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Achieving robust average consensus over lossy
wireless networks

Francesco Acciani, Paolo Frasca, Geert Heijenk and Anton Stoorvogel

Abstract—Average consensus over unreliable wireless networks
can be impaired by losses. In this paper we study a novel
method to compensate for the lost information, when packet
collisions cause transmitter-based random failures. This compen-
sation makes the network converge to the average of the initial
states of the network, by modifying the weights of the links
to accommodate for the topology changes due to packet losses.
Additionally, a gain is used to increase the convergence speed, and
an analysis of the stability of the network is performed, leading
to a criterion to choose such gain to guarantee network stability.
For the implementation of the compensation method, we propose
a new distributed algorithm, which uses both synchronous and
asynchronous mechanisms to achieve consensus and to deal with
uncertainty in packet delivery. The theoretical results are then
confirmed by simulations.

I. INTRODUCTION

In the last decade, attention for multi agent control sys-
tems has grown, and the same has happened for distributed
consensus algorithms. Consensus algorithms form the basis
for a large number of distributed algorithms, like distributed
hypothesis testing [1], distributed maximum likelihood esti-
mation [2], and distributed Kalman filtering [3]. Distributed
consensus algorithms have been studied under a wide variety
of conditions, including networks with undirected or directed
links, time varying topologies [4], and noisy channels [5], [6].
A significant example of an unreliable, time varying channel is
the wireless medium, used for safety-critical applications such
as vehicular networks (VANETs), which inspired the packet
loss model used in this work. VANETs use the underlying
IEEE 802.11p protocol in broadcast mode, where packets
are sent from a node to every neighbour in its radio range.
Here, packet loss is mostly caused by collisions, e.g. due to
hidden terminals, affecting the reception of the message by
all receivers. This motivates the broadcast approach and loss
model used in this paper [7].

Most average consensus dynamics are not robust to packet
losses [8]: if there are losses, consensus might not be reached,
and if reached the agreed value might not be the average
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of the initial conditions. In many cases, an estimate of the
induced distortion can be found following [9], [10]. Various
strategies exist to deal with the information lost due to packet
drops. Some methods are able to guarantee consensus, but
not average consensus, e.g. by modifying the weights of the
link between the nodes if a failure happens, like the biased
compensation method proposed in [8]. Other methods preserve
the average of the network, requiring retransmissions [11] or
additional variables to be transmitted [12], [13]; or requiring
the nodes to have a memory mechanism [14]; some of them
work under restrictive failure models [15].

The aim of this paper is to devise a compensation method to
preserve the convergence to the average in presence of packet
losses. More specifically, we want each node to modify the
weight of each link dynamically when a packet is not received
from a neighbour: if the information from one neighbour is
lost, the node will weigh differently the other links in its
neighbourhood, so that the average of the network is not
compromised. This weight-modifying mechanism is inspired
by the one in [8], but is improved to converge to the average,
and not to some other random value instead. Consequently,
there are two levels of time-variance of the network: the
network topology is varying in time, due to packet losses – i.e.
a link might drop at any given time – and the numerical values
of the weighted adjacency matrix are dynamically adjusted to
preserve average consensus. After finding the update rule that
achieves average consensus, we devise a distributed algorithm
to implement the update rule. The key challenge of the
distributed algorithm is to deal with the asynchronous nature
of the packet exchange and with the uncertainty regarding
delivery of packets to neighbours. The distributed algorithm
provides the required network awareness to the nodes.

The contribution of this paper is twofold: (i) we pro-
pose a compensation mechanism to preserve the average
in the consensus dynamics, where convergence speed can
be improved by using a suitable gain, for which we pro-
vide bounds to secure stability of the network, and (ii) we
describe and simulate a distributed algorithm to implement
this compensation method, specifically to safely deliver the
acknowledgementsand deal with the asynchronous nature of
the communication.

The rest of the paper is organised as follows: Section II
presents the model of the lossy consensus system; Section
III describes the proposed compensation methods; Section
IV proposes the distributed protocol and Section V presents
the simulation results. In the final section we present some
conclusions.

Preliminary and partial versions of some of our contribu-
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tions have appeared or are about to appear in the proceedings
of IEEE conferences, namely the compensation method in [16]
and the gain-acceleration in [17]. In this journal version, we
not only present these results in revised and consistent form,
with more details, but we also include a novel, further correc-
tive step (named asynchronous fallback) which is necessary
to preserve the average in the asynchronous implementation
(Section IV.B and Section IV.C)

II. THE CONSENSUS PROBLEM WITH PACKET LOSS

A network of n agents can be represented by a graph, where
each node represents one agent, and each edge represents a link
between two nodes. When the network is homogeneous, the
hypothesis of bidirectional links arises naturally: this results
in an undirected (symmetric) graph.

The consensus problem can be described as follows: each
agent of the network can update itself, relying only on the
messages received from its neighbourhood, and the consensus
problem is solved if all the nodes in the network agree on the
same value. Assume that each agent i is endowed with a scalar
state xi, and can communicate with a subset of agents, namely
its neighbourhood Ni. In the following, we indicate the set of
all agents as N . Each agent can update itself, computing a new
value of its state, relying on the states of its neighbourhood,
according to an update rule g(·):

xi(k + 1) = gi ({xj(k)|j ∈ Ni})

where k denotes an integer in a discrete-time framework.
The neighbourhood Ni indicates all the nodes which state is
accessible to i, so i ∈ Ni.

