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Abstract— In the global context of the electric power grid 

modernization, storage of electricity is a crucial issue. Nowadays, 
energy storage systems (ESS) are used more and more in positive 
energy buildings in conjunction with new Low Voltage Direct 
Current (LVDC) grids.  However, the impact of renewable 
energy sources (RES) on ESS is not well known. The main 
objective of this article is to determine a systematic methodology 
to study energy data from a positive energy building in order to 
determine the impact on ESS dedicated to be included in smart-
grids. The aim is to obtain comparative results in normalized 
working conditions and determine charge/discharge cycles. 
Clustering methods were compared to choose the more adapted 
one to treat the stored data of energy production and 
consumption during more than three years in our experimental 
platform in LAAS-CNRS, Toulouse. Each type of cycle will help 
further study in order to estimate its impact on efficiency and 
lifetime of ESS and then choose the more adapted element for 
each application. 

Keywords— PV production ; positive energy building ; data 
clustering ; data analysis ; battery cycle ; efficiency  

I.  INTRODUCTION 
Progressive integration of renewable energy sources (RES) 

like photovoltaic or wind energy induces new constraints on 
classical electric power grids. All around the world, researches 
are conducted on the design of electrical grids to ensure higher 
efficiency and robustness of electric distribution from producer 
to consumer in addition to real-time control and response to 
energy demand [1]. New power grid topologies are developed 
in order to reduce transmission losses: high voltage direct 
current grids (HVDC) for long distance [2] and Low Voltage 
Direct Currents (LVDC) for local energy exchanges [3] well 
adapted for buildings. Any type of grid using RES needs local 
energy storage systems (ESS) to compensate the intermittence 
of production. This paper presents work in progress done to 
design an optimal LVDC grid based on analysis of real 
consumption and production data. Preliminary studies are 
needed to analyze production/consumption intermittency based 
on new profiles identified by data clustering methods. After a 
brief description of the context of energy optimized buildings 
and the new smart-grid challenge, a method of clustering used 
to create normalized discharge/charge cycles adapted to a real 
application is proposed. In this study, we choose to treat 
independently intermittent photovoltaic production and the 
building’s consumption. The chosen cluster analysis method is 
able to identify meaningful data from large real-scale data sets. 
Two examples illustrate this purpose: the identification of 

“typical” photovoltaic productions with different current 
profiles depending on meteorological conditions and 
geographic position and “typical” electrical consumption 
profiles for an energy optimized building in the ADREAM 
building. The main difficulty when studying impact on storage 
devices is to obtain normalized charge/discharge cycles based 
on real data to study their effects on each type of storage 
component. Another difficulty is to apply the same constraints 
in all storage elements and to identify the impact of these 
cycles on batteries in comparison to standard test cycles. 

 First, a brief reminder of the current state of energy grids 
and the principle of smart-grid development is presented. In the 
second part, the ADREAM test platform at LAAS-CNRS and 
the nature of collected data is introduced. A synthesis of solar 
producible studies concerning solar intermittency is given. In 
the third part, cluster analysis principles are remembered 
through a brief state of the art of data clustering methods. The 
chosen one for our study is then presented. Some examples 
using the energy data from the building are given in the fourth 
part to illustrate how data clustering can compute massive data 
with diverse criteria. Photovoltaic production data and 
electrical consumption data from the building are studied. In 
the last case, the variation between each profile is highly 
dependent on presence or not of consumers. Different families 
of storage elements will be tested in same conditions. Our 
long-term goal is to observe their characteristics progressing in 
time and their dependency on the working environment. 

II. ENERGY GRIDS AND THEIR EVOLUTION TO SMART GRIDS 
As energy demand is constantly increasing and fossil 

resources are limited, RES have been developed in the past 
decades [4]. Nevertheless, the structure of actual power grids is 
not really adapted to incorporate all these sources, as they are 
not commendable and highly intermittent and inducing risks of 
grid instability [5]. In order to inject energy from RES while 
maintaining an adequate level of energy quality, the grid needs 
to evolve, progressively incorporating smart control and 
metering technology. 

