x(t) in (4), is deleted. Instead, an augmented integral term V 1 (t, x t ) is introduced. As a result, the system states x(s), x(t), x(t-d(t))

and x(th M ) are closely coupled by the matrices Q 1 and Q 2 . Such coupling can enhance the relationship between x(t) and the other delayed state vectors in the derivative of V 1 (t, x t ); and

ii) Taking the time-derivative of V 1 (t, x t ) yields two important integrals ρ 2 (t) and ρ 4 (t), which enable us to employ the integral inequality (10) to derive less conservative stability conditions.

A new stability criterion

In this section, based on Theorem 1 and the Lyapunov-Krasovskii functional ( 19), we establish and state a novel delaydependent stability criterion for the system (1).

Proposition 1. For given scalars h M , d m and d M , the system (1) is asymptotically stable if there exist real matrices

Q 1 > 0, Q 2 > 0, R > 0, Y 1 and Y 2 with appropriate dimensions such that [ Υ 1 (0, d)| d=d m ,d M Γ T 2 Y T 2 Y 2 Γ 2 - R ] < 0, [ Υ(h M , d)| d=d m ,d M Γ T 1 Y 1 Y T 1 Γ 1 - R ] < 0 (23) [ [-h 2 M G 0 (d) + Υ 1 (0, d)]| d=d m ,d M Γ T 2 Y T 2 Y 2 Γ 2 - R ] < 0 (24)
where R = diag{R, 3R, 5R} and

Υ 1 (h(t), ḣ(t)) := [C 11 +h(t)C 12 ] T Q 1 [C 11 +h(t)C 12 ] + h 2 M C T 0 RC 0 -C T 5 Q 2 C 5 -(1-ḣ(t))C T 2 Q 1 C 2 -(2-α)Γ T 1 RΓ 1 + (1-ḣ(t))[C 41 +(h M -h(t))C 42 ] T Q 2 [C 41 +(h M -h(t))C 42 ] + Sym { D T 1 Q 1 [C 30 + h(t)C 31 + h 2 (t)C 32 ] } + Sym { D T 2 Q 2 [C 60 +(h M -h(t))C 61 +(h M -h(t)) 2 C 62 ] } -(1+α)Γ T 2 RΓ 2 -Sym { Γ T 1 [αY 1 + (1 -α)Y 2 ]Γ 2 } (25) G 0 ( ḣ(t)) := C T 12 Q 1 C 12 +(1-ḣ(t))C T 42 Q 2 C 42 + Sym { D T 1 Q 1 C 32 +D T 2 Q 2 C 62 } ( 26 
)
where

C 0 := Ae 1 + A d e 2 , α = (h M -h(t))/h M and
C 11 := col{C 0 , e 1 , e 1 , e 2 , e 3 , 0}, C 12 := col{0, 0, 0, 0, 0, e 6 } C 2 := col{e 8 , e 2 , e 1 , e 2 , e 3 , 0}, C 30 := col{e 1e 2 , 0, 0, 0, 0, 0} C 31 := col{0, e 6 , e 1 , e 2 , e 3 , 0}, C 32 := col{0, 0, 0, 0, 0, e 7 } C 41 := col{e 8 , e 2 , e 1 , e 2 , e 3 , 0}, C 42 := col{0, 0, 0, 0, 0, e 4 } C 5 := col{e 9 , e 3 , e 1 , e 2 , e 3 , 0}, C 60 := col{e 2e 3 , 0, 0, 0, 0, 0} C 61 := col{0, e 4 , e 1 , e 2 , e 3 , 0}, C 62 := col{0, 0, 0, 0, 0, e 5 } D 1 := col{0, 0, C 0 , (1 -ḣ(t))e 8 , e 9 , ( ḣ(t) -1)e 2 } D 2 := col{0, 0, C 0 , (1 -ḣ(t))e 8 , e 9 , -e 3 } Γ 1 := col{e 2 -e 3 , e 2 +e 3 -2e 4 , e 2 -e 3 -6e 4 +12e 5 } Γ 2 := col{e 1 -e 2 , e 1 +e 2 -2e 6 , e 1 -e 2 -6e 6 +12e 7 } with e i (i = 1, 2, • • • , 9) being the i-th n × 9n block-row vectors of the 9n × 9n identity matrix.