As mentioned before, the consensus problem is solved if
the network converges –asymptotically– to the same value ξ,
so if:

lim
k→∞

xi(k) = ξ ∀i ∈ N . (1)

Clearly, the consensus problem is influenced by two factors:
the neighbourhood of each node, and the update rule. When the
network’s topology is time invariant, i.e. the links are reliable
and fixed, it is possible to choose the following update rule:

xi(k + 1) =

n∑
j=1

wijxj(k), (2)

which can be interpreted as each node trying to drive its state
to the (weighted) average of its neighbourhood. This update
rule can be written in a more compact form, assuming x(k) =
[x1(k)x2(k) . . . xn(k)]

T , as

x(k + 1) = Wx(k), (3)

where wij 6= 0 =⇒ i and j are connected. We assume that W
has positive diagonal elements.

The W matrix is the weighted adjacency matrix of the
network, associated with the graph representing the topology
of the network, where the nodes are the vertices of the graph. If
the graph associated with W is connected, i.e. a path (sequence
of links) exists between each pair of nodes, then a sufficient
condition for the network to converge in the sense of (1)

is the row-stochasticity of W . In the rest of the paper we
assume that the graph associated with the network – in its
nominal conditions, i.e. without failures – is connected , that
the initial links’ weights are chosen such that the W matrix is
stochastic, i.e. W1 = 1 where 1 denotes a vector of ones,
and its diagonal elements are positive. Moreover, recalling
the bidirectional nature of the wireless communication, the
W matrix is assumed to be symmetric, and hence doubly
stochastic.

The double stochasticity condition assures average consen-
sus: the network will converge – in absence of packet losses
– to the average of the initial conditions of the nodes. When
the matrix W is only row-stochastic, the convergence of the
network is still guaranteed, but the asymptotic consensus value
is not the average of the initial conditions, but it is some
weighted average of the nodes’ initial conditions instead.

When the links are not reliable, due to failures in the
communication between nodes, the dynamics changes to a
time-dependent one:

x(k + 1) = W (k)x(k) (4)

because when the communication between two generic nodes
i and j drops at some instant k̂, then wij(k̂) = 0. This
implies that the matrix W (k̂) is not stochastic anymore, and
thus consensus can be compromised. There are two possible
failure outcomes for the average consensus problem: when
the topology changes randomly the condition (1) might not
be verified, i.e. the network does not converge at all, or the
network might converge, but to a value that is not the average
of the initial conditions. However, it is possible to modify the
matrix W (k) when a communication failure arises: weights of
links in the neighbourhood that did not experience a failure
during the kth iteration can be changed to compensate for the
communication drop and to preserve the double-stochasticity
nature of the matrix W (k).

We consider the specific case when a packet collision causes
a communication loss. This scenario arises when two nodes try
to communicate at the same time, causing interference in the
wireless medium, thus making the communication impossible
in the neighbourhood where the collision happens. It should
be noticed that communications in the IEEE 802.11p standard
–which will be used for vehicle-to-vehicle communication–
are used by different applications in the same channel, and
even communication in other channels might lead to collisions
[18], thus an approach based solely on scheduling or priorities
is not sufficient to avoid communication losses. Moreover,
we assume that communicating nodes are relatively close,
compared to the transmission range of the communication,
as it would be the case in vehicular network. As a result,
these nodes will experience often good communication quality,
and phenomena such as collisions will be mostly experienced
by all the nodes involved in the consensus process in a
neighbourhood. The nature of this phenomenon of loss of
communication in a neighbourhood suggests a node-based
failure model, instead of a link-based one: if a collision
happens, the message broadcast from one node to all its
neighbours is lost, as all the communication in the area is
impossible. While the dynamics (4) assumes synchronous
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communication, the actual implementation is asynchronous,
as we explain in Section IV: the nodes communicate one after
the other, so a sending failure does not affect the incoming
messages – as it would be expected – because the messages
are not simultaneous.

Motivated by this application, we assume that each node
is in a failure state or not with a given probability: the
communication loss is modelled by a failure vector f(k)
where fi(k) = 1 if the communication from node i to its
neighbours is successful during the kth consensus iteration, 0
otherwise. To keep the analysis simple, the failure probability
P[fi(k) = 0] = p is assumed to be the same for each node of
the network, and the failures are assumed to be independent of
each other. While this hypothesis might seem restrictive, as a
failure from a sending node in a synchronous scenario implies
the loss of incoming communication from its neighbours, it
should be noticed how this variable captures only the failures
of outgoing packets, according to the asynchronous protocol
implementation that we will suggest in Section IV. Alongside
the spatial independence of failure events, the failures are also
time independent, as a previous failure event does not influ-
ence any subsequent transmission. However, the probability
independence does not influence the compensation method,
but is used to analyse the dynamics of the system.

It is now possible to devise an update rule that preserves
average consensus in the network, which is done in the next
section.

III. THE AVERAGE PRESERVING COMPENSATION METHODS

Using the model presented in the previous section, it is
possible to modify the update rule followed by each node, to
compensate for a link failure, due to packet collision. When
a transmission fails, the receiving node can use its state to
perform the update, instead of the neighbour’s one which did
not transmit successfully. Moreover, when a node learns that
its transmission was not successful, it will not update itself.
This compensation method leads to the following update rule:

xi(k + 1) =fi

 n∑
j=1

fjwijxj(k) +

n∑
j=1

(1− fj)wijxi(k)


+ (1− fi)xi(k) (5)

where fj(k) models the loss of communication that a neigh-
bour is experiencing, it is equal to zero when the node j
fails its communication, and fi(k) models the behaviour of
the node, which will go in a standby state when its last
communication was not successful.