A. Vertical grid structure  
Historically, the energy supply chain was constructed 

vertically from producers to consumers. It was operated by 
public utilities, differentiating generation, transmission, 
distribution and supply steps. This system was targeting to 
minimize the total system cost by exploiting economies of 
scale for each step, resulting in construction or large generation 
plants to be located near to primary fuel sources or near large 



industrial customers. After the oil crisis (1973), the main focus 
in energy supply was security of supply, creating redundancies 
in the grid system. In this context of large centered energy 
production, the whole energy distribution was created to match 
loads to the generation, meaning that produced energy had to 
be consumed at all times and grids have been designed to 
transport energy unidirectional from generation plants to 
consumers. In addition, grid operators have been lacking 
detailed knowledge of customer load profiles due to lack of 
smart metering technologies and therefore were only able to 
adapt consumption to production [6]. At the same time, some 
social influence factors such as high quality service 
expectations and environmental awareness were not as 
important as nowadays. As the general demographic, economic 
and technologic resource abundancy situations are changing 
progressively, the energy grids must be adapted, taking in 
account their purpose in the future. 

B. Smart grids and horizontal structure of future grids 
In the years 2000s, the energy market was liberalized and 

the previously vertical energy supply chain had to be 
reorganized differently as every element in the supply chain 
except grid operation is now subject to competition. On the 
production side, many different companies offer their product 
that can be issued from many different sources to the consumer 
through the general grid. On the consumer side, the choice of 
the energy provider is free and self-production or self-
consumption becomes a viable option as decentralized energy 
production technology advances. The development of 
sustainable distributed generation such as photovoltaic, small 
combined heat/power plants or solar thermal systems are an 
opportunity for carbon dioxide reduction and security of energy 
supply while they also introduce the new challenge of 
integrating many small and intermittent energy sources in the 
general grid and maintaining the same level of quality in 
energy supply. This implies self-consumption and therefore 
lower utilization of local networks, bidirectional energy flow in 
grids to handle local excess generation or economical billing 
problematics based on energy provenance.  

In response to these challenges, the structure of energy 
grids has to be redesigned from a unidirectional system 
structure to a more interactive one where production and 
consumption can be mitigated. Usage of new technologies such 
as smart sensors, digital data gathering and analysis, emerging 
electronic converters and commands [7] must constitute the 
core of future smart energy grids. Exact matching of both 
energy production and consumption in quantity and quality 
coupled with appropriate controlled bidirectional grid 
structures are the key points of the development of these smart 
grids.  

As demand grows, reducing energy losses and using energy 
in its most primary form become new challenges. For this 
purpose, along with technological advancement in electrical 
converters, new types of grid structures such as the LVDC grid 
emerge to minimize the number of conversion stages between 
energy production and local consumption. Local grid structures 
such as LVDC or LVAC necessitate energy storage devices 
such as batteries as buffers to store intermittently produced 
energy, these grids could be isolated or inter connected to 

others. However, combining production, storage, distribution 
and consumption such as in positive energy buildings is a real 
challenge of design. 

III. ADREAM PLATFORM, ENERGY OPTIMIZED BUILDING 
Current researches on new power grid topologies including 

ESS are assessed through the energy optimized building 
platform ADREAM [8] in LAAS-CNRS (fig.1). This building 
has been designed to be a demonstrator but also a large-scale 
research tool for real-scale positive energy buildings. With this 
platform, constant innovations on energy source management, 
sensor quality and supervision can be validated through 
multiple different projects. This platform has over 7000 
sensors giving information every minute about every installed 
system in the building. All data are collected in a database 
(over 3 years of data). The sensors provide information about 
heating systems and acclimatization, lighting systems, quality 
of environment (meteorology, temperatures...), PV production, 
electric consumption and storage, camera network services, 
movement and localization services, communication networks 
(ZigBee, Wi-Fi…), robotic research systems and supervision 
tools. This building is covered with 720m² of PV panels with a 
total peak power of 100kW. The PV surface is divided in four 
main different zones (Table 1). 