Proof. Taking the time derivative of V(t, x t ) in ( 19) along with the trajectory of the system (1) yields

V(t, x t ) = V1 (t, x t ) + h M V2 (t, x t ) (27) 
where

V1 (t, x t ) = η T 1 (t, t)Q 1 η 1 (t, t)-η T 2 (t, t -h M )Q 2 η 2 (t, t -h M ) -(1 -ḣ(t))η T 1 (t, t -h(t))Q 1 η 1 (t, t -h(t)) + (1 -ḣ(t))η T 2 (t, t -h(t))Q 2 η 2 (t, t -h(t)) + ∫ t t-h(t) 2η T 1 (t, s)Q 1 ∂η 1 (t, s) ∂t ds + ∫ t-h(t) t-h M 2η T 2 (t, s)Q 2 ∂η 2 (t, s) ∂t ds (28) h M V2 (t, x t ) = h 2 M ẋT (t)R ẋ(t) -h M ∫ t t-h M ẋT (s)R ẋ(s)ds (29)
For simplicity, denote

ξ(t) := col{x(t), x(t -h(t)), x(t -h M ), ρ 1 (t), ρ 2 (t), ρ 3 (t), ρ 4 (t), ẋ(t-h(t)), ẋ(t-h M )} ( 30 
)
where ρ j (t) ( j = 1, 2, 3, 4) are defined in (3). Then one has ẋ(t) = C 0 ξ(t), and

η 1 (t, t) = (C 11 +h(t)C 12 )ξ(t), η 1 (t, t -h(t)) = C 2 ξ(t), η 2 (t, t-h(t)) = [C 41 +(h M -h(t))C 42 ]ξ(t), η 2 (t, t-h M ) = C 5 ξ(t), ∫ t t-h(t) 2η T 1 (t, s)Q 1 ∂η 1 (t, s) ∂t ds = 2ξ T (t)D T 1 Q 1 [ C 30 + h(t)C 31 + h 2 (t)C 32 ] ξ(t), ( 31 
) ∫ t-h(t) t-h M 2η T 2 (t, s)Q 2 ∂η 2 (t, s) ∂t ds = 2ξ T (t)D T 2 Q 2 × [ C 60 + (h M -h(t))C 61 + (h M -h(t)) 2 C 62 ] ξ(t). (32) 
Denote

I (t) := h M ∫ t t-h M
ẋT (s)R ẋ(s)ds. Then

I (t) = h M ∫ t-h(t) t-h M ẋT (s)R ẋ(s)ds + h M ∫ t t-h(t)
ẋT (s)R ẋ(s)ds

Applying Lemma 1 yields

h M ∫ t-h(t) t-h M ẋT (s)R ẋ(s)ds ≥ 1 α (Γ 1 ξ(t)) T R(Γ 1 ξ(t)) h M ∫ t t-h(t) ẋT (s)R ẋ(s)ds ≥ 1 1 -α (Γ 2 ξ(t)) T R(Γ 2 ξ(t))
where α = (h Mh(t))/h M . Thus, apply (16

) with R 1 = R 2 = R, ϖ 1 = Γ 1 ξ(t) and ϖ 2 = Γ 2 ξ(t) to obtain I (t) ≥ ξ T (t) [ Υ 0 -(1-α)Γ T 1 Y 1 R-1 Y T 1 Γ 1 -αΓ T 2 Y T 2 R-1 Y 2 Γ 2 ] ξ(t) Υ 0 := (2-α)Γ T 1 RΓ 1 +(1+α)Γ T 2 RΓ 2 +S ym { Γ T 1 [αY 1 +(1-α)Y 2 ]Γ 2

}

To sum up, one has that where Υ 1 (h(t), ḣ(t)) is defined in (25), and

V(t, x t ) ≤ ξ T (t)[Υ 1 (h(t), ḣ(t)) + Υ 2 (h(t))]ξ(t) (33) 
Υ 2 (h(t)) := (1-α)Γ T 1 Y 1 R-1 Y T 1 Γ 1 +αΓ T 2 Y T 2 R-1 Y 2 Γ 2 Notice that Υ 1 (h(t), ḣ(t))+Υ 2 (h(t)) = h 2 (t)G 0 ( ḣ(t))+h(t)G 1 ( ḣ(t))+G 2 ( ḣ(t))
where G 0 ( ḣ(t)) is defined in (26); G 1 ( ḣ(t)) and G 2 ( ḣ(t)) are some proper real symmetric matrices irrespective of h(t). Let us consider the quadratic function χ

T [Υ 1 (h(t), ḣ(t))+Υ 2 (h(t))]χ as χ T [Υ 1 (h(t), ḣ(t))+Υ 2 (h(t))]χ = a 2 h 2 (t) + a 1 h(t) + a 0 ( 34 
)
where

a 0 = χ T G 2 ( ḣ(t))χ, a 1 = χ T G 1 ( ḣ(t))χ and a 2 = χ T G 0 ( ḣ(t))χ with χ ∈ R 9n .
If the linear matrix inequalities in ( 23) and ( 24) are satisfied, applying Lemma 2 and the Schur complement yields χ