After some manipulation, equation (5) reads:

xi(k + 1) = xi(k) +
∑
j∈Ni

fi(k)fj(k)wij (xj(k)− xi(k)) ,

and it is now possible to give more details about the consensus
dynamics (4) in presence of losses, for which the matrix W (k)
is given by:

W (k) = I + F (k)WF (k)− diag(F (k)WF (k)1) (6)

and diag(v) is the diagonal matrix whose entries are the
elements of the vector v, while F (k) = diag(f(k)).

The following criterion for consensus is a special case of the
one proved in [8]. In order to state it, let us denote the expected
value of a random variable X as E[X], and the directed graph
associated with an adjacency matrix M as GM : we associate to
the matrix M the digraph GM with a set of vertices {1, . . . , n}
in which there is an edge from i to j whenever Mij 6= 0.

Lemma III.1. Assume that A(k) is a sequence of i.i.d
stochastic matrices, such that for all i we have A(k)i,i > 0.
If GE[A(k)] is connected then A(k) achieves consensus almost
surely.

By this result, the problem of verifying the convergence to
consensus property of the system is transformed into checking
the structure of the expected value of the matrix W (k).

Thanks to the previous lemma, the following result holds
true:

Proposition III.2. Assume W in (3) is a doubly stochastic
weighted adjacency matrix, W (k)i,i > 0, and GW is con-
nected. The expectation of W (k) is

E[W (k)] = (1− p)2W + p(2− p)I

and W (k) achieves consensus almost surely.

Proof. From (6) we have:

E [W (k)] = I + E
[
F (k)WF (k)− diag(F (k)WF (k)1)

]
= I + E

[
F (k)WF (k)

]
− diag(E

[
F (k)WF (k)1

]
)

remembering that:

[
F (k)WF (k)

]
ij

=

{
fi(k)fj(k)Wij if i 6= j,

fi(k)Wij if i = j.

Therefore, it is possible to evaluate the expected value:

E
[
F (k)WF (k)

]
ij

=

{
(1− p)2wij if i 6= j

(1− p)wij if i = j

The expectation of W (k) then becomes:

E [W (k)] = (1− p)2W + p(2− p)I

Clearly GE[W (k)] = GW , which we assumed to be connected,
and thus, by Lemma III.1, the update rule (6) achieves con-
sensus almost surely.

The state x(k + 1) can be expressed as:

x(k + 1) = W (k)x(k) =

k∏
ξ=1

W (ξ)x(0) = ∆(k)x(0),

and it can easily be checked that:

1T∆(k) = 1TW (k)∆(k − 1) = 1T∆(k − 1) = 1T . (7)

Similarly ∆(k)1 = 1 and its elements are nonnegative
since W (k) has nonnegative elements, hence ∆(k) is doubly
stochastic. Therefore the consensus value reached asymptot-
ically by the network is the average of the nodes’ initial
conditions.
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A. The α-average preserving compensation method (αAP)

The idea behind the average preserving compensation
method is straightforward: when there is a topology change
in the network due to packet loss, the nodes will perform a
compensation, modifying the links’ weights and resulting in a
change in the weighted adjacency matrix, such that the conver-
gence properties of the network are preserved. This method,
however, is rather conservative: using the update rule (5) a
node that experienced a failure will not update, preventing
the node to introduce errors in the network, but when the
probability of packet loss is high, several nodes might be in
an idle-status, slowing down the network convergence. While
those nodes are idle, however, the nodes that are updating
might speed up the process, e.g. they could update twice, using
the information received during the last successful round,
hopefully going closer to the average. Using this empiric
method leads to a weighted adjacency matrix as follows:

W (k) = I + 2F (k)WF (k)− 2 diag(F (k)WF (k)1)

Simulations show that this approach actually increases the
speed of convergence of the network, for high probability of
packet loss, but would lead to instability if the probability of
packet loss is low. Generalising, it is possible to speed up the
convergence process, using a gain α, defining the update rule
as follows:

xi(k + 1) =αfi

 n∑
j=1

fjwijxj(k) +

n∑
j=1

(1− fj)wijxi(k)


+ (1− αfi)xi(k) (8)

which can be described, in a vectorial form, as:

Wα(k) = I + αF (k)WF (k)− α diag(F (k)WF (k)1) (9)

with α > 1.
Modifying the compensation algorithm using the gain α

leads to an increase in performance but the new Wα(k) matrix
is not necessarily stochastic anymore: some of its entries
might be negative. However, even if the matrix Wα(k) is not
stochastic for every k anymore, the system converges for some
values of α, faster than when α = 1.

It is possible to investigate the relation between the choice
of the gain α and the convergence of the network.

We will show that the condition E[WT
αWα] ≥ 0 component-

wise leads to convergence in mean square sense; for this we
need to further investigate the error dynamics, defined as:

y(k) = x(k)− 1

n
11Tx(0), (10)

where n denotes the number of agents in the network, i.e. the
number of vertices in the graph. The convergence in mean
square sense is then:

lim
k→∞

E[yT (k)y(k)] = 0. (11)

From the update rule of x(k) follows that, remembering that
Wα(k)1 = 1:

y(k + 1) = x(k + 1)− 1

n
11Tx(0)

= Wα(k)x(k)− 1

n
Wα(k)11Tx(0)

= Wα(k)

(
x(k)− 1

n
11Tx(0)

)
= Wα(k)y(k).