 

 

 

 

 
Table 1. Différent zones of the photovoltaic system at ADREAM platform, 
LAAS-CNRS, Toulouse  

 
Fig. 1. Global view of the ADREAM Experimental Platform on energy 

exchanges,  LAAS-CNRS Toulouse 

Today, several projects of AC and DC microgrids with 
different ESS are developed in the ADREAM building. One of 
them is focused on designing a storage system for a 
conventional AC grid integrating a large production of PV. An 
other demonstrator is developed: a DC microgrid only 
supplied by a PV source will provide “green energy” to 

Roof PV TE2200 inclination: 10° 
Wall PV TE2200 inclination : 90° 

Terrace PV TE2200 Adjustable inclination:  
0° à 90° 

Facade Double glass inclination : 65° 



servers of a datacenter and to a show flat (with low lighting 
consumption (LED), many sensors ready for the internet of 
things (IoT), low voltage grid type power over Ethernet 
(PoE)…). This LVDC microgrid will provide data to compare 
structures and energy efficiency between DC/AC and DC/DC 
conversion. 

A. Solar irradiation and pv production 
Studying solar irradiation quality and its intermittence is 

one of the PV energy research axes of the ISGE team 
(Intégration des Systèmes de Gestion d'Energie) in LAAS-
CNRS [9], [10]. In order to design optimized energy 
management systems using photovoltaic production, a good 
understanding and knowledge of the solar producible is 
needed. 

Generally, global solar irradiation on a given terrestrial 
surface could be decomposed into three distinguished parts.  
According to Bernard [11], we can note different irradiations 
on a given surface by their origins (fig. 2). 

• The Direct radiation (S), corresponding to the 
radiation received directly from the sun when the sky 
is clear. 

• The Diffuse radiation (D) is the radiation coming 
from the whole atmosphere, due to diffraction. It is 
more important when the sky is cloudy. 

• The Reflected radiation (R) coming from other 
surfaces nearby (floor, water, glass, walls …) by 
reflection of the sunlight on them. 

The global irradiation (G) on a surface can be written as the 
sum of them: 

G = S + D + R     (1) 

 
Fig. 2. Incoming radiation on a photovoltaic surface 

 The quality of estimation on this global irradiation 
depends on the quality of measures of each type of irradiance 
needing a lot of sensors. A brief description of our 
experimental site is done below. 

B. Sensors and instruments 
The ADREAM platform is equipped with different types of 

solar radiation sensors in order to study solar producible and 
then modeled it. With this type of precision, it can be easier to 
evaluate performances of each part of PV systems in each 
geographic site of the world. Nevertheless, we want to develop 

precise models able to estimate solar irradiation in real time but 
also to drastically reduce sensors and have a mobile data 
station able to be employed in every site in the future.  

In a first approach, four pyranometers from Kipp&Zonen 
have been placed on the top of our experimental building as 
seen in the fig. 3, three referred CMP3 and one more precise is 
referred CMP10. These sensors are all wired to National 
Instruments acquisition card. The global bench constitutes of 
an automatized measuring system allowing the study solar 
producible and its intermittence with a high precision (4% to 
5% uncertainty). This type of test bench helps us to analyze 
other data brought by the sensors located in photovoltaic 
modules, converters and globally the behavior of all elements 
of the building. They have been fixed on inclinable stands in 
order to measure global irradiation (G) for different 
inclinations. 

 
Fig. 3. Solar irradiation sensors on their inclinable stand. 

In a second approach, to be more precise in the repartition on 
direct and diffuse irradiations, the CMP10 pyranometer has 
been set up on a solar ring structure (figure 4).  

 
Fig. 4. Pyranometer doted with a solar ring to measure diffuse and reflected 

irradiation. 

A solar ring system hides the irradiation sensor from the 
direct solar radiation through the entire day by covering the 
sun’s path accordingly. It allows measures of the irradiation 
diffused by the rest of the atmosphere and the irradiation 
reflected by nearby surfaces. A more precise model has been 
elaborated [12]. 

The study of solar radiation and precise modeling of solar 
producible permits to identify the quality of the energy data 
provided by the sensors on the PV systems and general electric 
grid of the building. This previous work gives a high precision 
comparison and verification point for PV performance based 
on the solar radiation and meteorology. High quality measures 
with pyranometers on different inclinations provide with a 
reliable way to validate the quality of other PV energy 
measures from the buildings sensors. Figure 5 shows an 



example of comparison between daily irradiation data from the 
CMP pyranometers and data from the database server. 