T [Υ 1 (h(t), ḣ(t))+Υ 2 (h(t))]χ < 0 for h(t) ∈ [0, h M ] and ḣ(t) ∈ [d m , d M ]. Let χ = ξ(t). Then one has V(t, x t ) ≤ ξ T (t)[Υ 1 (h(t), ḣ(t)) + Υ 2 (h(t))]ξ(t) < 0 for h(t) ∈ [0, h M ] and ḣ(t) ∈ [d m , d M ]
. Thus, applying Lemma 3, one can draw a conclusion that the system (1) is asymptotically stable.

Remark 3. Proposition 1 presents a novel stability criteria based on the new Lyapunov-Krasovskii functional. From the proof, it is clear that in the estimation of V(t, x t ), Theorem 1 and Lemma 1 play a key role in deriving a tight upper bound for V(t, x t ). It is worth pointing out that Lemma 2 proposed in [START_REF] Kim | Further improvement of Jensen inequality and application to stability of time-delayed systems[END_REF] provides a useful method to deal with the quadratic function (34) on the time-varying delay h(t). Simulation results in the next section show that Proposition 1 can produce less conservative results than some existing approaches.

Numerical examples

Example 1. Consider the system (1) with

A = [ -2 0 0 -0.9 ] , A d = [ -1 0 -1 -1 ] ( 35 
)
and the delay h(t) is time-varying satisfying (2).

For comparison with some existing approaches, we calculate the maximum admissible upper bound h M for different d = -d m = d M . For d ∈ {0.1, 0.5, 0.8}, applying the approaches in [START_REF] Kim | Further improvement of Jensen inequality and application to stability of time-delayed systems[END_REF], Zeng et al. (2015) and Proposition 1, the obtained results are given in Tab. 1. Moreover, the number of decision variables (NoDVs) involved in solving the corresponding linear matrix inequalities is also listed in Tab. 1. From this [START_REF] Kim | Further improvement of Jensen inequality and application to stability of time-delayed systems[END_REF] and Zeng et al. (2015). It should be mentioned that the number of decision variables required in Proposition 1 is smaller than that in Zeng et al. (2015).

Example 2. Consider the system (1) with

A = [ 0 1 -1 -1 ] , A d = [ 0 0 0 -1 ] ( 36 
)
and the delay h(t) is time-varying satisfying (2).

For this example, in [START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF] and [START_REF] Kwon | Improved results on stability of linear systems with time-varying delays via Wirtingerbased integral inequality[END_REF], the maximum admissible upper bound h M of the time-varying delay h(t) is calculated for d = -d m = d M ∈ {0.1, 0.2, 0.5, 0.8} and the obtained results are listed in Tab. 2. However, applying Proposition 1 yields some larger upper bounds h M , which are also given in this table. It is clear to see that for d = 0.8, the maximum upper bound h M is improved by 16.73% and 52.16%, respectively, if compared with the ones in [START_REF] Kwon | Improved results on stability of linear systems with time-varying delays via Wirtingerbased integral inequality[END_REF] and [START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF].

Conclusion

Stability of linear systems with time-varying delay has been revisited in this paper. By introducing an optimal reciprocally convex inequality and a new Lyapunov-Krasovskii functional, a novel stability criterion has been derived for the system under study. It has been shown that through two well-used numerical examples the obtained stability criterion can deliver larger upper bounds for the time-varying delay than some existing ones.

Table 1 :

 1 The maximum admissible upper bound h M for d = -d m = d M for Example 1

	Method \ d	0.1	0.5	0.8	NoDVs
	Kim (2016)	4.753 2.429 2.183	27n 2 +4n
	Zeng et al. (2015) 4.788 3.055 2.615	65n 2 +11n
	Proposition 1	4.910 3.233 2.789 54.5n 2 +6.5n

Table 2 :

 2 The maximum admissible upper bound h M for d = -d m = d M for Example 2 , one can see clearly that Proposition 1 delivers some larger upper bounds h M for the time-varying delay h(t) than those by

	Method \ d	0.1	0.2	0.5	0.8
	Seuret (2013)	6.590 3.672 1.411 1.275
	Kwon et al. (2014) 7.125 4.413 2.243 1.662
	Proposition 1	7.230 4.556 2.509 1.940

table
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