It is possible to study the convergence of the expected value
of y(k+ 1)T y(k+ 1), for which the following theorem holds
true:

Theorem III.3. A system described by

x(k + 1) = Wα(k)x(k),

where

Wα(k) = I + αF (k)WF (k)− α diag(F (k)WF (k)1),

converges in mean square sense, according to (11), if:

α<
2wij
Ξij

(12)

for each i, j 6= i, for which Ξij > 0, where:

Ξij = 2pw2
ij + 2(1− p)wij − (1− p)[WT

W ]ij . (13)

Proof. The expected value of the squared error is:

E[y(k + 1)T y(k + 1)|y(k)] = y(k)TE[Wα(k)TWα(k)]y(k),

and:

1T y(k) = 1TWα(k − 1)y(k − 1) = 1T y(k − 1)

= · · · = 1T y(0) = 1Tx(0)− 1

n
1T11Tx(0) = 0

where we used the doubly stochasticity property of Wα(k) to
show y(k) ⊥ 1.

For a symmetric matrix A ∈ Rn×n, with eigenvalues λn ≤
λn−1 ≤ · · · ≤ λ1, the following holds true:

zTAz ≤ λ2z
T z

if z ⊥ e1, where e1 is the eigenvector associated to the λ1

eigenvalue. Since y(k) ⊥ 1 and E[WT
αWα] is symmetric, it

follows that:

E[y(k + 1)T y(k + 1)|y(k)] ≤ λ2

(
E[WT

αWα]
)
yT (k)y(k).

The time dependence is dropped, because the matrices Wα(k)
are mutually independent, according to the failure indepen-
dence property described in the previous section. Recursively,
we get:

E[y(k + 1)T y(k + 1)] ≤ λ(k+1)
2

(
E[WT

αWα]
)
E[y(0)T y(0)].

Then a sufficient condition for

lim
k→∞

E[yT (k)y(k)] = 0

is that E[WT
αWα] is stochastic and that the graph associated

with E[WT
αWα] is connected: this ensures that the absolute

value of all the eigenvalues of E[WT
αWα] is smaller than one

except for λ1 = 1.
The matrix E[WT

αWα] can be explicitly computed:

E[WT
αWα] = α2(1− p)3W

T
W−
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2α2p(1− p)2W �W+

2α(1− p)2W − 2α2(1− p)3W+

(α2(1− p)3 − 2α(1− p)2 + 1)I+

2α2p(1− p)2 diag(W
T
W ),

where � denotes the Hadamard – i.e. element-wise – product.
By construction, E[WT

αWα]1 = 1. Therefore, the matrix is
stochastic if E[WT

αWα]ij ≥ 0 for all i, j ∈ N
It is easily verified that the diagonal elements of E[WT

αWα]
are positive using that Wα is symmetric. It is sufficient to find
α such that the elements outside the diagonal of E[WT

αWα] are
positive whenever the corresponding element of W is positive
and otherwise at least nonnegative.

This would guarantee that E[WT
αWα] is stochastic and the

associated graph is connected whenever the graph associated
with W is connected, which is assumed true.

To show this property for the off-diagonal elements, we note
that it is possible to evaluate E[WT

αWα] element-wise:

E[WT
αWα]ij = α2(1− p)3[W

T
W ]ij − 2α2p(1− p)2w2

ij+

2α(1− p)2wij − 2α2(1− p)3wij

= (1− p)2α (−αΞij + 2wij) ∀i 6= j.

where Ξij is defined in (13). The condition for the network
to converge is then

−αΞij + 2wij ≥ 0 (14)

whenever wij = 0 and

−αΞij + 2wij > 0 (15)

otherwise. It is easily verified that wij = 0 implies that Ξij ≤
0 and hence (14) is satisfied. If Ξij ≤ 0 and wij > 0, then
(15) is satisfied. If Ξij > 0 then (15) becomes (12) which
completes the proof.

It should be noticed that this condition is not restrictive
since α = 1 always satisfies (12). After all, if Ξij > 0 then
wij > 0 and hence (12) with α = 1 is equivalent to:

2wij − Ξij > 0

which, using the definition of Ξij , is equivalent to:

2pwij(1− wij) + (1− p)[WT
W ]ij > 0

which is clearly satisfied since 1 > wij > 0 and [WTW ]ij ≥
0.

The bound for α allows for an a priori tuning of the
parameter, to ensure convergence when a stochastic modelling
of the network is known. It is possible to pick a safe αs defined
as the biggest α that satisfies all the inequalities (15), i.e.:

αs = min
ij s.t.Ξij>0

(
2wij
Ξij

)
.

Any α ≤ αs will secure convergence of the network to the
average of the initial conditions of the nodes: this can be
derived from the double stochasticity of the E[WT

αWα] matrix.
However, the aforementioned condition is only sufficient: it
might be possible to pick bigger values for α which might

make the network converge faster, but if α exceeds certain –
unknown – threshold, the network might instead reach insta-
bility, Intuitively, the gain should be one when the probability
of packet loss is equal to 0, and it should increase when the
probability of packet loss increases. Moreover, it might depend
on the size of the network: small networks will experience a
lower amount of packet losses, simply because the number of
links in the network is lower, thus a smaller gain should be
employed, because the number of idled nodes will be lower.
From those intuitive assumptions, it is possible to choose α
empirically as:

αh =
1

(1− p) + p
n

. (16)

Simulations suggest that this heuristic value makes the network
converge and that – in some cases – convergence is faster than
using αs, even though convergence is not guaranteed by our
theoretical results.