 

 
Fig. 5. Daily solar irradiation data from CMP pyranometers (Blue) and data 

from ADREAM's server (Red) 

Data from the sensor systems in the ADREAM platform 
must be analyzed to improve knowledge of production and 
consumption in an energy optimized building and progress in 
smart energy managing. The next chapter introduces cluster 
analysis methods used to compute large data banks that are 
adapted to this context. 

IV. CLUSTER ANALYSIS 
Cluster analysis or clustering is the task of grouping a set 

of objects in such a way that all objects in the same group 
(called a cluster) have a maximum of similitude compared to 
other objects belonging to other groups (clusters). It is a 
common technique used to make statistical data analysis. This 
type of analysis is able to identify general trends or typical 
similarities in large data and has been proven to be usable for 
PV power data [13]. Cluster analysis can be achieved with 
many different methods and algorithms. The main difference 
between them is the definition of what constitutes a cluster 
and how to efficiently find it. Tasks to achieve clustering can 
be described as iterative knowledge discoveries that involve 
many trials and iterations to find adequate clusters with 
desired properties. For the energy production and consumption 
data, a specific clustering algorithm has to be chosen from 
those used in literature.  

A.  Different types of cluster analysis algorithms 
In the literature, four main different families of clustering 

algorithms could be found. The first one is named hierarchical 
clustering [14]. It consists to calculate distance between 
objects (data points) to connect the closest objects in a same 
cluster. With this method, the maximum distance that connects 
two objects in a cluster defines each cluster. In the second 
family named centroid based clustering [15], each cluster is 
represented by a central vector (or centroid). Objects are 
assigned to clusters by their distance to the central vector of 
each cluster. The third type of clustering named Distribution-

based clustering uses mathematical probability distribution 
models such as a Gaussian one. Clusters are defined as objects 
belonging to the same distribution. In the last group named 
density-based clustering [16], clusters are defined as areas of 
higher density than the reminder of the data set. Objects in 
these sparse areas are usually considered to be noise and 
border points. 

 
In our energy context, the main goal is to identify typical 

profiles representing general trends in daily electrical power 
productions and consumptions based on meteorological and 
human usage scenarios. As we need to identify which days of 
data are the most representative ones for large parts of the total 
data, the chosen method must use data vectors as reference 
points for each cluster. A centroid based clustering method 
seems to be more adapted because this method uses central 
vectors for each cluster. Each resulting central vector 
represents the general trend of its cluster and can therefore be 
used as a typical daily power characteristic, representing all 
other days in the same cluster. In this case the interesting data 
for this application will be the centroids of each cluster. 

B. Clustering daily power data using K-medoids algorithm 
The most common clustering method based on centroids in 

use for energy applications is the K-means algorithm described 
in [17]. In this algorithm, the centroid of each cluster is defined 
as the mean value of the cluster. This algorithm is not directly 
usable in our application, as we want to identify the most 
“typical” and representative daily curves among the data but do 
not want to use a mean value as centroids because a mean daily 
curve is not representative of a realistic situation. Instead, we 
want to use one of the daily profiles of each cluster as the 
representative vectors for each cluster. One centroid based 
clustering algorithm that is particularly adapted to our study is 
the K-medoids algorithm, which is a derivate of the K-means 
algorithm. In this algorithm, the centroid element of each 
cluster is the one data vector that is the closest to the mean 
vector of the cluster (the medoid). In our application, the 
medoid of each cluster of daily power vectors (electrical power 
vs time) will be identified as the representative vector for this 
clusters scenario. Figure 6 shows an algorigram of the K-
medoids method we use for treating the data. 



 
Fig. 6.  Algorigram for the K-medoids clustering method. 

The algorithm is initialized with the raw data. The number 
of desired clusters (K) is chosen by the user. For example, the 
user defines or chooses one daily data (here one typical day 
power behavior array) as medoid for each cluster. An iterative 
loop begins. For each data element, the distance between it and 
each medoid is calculated. Each data point is then assigned to 
the closest medoid, forming the clusters. After this step, the 
most central and representative vector of each cluster is defined 
by the program as the new medoid of the cluster. At this point 
the medoids are changing on every iteration of the loop until 
the clusters do not evolve anymore. This means that when the 
data vectors of a cluster do not change between two iterations, 
the medoid stays the same. The algorithm stops when the K 
medoids have not changed between two iterations. At this 
point, the raw data has been partitioned in K groups (clusters) 
of daily curves. Each cluster is represented by one central 
element (the medoid), a typical daily curve.  