IV. DISTRIBUTED ASYNCHRONOUS ALGORITHMS

The compensation methods presented in the previous section
must be translated into an algorithm, which describes the
operations that each node must perform in order to achieve
the dynamics compensation described by (5) and (9) which
will be called the AP and the α-AP methods respectively.

The two methods aim to keep the weight-adjacency matrix
doubly stochastic, modifying the weight of the links between
the nodes. In order to achieve such a weight distribution dy-
namically, each node needs to know if its last communication
was successful or not before updating its value. This network
awareness can be obtained using explicit acknowledgements,
i.e. dedicated messages sent by the receiver to acknowledge a
successful transmission to the original sender. Such a solution,
however, might not be realistic in ad-hoc networks: even
if an acknowledgement message is shorter, its probability
of collision is lower but can not be simply neglected. To
provide feedback from the network to each node we propose
an implicit acknowledgement, i.e. the acknowledgement infor-
mation is carried by the same message that carries the state.
However, these informative messages, carrying the states, are
not reliable: this implies that some acknowledgements might
be lost, impairing the compensation methods effectiveness,
as some node would compensate whereas it should not. We
propose a local correction method, in addition to the AP and
α-AP compensation methods, to be performed asynchronously
by each node, to overcome the acknowledgements losses. It
should be noticed that the AP (α-AP) compensation modifies
the dynamics of the network, while the asynchronous cor-
rection step is a technical exploit to be able to practically
implement the acknowledgements.

A. The main algorithm

The compensation method can be summarised by the fol-
lowing procedure: each node starts in an initialisation phase,
followed shortly by its first sending phase. During the sending
phase, each node asynchronously broadcasts a message to
its neighbours, sending its state and the acknowledgment to
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each neighbour. After the sending phase, the node moves to
a receiving phase, during which the node waits for incoming
packets, until a timer triggers. All the packets received after
the timer triggers, are lost. Lastly, each node computes its
new state, using the information gathered during the previous
phase, during the so called computing phase.

We detail the behaviour for the ith node, which has ni
neighbours, indicated by the set Ni. A superscript indicates
the local variables kept in its memory by the node, as v(i).
Each node has a memory, where it stores: 1) its state, x(i)

i (k);
2) for each neighbour j ∈ Ni the iteration number of the
latest transmission from j received by i, denoted as t(i)j ; 3) the
last iteration number during which it broadcast a packet, t(i)i .
Moreover we assume that the communication between two
nodes in the same neighbourhood happens without errors at
least once every k̂ < ∞ rounds, that each node has perfect
information of its neighbourhood in its nominal, i.e. without
failures, condition, and we neglect computation and sending
times. The phases of the algorithm can be detailed as follow:

• Initialisation Phase:
Before the first communication round, each node i
switches on. Moreover, each node has its state initialised
to some initial value x

(i)
i (0), assumed random in the

following of the paper.
When the consensus routine begins each node moves to
its first sending phase, at some random time tis, and we
assume that tjs 6= tis for all ∀j ∈ Ni, j 6= i: we assume
that two nodes will not move to the first transmission
phase exactly at the same time in the same neighbour-
hood. If two nodes try to communicate at the exact
same time, due to the homogeneous nature of the nodes,
their communication will always end up in a collision,
according to out theoretical model. The aforementioned
hypothesis can be relaxed, e.g. it is possible to each node
to add a small random delay before every transmission, to
prevent the case where the communication between two
nodes always ends up in a collision.

• Sending Phase: During the kth consensus iteration, the
ith node sends its message, according to the following
steps:
1) it creates its message, containing the following:

– x
(i)
i (k);

– t
(i)
i = k;

– for each neighbour j ∈ Ni t(i)j , which have been
stored during the previous receiving phase – they
are initialised to 0 during the first sending phase –

2) it broadcasts the aforementioned packet to every
neighbour;

3) it moves to the receiving phase.
• Receiving Phase: In the receiving phase each node waits

for incoming packets. This phase is characterised by
a timer: the node waits for incoming packets until a
timer triggers — after a certain Tout — and after it all
remaining packets are lost. The parameter Tout needs
to be chosen taking into account the average message
latency, and the density of the network.

For each neighbour j ∈ Ni, the node i expects
[x

(j)
j , t

(j)
j , t

(j)
i ]. The round index t(j)i is used as acknowl-

edgement: if the node receives all t(j)i < t
(i)
i , then

there will not be any update for the node, as it means
that its last communication was unsuccessful. When the
receiving phase ends, the node moves to the computing
phase.

• Computing Phase: After the receiving phase, the node can
update its state, by compensating for the missing packets,
according to the following:

x
(i)
i (k + 1) = Wαi(k)x(i)(k),

where x(i)(k) is the collection of the received states dur-
ing the kth iteration, i.e. x(i)(k) = [x

(i)
1 (k) . . . x

(i)
n (k)],

and Wαi(k) is the ith row of the matrix describing the
compensation method. This algorithm can be used to
implement both the AP and α-AP methods, using the
value of α = 1 leads to the simple average preserving
compensation method.

A pseudocode describing the algorithm can be found in
Algorithm 1.

As mentioned before, the proposed compensation methods
use feedback from the network, more specifically acknowl-
edgements from other nodes, which are written in the in-
formative messages. Such messages are unreliable, therefore
acknowledgements can be missed. If this is the case, consensus
is still achieved asymptotically, but the average is not preserved
anymore. To cope with this problem, it is necessary to employ
an extra compensation step, the Asynchronous Fallback Cor-
rection. Moreover, another source of wrong acknowledgement
is the nodes’ transmission order. If the nodes in a neigh-
bourhood do not experience any fail, the order of sending
messages during one round does not change, and clearly the
last node to transmit will not receive any acknowledgement,
even if its message is correctly delivered: it will receive the
acknowledgement for round k only during round k + 1. This
problem is also solved by the asynchronous fallback correction
step, which enables the nodes to compensate for delayed
acknowledgements.

B. The asynchronous fallback correction step

When a node sends its message successfully, but all the
neighbours fail in acknowledging the successful communica-
tion, then the sender node performs its compensation — i.e.
does not update — while the neighbours use the sender’s state
to update themselves. When this happens, the average of the
network is compromised.

However, if a node would be able to understand if it
experienced a virtual failure, i.e. it did not update because
the acknowledgments were missing, whereas its message was
received successfully, then it could compensate for it, updating
its value outside the aforementioned scheduling.

To explain the mechanism, consider the restricted case in
which there is only one virtual failure event in the network, so
that the sending node will not update because the neighbours
failed to acknowledge its previous message. Let us assume that
the nodes use a cumulative acknowledgement strategy: they
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Algorithm 1 Compensation algorithm - α-AP.

1: procedure INITIALIZATION
2: for each node i do
3: k = 1
4: x = x(0)
5: goto: Sending
6: end for
7: end procedure
8: procedure SENDING
9: for each node i do

10: t
(i)
i ← k

11: f
(i)
I = 0

12: Broadcast [x
(i)
i (k), t

(i)
i , t

(i)
j ]

13: goto: Receiving
14: end for
15: end procedure
16: procedure RECEIVING
17: for each node i do
18: rp = 0;
19: x

(i)
j = 0∀j

20: f̂
(i)
j = 0∀j

21: while t < Tout ∧ rp < |Ni| do
22: t = t+ 1
23: upon event incoming packet [x

(j)
j , t

(j)
j , t

(j)
i ] do

24: t
(i)
j ← t

(j)
j

25: x
(i)
j ← x

(j)
j

26: f̂
(i)
j = 1

27: rp = rp + 1

28: if t(j)i = t
(j)
j then

29: fi = 1
30: end if
31: end while
32: goto: Computing
33: end for
34: end procedure
35: procedure COMPUTING
36: for each node i do
37: x

(i)
i = x

(i)
i + αfi

∑n
j=1 f̂

(i)
j wij

(
x

(i)
j − x

(i)
i

)
38: k = k + 1
39: goto: Sending
40: end for
41: end procedure

keep in memory not only the last successful communication
round number received by neighbours, but all the successful
rounds. If this is the case, when a node receives a packet,
it can check if it experienced a virtual failure: if all the
successful rounds are stored and transmitted, a node can see if
it receives an acknowledgement from the past, i.e. it receives
a t̂

(j)
i in which it performed no update, compromising the

average of the network. When this happens, the node can
simply compensate according to the following:

x
(i)+

i ← x
(i)
i + x̂i − x(i)

i (t̂
(j)
i )

Algorithm 2 Asynchronous fallback correction algorithm.

1: procedure ASYNCHRONOUS FALLBACK COMPENSA-
TION

2: for all t(j)i do
3: if f (i)

i (t
(j)
i ) = 0 then

4: xe =
∑n
j=1 f

(i)
j (t

(j)
i )wij

(
x

(i)
j (t

(j)
i )− x(i)

i (t
(j)
i

)
5: x̂i = x

(i)
i (t

(j)
i ) + αxe

6: x
(i)
i (k) = x

(i)
i (k) + x̂i − x(i)

i (t
(j)
i )

7: end if
8: end for
9: end procedure

where x
(i)
i (t̂

(j)
i ) is the state at time t̂

(j)
i , when the node

should have performed the update, but it did not, and x̂i is the
state that it should have computed at that time, if it would have
received a proper acknowledgement. In the above formulas,
the round k is not included in the notation: this indicates that
this compensation can happen at any time a virtual failure is
recognised.

To compute x̂i, the node needs to keep track of the received
messages — i.e. the states — from the network. When a node
receives an out-of-order acknowledgement, it updates itself
asynchronously, according to the following:

x̂i = x
(i)
i (t̂

(j)
i ) + α

n∑
j=1

f̂
(i)
j (t̂

(j)
i )wij

(
x

(i)
j (t̂

(j)
i )− x(i)

i (t̂
(j)
i )
)
.

When a node compensates for an acknowledgement received
out of order, it can free the memory for that round: the only
states that he keeps in memory are the ones relative to rounds
when he did not receive an acknowledgement. Moreover, we
assumed that the communication between any pair of nodes in
a neighbourhood happens successfully at least once every k̂ <
∞ rounds: it is possible to free the memory up to a round index
k̃ if at least one message from each node in the neighbourhood
has been received after k̃. The amount of memory required by
each node is then finite, as every state kept in memory can be
deleted at some point. In Figure 1 it is possible to appreciate
the difference when the asynchronous fallback correction step
is employed. Until a virtual failure happens, the average of the
network remains the correct one whether or not the fallback
correction is employed, deviating from the blue line only when
the nodes update themselves. However, without the correction
step the average of the network – red line – deviates from the
correct average at some point, while when the correction step
is employed – green line – the average of the network remains
the correct one. A pseudo-code, describing the asynchronous
fallback compensation routine can be found in Algorithm 2