This data partitioning method is applied to two sets of data 
from the ADREAM platform: daily PV production data from 
100kWp of photovoltaic panels and electrical consumption 
data from the building. 

 

V. PRODUCTION AND CONSUMPTION PROFILES FOR THE 
BUILDING 

Results obtained using the K-medoids algortihm on the PV 
production and electrical consumption data from the 
ADREAM platform are presented in this part. The typical 
profiles resulting from this application are shown as daily 
instantaneous power versus time curves.  

A.  Study of PV production data 
Instantaneous daily power data with a one-minute 

sampling rate for the year 2015 is accessible on the ADREAM 
Photovoltaic platform. Using the K-medoids method explained 
in the above section, this data is processed with four different 
clusters. The typical profiles obtained are described on fig: 7. 

 
Fig. 7. Different types of daily PV power profiles identified with K-medoids 

clustering. 

 
The four resulting medoids define typical daily PV 

production profiles. They can be labeled “low intermittent 
solar radiation” (type 1), “low uniform solar radiation”(type 
2), “uniform strong solar radiation”(type 3) and as “strong 
intermittent solar radiation”(type 4). The shown PV power 
profiles are negative as these graphs represent “consumed 
power”. Identifying these daily production profiles is a 
necessary step to study realistic impact of PV intermittence on 
electrochemical storage devices. Tests concerning their impact 
on state of charge (SOC) and state of health (SOH) of storage 
devices in realistic energy optimized building conditions will 
be made using these profiles. 

B. Study of building electrical consumption data 
As for PV production data, K-medoids algorithm is used 

on the total electrical consumption data from ADREAM 
platform in 2015 with a one minute sampling rate. For this 
study a number of clusters of K=3 has been chosen. The 
following results are obtained: 

 



 
Fig. 8. Different types of daily profiles for power consumption identified 

with K-medoids algorithm 

These three different profiles are mostly variating in 
amplitude and thickness of the visible repeating power 
plateau. These plateaus are due to temporary activation of the 
heat pumps for both heating and cooling of the building. A 
change in overall amplitude between data1 and data3 curves is 
mostly due to different commands of hot water circulation 
pumps between winter and summer. These typical daily 
consumption profiles will serve to test the response of storage 
devices to realistic discharge profiles for an energy optimized 
building. 

 
The typical production and consumption profiles shown in 

this part are the first ones obtained through data clustering. 
They will constitute a base to define charge/discharge cycles 
applied to storage elements. Thus, these types of cycles are 
more realistic battery charge/discharge profiles applied to an 
energy-optimized building. They have to be tested on different 
technologies of electrochemical energy storage described in 
the following part. This part of our study on storage unit tests 
are work in progress and cannot be exposed in this paper in 
their current state. In particular, we do not have results with 
required precision and sample time for this paper. 

VI. STORAGE UNITS ADAPTED FOR ENERGY OPTIMIZED 
BUILDINGS 

Storage of electrical energy is one of the key points for 
successful renewable energy development. Several different 
technologies exist nowadays and it is essential to identify the 
most adapted ones for usage in an energy-optimized building. 
Determinant factors for comparison [18] are battery lifetime 
(depending on depth of discharge DOD per cycle), the 
efficiency of the cells (ratio of charged/discharged energy), 
their price and their environmental footprint. These storage 
devices must be able to store as much as possible of the 
overproduction from renewable sources and must be able to 
restitute this energy as needed when the production is not 
sufficient to supply for the buildings consumption. In this case 

the stored energy is discharged over several hours, meaning 
specific energy (Wh/kg) is more valuable than specific power.  

For our first approach of cycle tests, three technologies of 
batteries have been selected a priori more adapted to building 
context: Lead acid, Lithium iron-phosphate and hybrid LIC 
lithium-supercapacity. 