This additional correction mechanism, to overcome the
acknowledgements losses, requires each node to keep track
of the neighbours previous successful transmissions, and their
previous states. This implies that each node needs some
memory to keep track of the previous states of the system.
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C. Buffer design

It is possible to characterise the amount of memory required
by each node. Let us assume that in a given consensus
round the talking order in each neighbourhood is random: a
reasonable assumption is that the node i has a probability 1

di
,

where di is the number of neighbours in its neighbourhood Ni,
to be the first one to send its message in its neighbourhood,
and that the probability to be the second, third and so on up
to the dth is the same. Clearly, a node will not receive any
acknowledgement of successful communication during round
k when it is the last one sending a message in the kth round,
moreover a node will not receive any acknowledgement of
successful communication if all the other nodes, communicat-
ing after it, will fail. The probability of a virtual failure is
then:

pv =
1

di
(1− p) +

1

di
p(1− p) + · · ·+ 1

di
pdi−1(1− p)

=
1− pdi
di

,

where the first term represents the case when the node i
is the last one communicating during a round, the second
term is the probability of having only one node scheduled to
transmit a message after node i, failing, and the last term is the
probability for node i to be the first one to communicate during
a round, and that all the neighbours fail in the communication.

Define an overflow event as the event that arises when there
are m subsequent virtual failures. We are interested in the
probability that an overflow happens in n consensus iterations.
Let us indicate the probability that an overflow – i.e. m
subsequent virtual failures – happens in n consensus iterations
as y(m)

n . In the following, the superscript m will be omitted
for readability, but clearly the probability to experience an
overflow depends on the number of subsequent failures that
will accumulate, i.e. m. We recall a simple but instructive
result:
Lemma IV.1. Consider a sequence of Bernoulli trials of
length n, where the probability of failure is denoted as pv .
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Error dynamics with and without fallback correction step

Figure 1: Evolution of the states’ average of the network with
and without asynchronous fallback correction.

Then the probability that exists a sequence of m failures in n
trials, denoted as yn, satisfies the following recursion:

yn+1 = yn + (1− yn−m)(1− p)pm (17)
y0 = y1 = . . . ym−1 = 0

ym = pm.

Proof. Before computing the probability yn, we notice how
the probability of obtaining a sequence of m failures in a
sequence of n trials is trivially 0 if m < n, and it is equal to
pm if m = n. We now compute the probability that a sequence
of m subsequent failures happens in n+ 1 iterations. If such
overflow happens in n + 1 iterations, it can happen in two
mutually exclusive ways: an overflow happened in the first n
iterations, or it did not happen in the first n − m iteration,
but the last m iterations ended in a failure and the n−m− 1
iteration was a success. The probability for the first event is
simply yn, while the probability for the second one is (1 −
yn−m)(1 − pv)pmv . Being the two events mutually exclusive,
the probability yn+1 is the sum of the two:

yn+1 = yn + (1− yn−m)(1− pv)pmv ,

which ends the proof.

It is possible to devise an explicit solution for (17) to obtain
yn, which reads:

yn = 1− an + pmv an−m

where:

ax =

x
m+1∑
j=0

(
x−mj

j

)
(−pmv (1− pv))j

but the proof it is rather long and thus omitted. Moreover, the
numerical computation of an and an−m is time consuming.
The recursion (17) is then the preferred method to compute
yn.

The knowledge of the overflow probability allows for a
buffer design: it is possible to pick m such that the probability
of having an overflow in n rounds is arbitrarily small, and
the buffer size Bi to handle overflow events of m subsequent
failures for node i is Bi = m|N |.

In Figure 2 the relation between the number of consensus
iterations and the buffer size to achieve a probability of
overflow smaller than 0.01 is presented.

Another way of designing the buffer size is to pick its size
such that it handles a number of failures proportional to the
expected value of the longest run of failures. An estimate of
the length of the longest run of failures in a Bernoulli trial of
length n is given in [19] as:

L = log1/pv (n(1− pv))

and then it is possible to pick m equal to L for an intuitive
design of buffer size.
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Figure 2: Buffer size to achieve a probability of overflow
smaller than 1%.

V. CONVERGENCE SPEED AND SIMULATION RESULTS

After proving the convergence of the new compensation
mechanisms and devising an algorithm to implement them,
we are interested in evaluating their speed of convergence.
Although it is possible to compute the exponential rate of con-
vergence to the network average, it does not lead to insightful
closed-form expressions in the general case [20], [21]. The
rate of convergence could be bounded solving an eigenvalue
problem: however, the computation of such eigenvalues is still
generally difficult, unless the scenario is restricted to some
specific topology: an extended study of the convergence rate
bounds for circulant and complete topologies can be found
in [16]. Moreover, when the update rule is modified with a
gain α, the eigenvalue problem becomes even more difficult.
While it is possible to find a value for α which assures
convergence, the number of iteration required to converge can
not be easily estimated beforehand, unless we restrict to some
special topology. To obtain a general performance evaluation
we run a set of simulations. To provide a meaningful set of
results, the simulations are performed varying several factors:
• the probability of packet loss, p;
• the size of the network, n;
• the ”connectivity probability”, m, defined below.
The parameter n is the number of nodes – i.e. the agents – of

the network. The parameter m defines the connectivity of the
network: for each pair of nodes, there is a connection between
them with probability m. A higher value for m implies a
larger number of connections in the network. The networks
are generated without any given structure, but when a network
with disconnected components is generated, it is discarded.
Lastly, during each consensus round, a node transmits a packet
to its neighbours with a success probability equal to 1−p. For
each triplet (n,m, p), 145 simulations are performed, and the
mean is displayed. We simulated the synchronous dynamics,
described by (4), and the convergence is practically reached
when:

||x(k)− 1

n
11Tx(k)|| < 10−10.

We are primarily interested in the performance difference
when a gain is employed, and secondarily we compare dif-
ferent choices of the gain α. Therefore, the simulations are
conducted using three different values for α:
• α = 1, representing the case when the gain is not used;
• αs, which assures convergence;
• αh, the heuristic value for α in (16).
To increase readability, the number of iterations required

to converge is shown over only two parameters: p and m,
because the dependence of the number of iterations required
to converge on the size of the network appears to be negligible
in comparison with the dependence on the probability of
packet loss and the connectivity of the network: for a given
probability of packet loss, the simulations lie in an interval
smaller than 10% of the displayed result.
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Figure 3: Iterations required to converge, for a network of 81
nodes, without gain, i.e. α = 1.

The iterations required to converge, when α = 1, are
depicted in Figure 3. For high probability of packet loss, the
number of iterations required to converge hits the limit of 500
– the upper limit imposed in the simulations – but we can infer
that the actual number of iteration required would be bigger.
We can notice two different trends: the number of iterations
required decreases as the probability of packet loss decreases,
and as the connectivity of the network increases. This result
is expected and intuitive. In Figures 4 is displayed the number
of iterations required to converge using the safe value for α.

First, we can notice how even for high probability of packet
loss, the algorithm converges in less than 500 iterations.
Moreover, the curve is always below the one in Figure 3:
using the gain does actually increase the convergence speed.
This result can be seen more clearly in Figure 5.

In Figure 5 it is possible to appreciate a better comparison
between the choice of αs or αh: this plot is obtained averaging
all the simulations, over m and n, to show only the dependence
of the number of iteration from the probability of packet
loss – which is the principal cause which slows down the
convergence. The graph shows how the performances of the
two methods are similar: employing the gain αh leads to
slightly better performances for lower probability of packet
loss, but the differences are minimal. The bound for α is not
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Figure 4: Iterations required to converge, for a network of 81
nodes, using a safe gain αs.
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Figure 5: Iterations required to converge for different values
of α, average over different network sizes n and connectivity
degrees m.

the optimal one. It is possible to find different values of gain
to speed up the convergence of the network. However, it is
interesting to evaluate how good the value of αs is, to check
whether this choice is limiting or not. Figure 6 displays the
number of iteration required for a network to converge, for
different values of α. The values are normalised over αs, in a
range from 0.5αs to 3αs. Choosing the safe value – circled in
red – is indeed not a limiting factor: it would be possible to
pick a different gain value to converge faster, but the increase
in performance is not dramatic. Moreover, the value of α that
achieves the fastest convergence is not known a priori, and it
can be extrapolated only trying different gains, while αs can
be computer beforehand.

Lastly, it is interesting to compare our algorithm with an-
other from the literature. For a fair comparison, the algorithm
presented by Hadjicostis in [14] has been chosen, due to
its good performance and to its structure: it is possible to
simulate both algorithms at the same time, relying on the same
infrastructure and message passing mechanisms, so that their
speed difference is only due to the compensation strategy. The
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Figure 6: Iterations required to converge for different values
of α. The x axis is normalised: the value 1 correspond to as.

two algorithms differ in the use of memory: the Hadjicostis
algorithm requires every node to have two variables, instead
of one, and the nodes have to agree on these two variables,
namely the average and the distance from the average intro-
duced by packet drops. To keep their implementation simple,
a circulant topology has been chosen: the nodes are organised
in a ring, and each node communicates with a symmetric set
of neighbours, l−1

2 in the clockwise direction and l−1
2 in the

anticlockwise direction. This ensures a topology where each
node has the same degree, and Hadjicostis’ algorithm requires
from each node the knowledge of its degree.

The results of this comparison, for a network of 80 nodes,
connected to 20 neighbours each, are presented in Figure 7.
The two algorithms have similar performance, but the novel
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Figure 7: Average number of iterations required to converge.
Comparison between the Hadjicostis algorithm and ours .

one is slightly faster. This trend appears in a variety of different
parameter choices, but our novel algorithm is slower than
Hadijcostis’ for more dense networks, i.e. when a node is
connected to a higher percentage of other nodes in the network,
while it is faster when the network is more sparse.
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VI. CONCLUSION AND FUTURE WORK

The compensation methods presented in this work achieve
their principal aim: they both make the network converge
to the exact average value of the nodes’ initial conditions,
regardless of packet losses, and the convergence speed can be
improved using a gain. The presence of such a gain might
lead to instability in the network’s dynamic, but it is possible
to find conditions to both secure stability and accelerate the
convergence of the network.

An algorithm to implement the compensation methods
has also been proposed: it is capable of implementing the
dynamics described by the two methods, relying on implicit
acknowledgements. The issue of virtual losses, due to the loss
of the implicit acknowledgements, can be addressed by the
proposed asynchronous fallback strategy.

As future work, it is possible to further investigate how
tight the stability bound is: the heuristic value of αh appears to
stabilise the network, even when it is bigger than the safe value
αs. Moreover, the analysis of performance and the search for
a gain is made without taking into account the differences
in the nodes: every node uses the same gain α. It would
be possible to find a set of different gains, one for each
node, stabilising the network. This would allow – hopefully
– faster convergence stil preserving stability. Lastly, it can be
investigated how the use of a gain affects the convergence rate
of the consensus algorithm in a more explicit way.
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