A. Lead acid batteries 
The lead acid battery technology [19] is the oldest 

rechargeable accumulator technology, existing since 1259. It 
is very commonly used today and different variations exist for 
different applications (energy storage, power storage). Its 
specific energy is relatively low (33 to 42 Wh/Kg) but is 
interesting for stationary energy storage due to its low cost. 

The AGM (Absorbent Glass Matt) and OPzV (using 
tubular electrodes) are the most adapted lead-acid technologies 
for photovoltaic production and especially in energy optimized 
buildings. The electrolyte is jellified in hermetic sealed battery 
blocs, minimizing maintenance needs. These specific types of 
lead acid batteries can have a lifetime of 500 to 1500 cycles at 
80% depth of discharge (DOD) against 300 to 600 cycles for 
other lead acid technologies. Their self-discharge is a slow 3% 
to 10% per month [18]. 

B. Lithium iron phosphate batteries 
Lithium-ion batteries [20] are industrially produced since 

the beginning of the 1990’s and is the most used storage 
devices today on the electronic consumer market. 

Mobile devices generally use mixed cobalt-lithium 
batteries LiCoO2 for their high energy density. The lithium 
iron phosphate battery LiFePO4 shows a bit lower energy 
density (~90Wh/Kg) but a longer lifetime (2500-3000 cycles 
at 80% DOD) and a better security, which makes it especially 
adapted for stationary high energy storage. The price of the 
LiFePO4 technology is higher than for lead acid batteries but 
stays competitive due to its increased lifetime, meaning less 
replacing and maintenance costs. It also has a better resistance 
to fast discharges and deep discharges while maintaining a low 
self-discharge rate (around 3% per month). Low voltage 
variation while discharging greatly reduces the complexity of 
the voltage regulation for this technology. It is therefore one of 
the best adapted batteries for inhabited environment when 
used with a protection system against overvoltage and 
overcurrent. 

C. Lithium supercapacity chemical hybrid LIC 
The intermittency of photovoltaic production can be 

problematic for energy storage. Hybrid systems using lead 
acid and lithium ion batteries with supercapacities are largely 
studied in this domain and tend to improve the smoothing of 
production or consumption peaks directly related to 
intermittency. 

Lithium supercapacities (LIC)[21] are electrochemical 
hybrid storage devices that have been created recently by 
combining principles of lithium-ion batteries and double-
layered supercapacities (EDLC). EDLC is a technology 
halfway between batteries and electrolytic capacitors that are 
able to store more energy than a classical capacitor. The 



energy can be stored and released at high power as in a 
classical capacitor. The main goal of this hybridization is to 
combine the benefits of each technology in terms of energy 
density, power density, charge/discharge speed and lifetime. 
This new hybrid technology is emerging like a potential 
alternative to electrical hybridization of lithium-ion batteries 
and EDLC, being used both as energy and power source. 

Manufacturers show a very high number of capacitive 
cycles (>100 000) and a long lifetime, making this technology 
very interesting for stationary renewable energy structures. 
Additional studies are needed to verify daily cycling 
withstanding. This type of hybrid seems very promising for 
renewable energy applications. LAAS-CNRS, associated to 
CIRIMAT through the Neocapus project are studying this type 
of hybrid storage to improve their performance and modeling 
it. 

VII. CONCLUSION 
To conceive a local optimized energy grid based on 

photovoltaic sources, a good knowledge of the solar 
producible, its intermittence and its production is needed. 
Studying typical PV production profiles permits to identify the 
quantity of available and storable energy depending on the 
meteorological scenario. Four types of production profiles 
have been identified in addition to three types of consumption 
profiles for the building. The impact of these realistic profiles 
can be tested on batteries and compared to standard test 
profiles. Identification of storage technologies adapted for 
energy optimized buildings permits an efficient dimensioning 
and an energy gain through optimization of self-consumption. 
Lead-acid AGM, OPzV and lithium iron phosphate batteries 
are particularly adapted to stationary renewable energy 
production structures. Electrochemical hybrid LIC has 
interesting technical specifications and seems promising. 

One key point in energy transfer optimization is a better 
knowledge of storage units. For this purpose, a model of state 
of charge (SOC) and state of health (SOH) in battery storage 
units is necessary and has to be done for the next step of this 
work. Once developed, storage models can be tested using the 
typical and realistic profiles obtained in this first work. 
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